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Abstract: In this paper, a wavelet based collocation method is formulated for an approximate solution
of (1 + 1)- and (1 + 2)-dimensional time fractional diffusion wave equations. The main objective of
this study is to combine the finite difference method with Haar wavelets. One and two dimensional
Haar wavelets are used for the discretization of a spatial operator while time fractional derivative
is approximated using second order finite difference and quadrature rule. The scheme has an
excellent feature that converts a time fractional partial differential equation to a system of algebraic
equations which can be solved easily. The suggested technique is applied to solve some test problems.
The obtained results have been compared with existing results in the literature. Also, the accuracy
of the scheme has been checked by computing L2 and L∞ error norms. Computations validate that
the proposed method produces good results, which are comparable with exact solutions and those
presented before.

Keywords: fractional differential equations; two-dimensional wavelets; finite differences

1. Introduction

The theory of fractional calculus is an ancient topic that has many applications. However,
practical work in this direction has been recently started (see References [1–3]). Most of the physical
phenomena in chemistry, physics, engineering and other fields of science can be modeled using
parameters of fractional calculus [4,5], means fractional derivative and integral operators. Amongst
these are electrolyte polarization [6], viscoelastic systems [7], dielectric polarization [8] and so forth.
Fractional models in different circumstances lead towards more accurate behaviour than those of
integer order models.

The time fractional diffusion wave equation (TFDWE) is such an important model which has
extensive uses. The TFDWE is actually a wave equation [9] with a fractional time derivative which
describes universal acoustic, electromagnetic and mechanical responses [10,11] with an enhanced
method. Over the past few decades, extensive attention has been paid to the closed form solution of
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time fractional diffusion wave equations (TFDWEs) and is still an open area of research. The closed
form solution of such problems is not an easy job and needs herculean efforts. Owing to the fact several
authors proposed numerical methods for the solution of fractional models, Tadjeran et al. [12] used
second order accurate approximation for fractional diffusion equations. Zhuang et al. [13] applied an
implicit numerical method for the anomalous sub-diffusion equation. Yuste and Acedo [14] studied
fractional diffusion equations via an explicit finite difference method. Chen et al. [15] proposed the
Fourier method for fractional diffusion equations. Hosseini et al. [16] solved the fractional telegraph
equation with the help of radial basis functions. Zhou and Xu [17] applied the Chebyshev wavelets
collocation method for the solution of time fractional diffusion wave equations. Bhrawya [18] used
the spectral Tau algorithm based on the Jacobi operational matrix for the numerical solution of time
fractional diffusion-wave equations. Yaseen et al. [19] solved fractional diffusion wave equations
with reaction terms using finite differences and a trigonometric B-splines technique. Khader [20] and
his co-author applied the finite difference method coupled with the Hermite formula for solutions
of fractional diffusion wave equations. Kanwal et al. [21] implemented two-dimensional Genocchi
Polynomials combined with the Ritz-Galerkin Method for solutions of fractional diffusion wave and
Klein-Gordon equations. Datsko et al. [22] studied time-fractional diffusion-wave equation with mass
absorption in a sphere under harmonic impact.

Recently, numerical methods using wavelets have been given more emphasis because of their
simple applicability. These methods also have some other interesting properties such as the ability to
detect singularities and express the function in different resolution levels, which improves the accuracy.
Amongst different classes of wavelets, Haar wavelets deserve special consideration. Haar wavelets
consist of piece wise constant functions. The integration of these wavelets in different times is one of
the best features. Also, Haar wavelets have orthogonality and normalization properties with compact
support. For more discussion on Haar wavelets one can see References [23,24].

In the present study, we propose a hybrid numerical scheme, based on Haar wavelets and finite
differences, to solve (1 + 1)- and (1 + 2)-dimensional TFDWEs. The stability of the proposed method is
discussed with the matrix method which is an essential part of the manuscript. The models which will
be under consideration are characterized in the following types:

(1 + 1)-Dimensional Equation:

cDδ
t w(x, t) = −wt(x, t) + wxx(x, t) +A(x, t), x ∈ Ω, t ∈ [0, T], 1 < δ ≤ 2, (1)

{
w(x, 0) = f (x), wt(x, 0) = g(x) x ∈ Ω̃ = Ω ∪ ∂Ω,

w(x, t) = α(t), x ∈ ∂Ω t ∈ [0, T].
(2)

(1 + 2)-Dimensional Equation:

cDδ
t w(x, y, t) = ∆w(x, y, t) + B(x, y, t), (x, y) ∈ Φ, t ∈ [0, T], 1 < δ ≤ 2, (3)

{
w(x, y, 0) = χ(x, y), wt(x, y, 0) = κ(x, y), (x, y) ∈ Φ̃ = Φ ∪ ∂Φ,

w(x, y, t) = χ1(x, y, t), (x, y) ∈ ∂Φ, t ∈ [0, T].
(4)

In Equations (1)–(4), ∆ is two-dimensional Laplacian; A, B, f , g, α, χ, κ, χ1 are known functions and
w is unknown function. Equations (2) and (4) are the corresponding initial and boundary conditions.
The symbols, Ω and ∂Ω, Φ and ∂Φ represent the domain and boundary of the domain respectively for
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(1 + 1)- and (1 + 2)-dimensional problems. Also cDδ
t w denotes the time fractional derivative of w with

respect to t in the Caputo sense which is given by

cDδ
t w =


1

Γ(2−δ)

∫ t
0

wζζ (x,ζ)

(t−ζ)δ−1 dζ, 1 < δ < 2,
∂2w(x,t)

∂t2 , δ = 2.
(5)

2. Ground Work

In this section, some basic definitions of fractional calculus and Haar wavelets are presented,
which will be required for the demonstration of our results. For a basic definition of Haar wavelets
and its integrals we refer to Reference [23]. Let us consider x ∈ [a, b] where a and b are the limits of the
interval. Next, the interval is subdivided into 2M intervals where M = 2J and J denote the maximal
level of resolution. Further, the two parameters j = 0, . · · · , J and k = 0, . · · · , 2j − 1 are introduced.
These parameters show the integer decomposition of wavelet number i = m + k + 1, where m = 2j.
The first and ith wavelets are defined as follows:

H1(x) =

{
1, x ∈ [a, b]

0, otherwise.
(6)

Hi(x) =


1, x ∈ [ξ1(i), ξ2(i))

−1, x ∈ [ξ2(i), ξ3(i))

0, otherwise,

(7)

where

ξ1(i) = a + 2kνδx, ξ2(i) = a + (2k + 1)νδx, ξ3(i) = a + 2(k + 1)νδx, ν =
M
m

, δx =
b− a
2M

.

To solve nth order time fractional PDEs the following repeated integrals are needed:

Pi,β(x) =
∫ x

a

∫ x

a
· · ·

∫ x

a
Hi(z)dzβ =

1
(β− 1)!

∫ x

a
(x− z)β−1Hi(z)dz, (8)

where
β = 1, 2, . . . n, i = 1, 2, . . . 2M.

Keeping in view Equations (6) and (7) the close form expressions of these integrals are given by

P1,β(x) =
(x− a)β

β!
. (9)

Pi,β(x) =


0, x < ξ1(x)
1
β! [x− ξ1(i))

β x ∈ [ξ1(i), ξ2(i))
1
β!
[
(x− ξ1(i))β − 2((x− ξ2(i))β

)
x ∈ [ξ2(i), ξ3(i))

1
β!
[
(x− ξ1(i))β − 2((x− ξ2(i))β + (x− ξ3(i))β

)
x ≥ ξ3(i).

(10)
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3. Description of the Method

This section is devoted to discussing the scheme for Equations (1) and (3) separately. In both
cases, the fractional order time derivative has been approximated by the quadrature formula [16]

cDδ
t w(x, tj+1) =

1
Γ (2− δ)

∫ tj+1

0
w(2)(x, ζ)

(
tj+1 − ζ

)1−δ
dζ

=
1

Γ (2− δ)

j

∑
k=0

∫ tj+1

tj

[
wk+1 − 2wk + wk−1

τ2

] (
tj+1 − ζ

)1−δdζ

=
1

Γ (2− δ)

j

∑
k=0

[
wk+1 − 2wk + wk−1

τ2

] ∫ tj+1

tj
[(j + 1)τ − ζ]1−δdζ

=
1

Γ (2− δ)

j

∑
k=0

[
wk+1 − 2wk + wk−1

τ2

]
(j− k + 1)2−δ − (j− k)2−δ

(2− δ)(τδ−2)

=
τ−δ

Γ (3− δ)

j

∑
k=0

[
wj−k+1 − 2wj−k + wj−k−1

] [
(k + 1)2−δ − (k)2−δ

]
= Aδ

[
wj+1 − 2wj + wj−1

]
+ Aδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k),

(11)

where Aδ =
τ−δ

Γ(3−δ)
, τ is time step size and B(k) = (k + 1)2−δ − (k)2−δ .

Case i:

Using Equation (11) and θ−weighted scheme (0 ≤ θ ≤ 1) in Equation (1), we obtain

Aδ

[
wj+1 − 2wj + wj−1

]
+ Aδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k) +

1
τ

{
wj+1 − wj

}
= θwj+1

xx + (1− θ)wj
xx +A(x, tj+1).

(12)

After simplification, the above equation transforms to

(τAδ + 1)wj+1 − τθwj+1
xx = 2τAδwj − τAδwj−1 − τAδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k)

+ wj + τ(1− θ)wj
xx + τA(x, tj+1). (13)

In our analysis we take θ = 1/2. Now approximating the highest order derivative by a truncated
Haar wavelets series as:

wj+1
xx (x) =

2M

∑
i=1

aj+1
i Hi(x). (14)

Integrating Equation (14) from 0 to x

wj+1
x (x) =

2M

∑
i=1

aj+1
i Pi,1(x) + wj+1

x (0). (15)

Integrating Equation (15) from 0 to 1, we get

wj+1
x (0) = wj+1(1)− wj+1(0)−

2M

∑
i=1

aj+1
i Pi,2(1). (16)
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Substituting Equation (16) in Equation (15), the resultant equation reduces to

wj+1
x (x) =

2M

∑
i=1

aj+1
i [Pi,1(x)−Pi,2(1)] + wj+1(1)− wj+1(0). (17)

Integration of Equation (17) from 0 to x yields

wj+1(x) =
2M

∑
i=1

aj+1
i [Pi,2(x)− xPi,2(1)] + x

[
wj+1(1)− wj+1(0)

]
+ wj+1(0). (18)

Substituting values from Equations (14), (17) and (18) in Equation (13) and using collocation
points xm = m−0.5

2M , m = 1, 2, . . . 2M, leads to the following system of algebraic equation

2M

∑
i=1

aj+1
i
[
(τAδ + 1) {Pi,2(x)− xPi,2(1)} − τθHi(x)

]
x=xm

= R(m), (19)

where

R(m) = 2τAδwj − τAδwj−1 − τAδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k) + wj

+ τ(1− θ)wj
xx + τA(xm, tj+1)− (τAδ + 1)

{
xm

(
wj+1(1)− wj+1(0)

)
+ wj+1(0)

}
.

Equation (19) contains 2M equations. The unknown wavelet coefficients can be computed from
this system. After determination of these unknown constants, the required solution at each time can
be calculated from Equation (18).

Case ii:

Following a similar approach, as discussed earlier, Equation (3) gives

Aδwj+1 − θ
[
wj+1

xx + wj+1
yy

]
= (1− θ)

[
wj

xx + wj
yy

]
+ B(x, y, tj+1) + 2Aδwj − Aδwj−1

− Aδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k). (20)

Now we approximate wj+1
xxyy(x, y) with a two dimensional truncated Haar wavelets series as:

wj+1
xxyy(x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l Hi(x)Hi(y), (21)

where aj+1
i,l are unknowns to be determined. Integration of Equation (21) w.r.t. to y, between 0

and y, gives

wj+1
xxy(x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l Hi(x)Pl,1(y) + wj+1

xxy(x, 0). (22)

Integrating Equation (22) w.r.t y from 0 to 1, the unknown term wj+1
xxy(x, 0) is given by

wj+1
xxy(x, 0) = w+1

xx (x, 1)− w+1
xx (x, 0)−

2M

∑
i=1

2M

∑
l=1

aj+1
i,l Hi(x)Pl,2(1). (23)
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Substituting Equation (23) in Equation (22), the obtained result is

wj+1
xxy(x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l Hi(x) [Pl,1(y)−Pl,2(1)] + w+1

xx (x, 1)− w+1
xx (x, 0). (24)

Integrating Equation (24) from 0 to y, we get

wj+1
xx (x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l Hi(x) [Pl,2(y)− yPl,2(1)] + yw+1

xx (x, 1) + (1− y)w+1
xx (x, 0). (25)

Repeating the same procedure one can easily derive the subsequent expressions

w+1
yy (x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l [Pi,2(x)− xPi,2(1)]Hl(y) + xw+1

yy (1, y) + (1− x)w+1
yy (0, y). (26)

w+1
x (x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l [Pi,1(x)−Pi,2(1)] [Pl,2(y)− yPl,2(1)] + yw+1

x (x, 1)

+ (1− y)w+1
x (x, 0) + w+1(1, y)− w+1(0, y)− yw+1(1, 1) + yw+1(0, 1)

+ (y− 1)w+1(1, 0) + (1− y)w+1(0, 0). (27)

w+1
y (x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l [Pi,2(x)− xPi,2(1)] [Pl,1(y)−Pl,2(1)] + xw+1

y (1, y)

+ (1− x)w+1
y (0, y) + w+1(x, 1)− w+1(x, 0)− xw(1, 1) + xw+1(1, 0)

+ (x− 1)w+1(0, 1) + (1− x)w+1(0, 0). (28)

w+1(x, y) =
2M

∑
i=1

2M

∑
l=1

aj+1
i,l [Pi,2(x)− xPi,2(1)] [Pl,2(y)− yPl,2(1)] + yw+1(x, 1)

− yw+1(0, 1) + (1− y)
[
w+1(x, 0)− w+1(0, 0)

]
+ xw+1(1, y)

− xw+1(0, y)− xy
[
w+1(1, 1)− w+1(0, 1)

]
+ x (y− 1)w+1(1, 0)

+ x(1− y)w+1(0, 0) + w+1(0, y). (29)

Substitution of Equations (25), (26) and (29) in Equation (20) and using the collocation points,
xm = m−0.5

2M , yn = n−0.5
2M , m, n = 1, 2, . . . 2M, produces the following system of equations

2M

∑
i=1

2M

∑
l=1

aj+1
i,l [AδD(i, l, m, n)− θE(i, l, m, n)− θF (i, l, m, n)] = L(m, n) +M(m, n), (30)
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where

D(i, l, m, n) = [Pi,2(xm)− xmPi,2(1)] [Pl,2(yn)− ynPl,2(1)] ,

E(i, l, m, n) = Hi(xm) [Pl,2(yn)− ynPl,2(1)] ,

F (i, l, m, n) = [Pi,2(xm)− xmPi,2(1)]Hl(yn),

L(m, n) = (1− θ)
[
wj

xx + wj
yy

]
,+B(xm, yn, tj+1) + 2Aδwj − Aδwj−1

− Aδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k),

M(m, n) = −Aδ

[
ynwj+1

x (xm, 1)− ynwj+1(0, 1) + (1− yn)
{

wj+1(xm, 0)− wj+1(0, 0)
}

+ xmwj+1(1, yn)− xmwj+1(0, yn)− xmyn

{
wj+1(1, 1)− wj+1(0, 1)

}
+ xm (yn − 1)wj+1(1, 0) + xm(1− yn)wj+1(0, 0) + wj+1(0, yn)

]
+ θ
[
ynwj+1

xx (xm, 1)

+ (1− yn)w
j+1
xx (xm, 0) + xmwj+1

yy (1, yn) + (1− xm)wj+1
yy (0, yn)

]
.

Equation (30) represents 2M× 2M equations in so many unknowns which can be solved easily.
After calculation of these unknowns, an approximate solution can be obtained from Equation (29).

4. Stability Analysis

Here we present the stability analysis of the proposed scheme for (1 + 2)-dimensional problems;
a similar result can be proved for (1 + 1)-dimensional problems. In matrix form Equations (25), (26)
and (29) can be written as

wj+1
xx = Uαj+1 + Ũ j+1, (31)

wj+1
yy = Vαj+1 + Ṽ j+1, (32)

wj+1 = Zαj+1 + Z̃ j+1, (33)

where αj+1 = αj+1(i, l), U ,V ,Z and Ũ j+1, Ṽ j+1, Z̃ j+1 are interpolation matrices of wj+1
xx , wj+1

yy , wj+1

at collocation points and boundary terms, respectively. Now using Equations (31), (32) and (33) in
Equation (20), we get[

AδZ − θ
(
U + V

)]
αj+1 =

[
2AδZ + (1− θ)

(
U + V

)]
αj + G j+1, (34)

where G j+1 = −AδZ̃ j+1 + θ
(
Ũ j+1 + Ṽ j+1) + 2AδZ̃ j + (1 − θ)(Ũ j + Ṽ j) + Bj+1 − Aδwj−1 −

Aδ ∑
j
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k).

Now From Equation (34) one can write

αj+1 = C−1T αj + C−1G j+1, (35)

where C =
[
AδZ − θ

(
U + V

)]
, T = 2AδZ + (1− θ)

[
U + V

)
. Putting Equation (35) in Equation (33)

we get
wj+1 = ZC−1T αj +ZC−1G j+1 + Z̃ j+1. (36)

Using Equation (33) in Equation (36) we have

wj+1 = ZC−1T Z−1wj −ZC−1T Z−1Z̃ j +ZC−1G j+1 + Z̃ j+1. (37)
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The above equation shows a recurrence relation of a full discretization scheme which allow us
refinement in time. If w̃j+1 is numerical solution then

w̃j+1 = ZC−1T Z−1w̃j −ZC−1T C−1Z̃ j +ZC−1G j+1 + Z̃ j+1. (38)

Let ej+1 = wj+1 − w̃j+1 be the error at (j + 1)th time level. Subtracting Equation (37) from
Equation (38) then

ej+1 = Λej,

where Λ = ZC−1T Z−1 is the amplification matrix. According to Lax-Richtmyer criterion, the scheme
will be stable if ‖Λ‖ ≤ 1. It has been verified computationally that ‖Λ‖ ≤ 1. For J = 1 the spectral
radius is 0.01025 which lies in the stability domain.

5. Convergence Analysis

The convergence analysis of scheme (18) and (29) is similar to the following theorems, therefore
the proofs are omitted.

Lemma 1 (see [24]). If w(x) ∈ L2(R) with
∣∣w′(x)

∣∣ ≤ ρ, for all x ∈ (0, 1), ρ > 0 and w(x) = ∑∞
i=0 aiHi(x)

then | ai |≤
ρ

2j+1 .

Lemma 2 (see [25]). If f (x, y) satisfies a Lipschitz condition on [0, 1]× [0, 1], that is, there exists a positive L
such that for all (x1, y), (x2, y) ∈ [0, 1]× [0, 1] we have | f (x1, y)− f (x2, y) |≤ L | x1 − x2 | then

a2
i,l ≤

L2

24j+4m2

Theorem 1. If w(x) and w2M(x) are the exact and approximate solution of Equation (1), then the error norm
‖ EJ ‖ at Jth resolution level is

‖ EJ ‖≤
4ρ

3

(
1

2J+1

)2
. (39)

Proof. See [26].

Theorem 2. Assume w(x, y) and w2M(x, y) be the exact and approximate solution of Equation (3), then

‖ EJ ‖≤
L

4
√

255
1

24J . (40)

Proof. See [27].

6. Illustrative Test Problems

In this part, we chose some test problem to confirm the reliability and efficiency of the present
scheme. For validation of our results L∞ and L2 error norm are figured out which are defined as follows:

L2 =

√√√√2M

∑
i=1

(
wext − wapp

)2

, L∞ = max
1≤i≤2M

∣∣∣∣wext − wapp
∣∣∣∣, (41)

where wapp and wext are respectively approximate and exact solutions.
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Problem 5.1

Let us take the following (1 + 1)-dimensional TFDWE with damping

cDδ
t w(x, t) = −wt(x, t) + wxx(x, t) +A(x, t), x ∈ [0, 1], t ∈ [0, 1], 1 < δ ≤ 2, (42)

with A(x, t) = 2x(1−x)t2−δ

Γ(3−δ)
+ 2tx(1− x) + 2t2. Initial and boundary conditions are derived from the

exact solution w(x, t) = t2x(1− x). This problem has been solved for parameters J = 4, t = 0.01,
0.1, 1, δ = 1.1, 1.3, 1.5, 1.7, 1.9. The obtained error norms are shown in Table 1. From table it is
obvious that results of the present scheme match well with exact solution. Also in Table 2 it has been
observed that accuracy increases with increasing resolution level which shows the convergence in the
spatial direction. In the same table, the results have been matched with existing results in the literature
which clarify that computed solutions are in good agreement with the work of Chen et al. [28]. Table 3
shows convergence in time for fixed dx = 1/32. The convergence rate of the proposed scheme has
been addressed in Table 4. the graphical solution and error plot are given in Figure 1. From this Figure
it is clear that approximate solutions are matchable with exact.

Table 1. Error norms of problem 5.1 for at J = 4.

δ
t = 0.01, τ = 0.0001 t = 0.1, τ = 0.001 t = 1, τ = 0.01

L∞ L2 L∞ L2 L∞ L2

1.1 7.0694 × 10−8 2.9496 × 10−7 1.0799 × 10−5 4.5921 × 10−5 2.1556 × 10−3 8.9537 × 10−3

1.3 3.1776 × 10−8 1.3294 × 10−7 7.6592 × 10−6 3.2979 × 10−5 2.1082 × 10−3 8.7615 × 10−3

1.5 1.1646 × 10−8 4.8890 × 10−8 4.8457 × 10−6 2.1318 × 10−5 2.0653 × 10−3 8.5871 × 10−3

1.7 5.2296 × 10−9 2.1899 × 10−8 3.3635 × 10−6 1.4944 × 10−5 2.1431 × 10−3 8.8989 × 10−3

1.9 2.2087 × 10−9 9.2078 × 10−9 2.1386 × 10−6 9.3949 × 10−5 2.4382 × 10−3 1.0094 × 10−2

Table 2. Comparison of maximum error of problem 5.1 with previous work at t = 1 and δ = 1.7.

[28] Present Method

h τ Error dx τ Error
0.05 0.05 4.4333 × 10−3 1/4 0.05 8.2306 × 10−4

0.025 0.0125 7.7368 × 10−4 1/8 ... 5.4184 × 10−4

0.0125 0.00625 3.1827 × 10−4 1/16 ... 4.9195 × 10−4

Table 3. Error norms of problem 5.1 for different values of τ and δ.

δ = 1.5 δ = 1.7

τ L∞ L2 L∞ L2
1/4 5.4216 × 10−2 2.2515 × 10−1 5.4689 × 10−2 2.2708 × 10−1

1/8 2.7891 × 10−2 1.1571 × 10−1 2.8861 × 10−2 1.1961 × 10−1

1/16 1.3645 × 10−2 5.6647 × 10−2 1.4343 × 10−2 5.9443 × 10−2

1/32 6.6683 × 10−3 2.7699 × 10−2 7.0022 × 10−3 2.9034 × 10−2

1/64 3.2674 × 10−3 1.3580 × 10−2 3.4061 × 10−3 1.4135 × 10−2
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Table 4. Convergence rate of maximum error of problem 5.1 at t = 1 and δ = 1.7.

J τ Error Rate

1 1/10 2.6194 × 10−3 -
2 1/20 1.3086 × 10−3 1.0012
3 1/40 5.5920 × 10−4 1.2265
4 1/80 2.2921 × 10−4 1.2866
5 1/160 9.3261 × 10−5 1.2973
6 1/320 3.7377 × 10−5 1.3191

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

x
t

w

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

x
t

w

0

0.5

1

0

0.5

1

0

0.005

0.01

0.015

 

x
t

 

E
rr

o
r

2

4

6

8

10

12

x 10
−3

Exact solution Approximate solution Error

Figure 1. Graphical behaviour of problem 5.1 when t = 1, δ = 1.5.

Problem 5.2:

Consider the following TFDWE with damping

cDδ
t w(x, t) = −wt(x, t) + wxx(x, t) +A(x, t), x ∈ [0, 1], t ∈ [0, 1], 1 < δ ≤ 2, (43)

coupled with initial and boundary conditions{
w(x, 0) = 0, wt(x, 0) = 0 x ∈ (0, 1)

w(0, t) = t3, w(1, t) = et3, t ∈ [0, 1].
(44)

The exact solution and source term are given by w(x, t) = ext3 andA(x, t) = 6t3−δex

Γ(4−δ)
+ 3t2ex − t3ex.

In Table 5 the obtained error norms are shown for parameters t = 0.01, 0.1,
δ = 1.1, 1.3, 1.5, 1.7, 1.9, J = 4. Table 5 shows that exact and approximate solutions agree
with each other. The solution profile and absolute error are displayed Figure 2. From the Figure,
the coincidence of both solutions are visible.

Table 5. Error norms of problem 5.2 at J = 4.

δ
t = 0.01, τ = 0.0001 t = 0.1, τ = 0.001

L∞ L2 L∞ L2

1.1 1.7079 × 10−7 6.8446 × 10−7 1.2504 × 10−4 5.3397 × 10−4

1.3 6.5331 × 10−7 2.5683 × 10−6 4.4278 × 10−4 1.8777 × 10−3

1.5 1.2494 × 10−6 4.7989 × 10−6 8.7071 × 10−4 3.6354 × 10−3

1.7 1.3386 × 10−6 5.0827 × 10−6 1.0489 × 10−3 4.2541 × 10−3

1.9 5.6739 × 10−7 2.1936 × 10−6 5.1085 × 10−4 2.0046 × 10−3
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Figure 2. Graphical behaviour of problem 5.2 at t = 0.3, δ = 1.1.

Problem 5.3:

Now we consider (1+2)-dimensional TFDWE [29]

cDδ
t w(x, y, t) = ∆w(x, y, t) + B(x, y, t), (x, y) ∈ [0, 1]× [0, 1], t ∈ [0, 1], 1 < δ ≤ 2, (45)

with exact solution w(x, y, t) = sin(πx)sin(πy)tδ+3, and source term

B(x, y, t) = sin(πx)sin(πy)
[

Γ(δ + 3)t2

2
− 2tδ+2

]
.

We solved this problem for resolution level J = 4 and the obtained results are recorded in Table 6
for different values of time and τ. From Table 6 it is clear that the proposed scheme works well for
the solution of two dimensional problems. Table 7 shows the comparison of the computed results
with the previous work of Zhang [29]. One can see that our results are matchable with existing results.
The same table presents convergence in time for (1 + 2)-dimensional problems. The graphical solution
and absolute error of the problem are shown in Figure 3. It is obvious from Figure 3 that the exact and
approximate solutions have strong agreement.

Table 6. Comparison of problem 5.4 at t = 1 and δ with previous results.

δ
t = 0.1, τ = 0.001 t = 0.2, τ = 0.01 t = 0.5, τ = 0.05

L∞ L2 L∞ L2 L∞ L2

1.5 1.6049 × 10−4 8.0439 × 10−5 4.3534 × 10−4 2.1819 × 10−4 2.5390 × 10−2 1.2725 × 10−2

1.7 1.1635 × 10−4 5.8320 × 10−5 5.9673 × 10−4 2.9908 × 10−4 7.5824 × 10−3 3.8003 × 10−3

1.9 3.0965 × 10−5 1.5519 × 10−5 3.9390 × 10−4 1.9742 × 10−4 4.8842 × 10−3 2.4480 × 10−3

Table 7. Error norms of problem 5.3 for different values of τ and δ.

L∞

δ τ Present [29]

1.25 1/10 8.1748 × 10−3 8.1577 × 10−2

1/20 6.5092 × 10−3 3.4379 × 10−2

1/40 5.7150 × 10−3 1.4484 × 10−2

1.5 1/10 6.7087 × 10−3 2.9942 × 10−2

1/20 4.8922 × 10−3 1.0749 × 10−2

1/40 4.1390 × 10−3 3.8291 × 10−3

1.75 1/10 6.7087 × 10−3 8.4482 × 10−3

1/20 4.8922 × 10−3 2.5877 × 10−3

1/40 4.1390 × 10−3 7.8500 × 10−4
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Figure 3. Graphical behaviour of problem 5.3 when t = 0.5, δ = 1.9.

Problem 5.4:

Consider the following TFDWE with reaction term [19]

cDδ
t w(x, t) + w(x, t) = wxx(x, t) +A(x, t), x ∈ [0, 1], t ∈ [0, 1], 1 < δ ≤ 2, (46)

coupled with initial and boundary conditions{
w(x, 0) = 0, wt(x, 0) = 0 x ∈ (0, 1)

w(0, t) = o, w(1, t) = 0, t ∈ [0, 1],
(47)

where the forcing terms are A(x, t) = 2t2−δx(1−x)
Γ(3−δ)

+ t2x(1− x)− 2t2. This problem has been solved
with the help of the proposed scheme. In Table 8 we presented the solutions at different points. Also
the obtained results have been compared with the work presented in Reference [19]. It is clear from
table that our results are more accurate. From the table it is also obvious that the exact and numerical
solutions are in good agreement. Exact verses numerical solutions are plotted in Figure 4. Graphical
solutions also indicate that the proposed scheme works in the case where the reaction term exists.

Table 8. Absolute error at different points of example 5.4 at τ = 0.001.

(x, t) δ = 1.1 δ = 1.3 δ = 1.5 δ = 1.9

L∞ L∞ [19] L∞ L∞ [19] L∞ L∞ [19] L∞ L∞ [19]

(0.1, 0.1) 2.1684 × 10−19 9.5133 × 10−9 1.0842 × 10−19 6.6004 × 10−9 3.2526 × 10−19 4.4920 × 10−9 5.8546 × 10−18 1.9326 × 10−9

(0.2, 0.2) 9.5409 × 10−18 1.0530 × 10−7 2.1684 × 10−17 7.9127 × 10−8 3.4694 × 10−18 5.7844 × 10−8 1.8735 × 10−16 2.8903 × 10−8

(0.3, 0.3) 4.1633 × 10−17 9.6665 × 10−7 4.1633 × 10−17 3.3461 × 10−7 1.0755 × 10−16 2.5678 × 10−7 1.3634 × 10−15 1.4105 × 10−7

(0.4, 0.4) 1.3877 × 10−17 1.0813 × 10−6 1.8735 × 10−16 9.1574 × 10−7 7.0776 × 10−16 7.3594 × 10−7 4.5033 × 10−15 4.3402 × 10−7

(0.5, 0.5) 1.3877 × 10−16 2.2190 × 10−6 3.9551 × 10−16 1.6516 × 10−6 2.0261 × 10−15 1.6516 × 10−6 1.4231 × 10−14 1.0367 × 10−6
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Figure 4. Graphical behaviour of problem 5.4 at δ = 1.1, t = 1.
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Problem 5.5:

Now we consider the following equation

cDδ
t w(x, y, t) = a1∆w(x, y, t)− b1 sin(w(x, y, t)), (x, y) ∈ Φ, t ∈ [0, T], 1 < δ ≤ 2, (48)

where a1 and b1 are constants and the initial and boundary conditions arew(x, y, 0) = arctan
(

exp( 1
2 −

√
15x2 + 15y2)

)
, wt(x, y, 0) = 0, (x, y) ∈ Φ̃ = Φ ∪ ∂Φ,

w(x, y, t) = 0, (x, y) ∈ ∂Φ, t ∈ [0, T].
(49)

Here, we examine the behaviour of circular ring soliton numerically. Due to pulsating behaviour,
such waves are also known as pulsons. We choose different values of parameters a1, b1 to present
surface plots to study the time evolution of the circular ring soliton. We observe the effect of a1 and
b1 on solutions. In Figure 5, numerical solutions for different values of a1 and b1 have been plotted.
Figure 6 shows the numerical solution for a1 = 0.05 while varying b1. In Figure 7 the results are plotted
for b1 = 10, in which the wave peak value at the centre becomes lower as a1 increases. This reveals
that the solitary wave moves in a stable way up to a large time under finite initial condition.
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7. Conclusions

In this paper, we proposed a hybrid method based on finite difference and Haar
wavelets approximations. The scheme is applied for the numerical solution of (1 + 1)- and
(1 + 2)-dimensional time fraction partial differential equations. The accuracy and applicability of
the scheme is validated through some test problems. The tabulated data and graphical solution show
that the scheme works very well for time fractional problems.
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