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1. Introduction—Preliminaries

Let H be an infinite-dimensional real Hilbert space. Its inner product is denoted by 〈x, y〉.
The induced norm is denoted by ‖x‖ =

√
〈x, x〉 for x, y ∈ H. Let C be a convex and closed set in H

and let A : C → H be a single-valued mapping. We recall the following definitions.
A is said to be a monotone mapping iff

〈x′ − x, Ax′ − Ax〉 ≥ 0, ∀x′, x ∈ C.

A is said to be a strongly monotone mapping iff there exists a positive real constant L such that

〈x′ − x, Ax′ − Ax〉 ≥ L‖x′ − x‖2, ∀x′, x ∈ C.

A is said to be an inverse-strongly monotone mapping iff there exists a positive real constant L
such that

〈x′ − x, Ax′ − Ax〉 ≥ L‖Ax− Ax′‖2, ∀x′, x ∈ C.

A is said to be L-Lipschitz continuous iff there exists a positive real constant L such that

‖Ax′ − Ax‖ ≤ L‖x− x′‖, ∀x′, x ∈ C.

A is said to be sequentially weakly continuous iff, for any vector sequence {xn} in C, {xn}
converges weakly to x, which implies that Axn converges weakly to Ax.

Consider that the following monotone variational inequality, which associates with mapping A
and set C consists of finding an x ∈ C such that

〈Ax, x∗ − x〉 ≥ 0, ∀x∗ ∈ C. (1)
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From now on, we borrow VI(C, A) to present the set of solutions (1). Recently, spotlight has been
shed on projection-based iterative methods, which are efficient to deal with solutions of variational
inequality (1). With the aid of resolvent mapping ProjH

C (Id− rA), where ProjH
C is the metric projection

from H onto C, r is some positive real number and Id denotes the identity on H, one knows that x is
a solution to inequality (1) iff x is a fixed point of ProjH

C (Id− rA). When dealing with the resolvent
mapping, one is required to metric projections at every iteration. In the case that C is a linear variety or
a closed ball or polytope, the computation of ProjH

C is not hard to implement. If C is a bounded set, then
the existence of solutions of the variational inequality is guaranteed by Browder [1]. If A is monotone
and L-Lipschitz continuous, Korpelevich [2] introduced the following so-called extragradient method:

x0 ∈ C,

yn = ProjH
C (xn − rAxn),

xn+1 = ProjH
C (xn − rAyn), ∀n ≥ 0,

where C is assumed to be a convex and closed set in a finite-dimensional Euclidean space Rn and r
is positive real number in (0, 1/L). He proved that sequence {xn} converges to a point in VI(C, A),
for more materials; see [2] and the cited references therein. We remark here that the extragradient
method is an Ishikawa-like iterative method, which is efficient for solving fixed-point problems of
pseudocontractive mappings whose complementary mappings are monotone, that is, A is monotone if
and only if I − A is pseudocontractive.

Next, we turn our attention to set-valued mappings. Let B : H ⇒ H be a set-valued mapping.
We borrow Graph(B) := {(y, x) ∈ H × H : x ∈ Ay} to denote the graph of mapping B and
B−1(0) to denote the zero set of mapping B. One says that B is monotone iff 〈y − y′, x − x′〉 ≥ 0,
f orall(y, x), (y′, x′) ∈ Graph(B). One says that B is maximal iff there exists no proper monotone
extensions of the graph of B on H × H, that is, the graph of B is not a subset of any other monotone
operator graphs. For a maximally monotone operator B, one can define the single-valued resolvent
mapping Jr = (rB + Id)−1 : H → Dom(B), where Dom(B) stands for the domain of B, Id stands for
the identity mapping and r is a real number. In the case in which B is the subdifferential of proper,
lower semicontinuous and convex functions, then its resolvent mapping is the called the proximity
mapping. One knows B−1(0) = Fix(Jr), where Fix(Jr) stands for the fixed-point set of Jr and Jr is
firmly non-expansive, that is, 〈Jrx′ − Jrx, x′ − x〉 ≥ ‖Jrx− Jrx′‖2.

The class of maximally monotone mapping is under the spotlight of researchers working on
the fields of optimization and functional analysis. Let f be a proper convex and closed function
f : H → (−∞, ∞]. One known example of maximally mapping is ∂ f , the subdifferential of f . It is
defined as follows:

∂ f (x) := {x∗ ∈ H : 〈x′ − x, x∗〉+ f (x) ≤ f (x′), ∀x′ ∈ H}, ∀x ∈ H.

Rockafellar [3] asserted that ∂ f is a maximally monotone operator. One can verify that
f (v) = minx∈H f (x) iff 0 ∈ ∂ f (v). Next, we give one more example for maximally monotone
mappings: NC + M, where M is a continuous single-valued maximally monotone mapping, and NC is
the mapping of the normal cone:

NC(x) := {x∗ ∈ H : 〈x∗, x′ − x〉 ≤ 0, ∀x′ ∈ C}

for x ∈ C and is empty otherwise. Then, 0 ∈ NC(x) + Mx iff x ∈ C is a solution to the following
monotone variational inequalities: 〈x′ − x, Mx〉 ≥ 0 for all x′ ∈ C.

One of the fundamental and efficient solution methods for investigating the inclusion problem
0 ∈ Tx, where T is a maximally monotone mapping is the known proximal point algorithm
(PPA), which was studied by Martinet [4,5] and Rockafellar [6,7]. The PPA has been extensively
studied [8–11] and is known to yield special cases’ decomposition methods such as the method of
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partial inverses [12], the FB splitting method, and the ADMM [13,14]. The following forward-backward
splitting method (I − rn A)xn ∈ (I + rnB)xn+1, n = 0, 1, · · · , where rn > 0, was proposed by Lions
and Mercier [15], and Passty [16] for T = A + B, where A and B are two maximally monotone
mappings. Furthermore, if B = NC, then this method is reduced to the gradient-projection iterative
method [17]. Recently, a number of researchers, who work on the fields of monotone operators, studied
the splitting algorithm; see [18–22] and the references therein.

Let S : C → C be a single-valued mapping. In this paper, we use Fix(S) to stand for the fixed-point
set of mapping S. Recall that S is said to be non-expansive if ‖x′ − x‖ ≥ ‖Sx′ − Sx‖, ∀x′, x ∈ C. If C
is a bounded set, then the set of fixed points of mapping S is non-empty; see [23]. In the real
world, a number of problems and modelings have reformulations that require finding fixed points of
non-expansive mapping (zeros of monotone mappings). One knows that Mann-like iteration is weakly
convergent for non-expansive mapping only. Recently, a number of researchers concentrated on
various Mann-like iterations so that strongly convergent theorems can be obtained without additional
compact restrictions on mappings; see [24–27].

For most real mathematical modelings, one often has more than one constraint. For such modelings,
solutions to a problem which are simultaneously solutions to two or more problems (or desired solutions
lie on the solution set of other problems); see [28–33] and the references therein.

In this paper, we, based on Tseng’s ideas, are concerned with the problem of finding a common
solution of fixed-point problems of a non-expansive mapping and zero-point problems of a sum of two
monotone operators based on two splitting algorithms, which take into account possible computational
errors. Convergence theorems of the algorithms are obtained. Applications of the algorithms are
also discussed.

In order to prove the main results of this paper, the following tools are essential.
An infinite-dimensional space X is said to satisfy Opial’s condition [34] if, for any {xn} ⊂ X with

xn ⇀ x, the following inequality holds:

lim inf
n→∞

‖xn − y‖ > lim inf
n→∞

‖xn − x‖

for y ∈ X with y 6= x. It is well known that the above inequality is equivalent to

lim sup
n→∞

‖xn − y‖ > lim sup
n→∞

‖xn − x‖

for y ∈ X with y 6= x. It is well known that lp, where p > 1 and L2 satisfy the Opial’s condition.

The following lemma is trivial, so the proof is omitted.

Lemma 1. Let {an} be a real positive sequence with an+1 ≤ an + bn, ∀n ≥ n0, where {bn} is a real positive
sequence with ∑∞

n=1 bn < ∞ and n0 is some nonnegative integer. Then, the limit limn→∞ an exists.

Lemma 2. Reference [35] Let H be a Hilbert space and let {tn} be a real sequence with the restriction
0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Let {xn} and {yn} be two vector sequences in H with lim

n→∞
‖yn + tnxn −

tnyn‖ = r, lim supn→∞ ‖xn‖ ≤ r and lim supn→∞ ‖yn‖ ≤ r, where r is some positive real number. Then,
limn→∞ ‖yn − xn‖ = 0.

Lemma 3. Reference [34] Let C be a convex and closed set in an infinite-dimension Hilbert space H and let S
be a non-expansive mapping with a non-empty fixed-point set on set C. Let {xn} be a vector sequence on C.
If {xn} converges weakly to x and limn→∞ ‖(S− I)xn‖ = 0, then x ∈ Fix(S).

2. Main Results

Theorem 1. Let C be a convex and closed set in a Hilbert space H. Let S be a non-expansive self mapping
on C, whose fixed-point set is non-empty. Let A : C → H be a monotone and both L-Lipschitz continuous
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and sequentially weakly continuous mapping. Let B be a maximally monotone mapping on H. Assume that
Dom(B) lies in C and Fix(S) ∩ (A + B)−1(0) is not empty. Let {αn} be a real number sequence in [a, b] for
some a, b ∈ (0, 1), and let {rn} be a real number sequence in [c, d] for some c, d ∈ (0, 1/

√
2L). Let {xn} be

a vector sequence defined and generated in the following iterative process:
x0 ∈ C, arbitrarily chosen,

yn = Jrn(xn − rn Axn − en),

xn+1 = αnxn + (1− αn)SProjH
C (yn − rn Ayn + rn Axn + en), ∀n ≥ 0,

where {en} is an error sequence in H with ∑∞
n=0 ‖en‖ < ∞. Then, {xn} converges to a point x̄ ∈ Fix(S) ∩

(A + B)−1(0) weakly.

Proof. Set zn = yn − rn Ayn + rn Axn + en. Fixing x∗ ∈ (A + B)−1(0) ∩ Fix(T), we find that

‖xn − x∗‖2 = ‖xn − yn + yn − zn + zn − x∗‖2

= ‖yn − xn‖2 + ‖yn − zn‖2 + ‖zn − x∗‖2 + 2〈yn − xn, x∗ − yn〉
+ 2〈yn − zn, zn − x∗〉

= ‖xn − yn‖2 − ‖yn − zn‖2 + ‖zn − x∗‖2 + 2〈xn − zn, yn − x∗〉
≥ ‖xn − yn‖2 − ‖rn Ayn − rn Axn − en‖2 + ‖zn − x∗‖2.

Using the Lipschitz continuitity of mapping A, one finds that

‖zn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − yn‖2 + ‖rn Ayn − rn Axn − en‖2

≤ ‖xn − x∗‖2 − ‖xn − yn‖2 + 2r2
n‖Ayn − Axn‖2 + 2‖en‖2

≤ ‖xn − x∗‖2 − (1− 2r2
nL2)‖xn − yn‖2 + 2‖en‖2.

It follows that

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + (1− αn)‖SProjH
C zn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖zn − x∗‖2

≤ ‖xn − x∗‖2 − (1− αn)(1− 2r2
nL2)‖xn − yn‖2 + 2‖en‖2.

(2)

In light of Lemma 1, one finds that the following limit limn→∞ ‖xn − x∗‖ exists; in particular, the
vector sequence {xn} is bounded. By using (2), one gets that

(1− αn)(1− 2r2
nL2)‖xn − yn‖2 ≤ ‖x∗ − xn‖2 − ‖x∗ − xn+1‖2 + 2‖en‖2.

Thanks to the condition on {αn}, {rn} and {en}, one obtains

lim
n→∞

‖xn − yn‖ = 0. (3)

Notice the fact that vector sequence {xn} is bounded. There is a vector sequence {xni}, which
is a subsequence of original sequence {xn} converging to x̄ ∈ C weakly. In light of (3), we find that
the subsequence {yni} of {yn} also converges to x̄ weakly.

Now, one is in a position to claim that x̄ lies in (A + B)−1(0). Notice that

xn − yn − en

rn
− Axn ∈ Byn.
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Suppose µ ∈ Bν. By using the continuitity of mapping B, one reaches〈
xn − yn − en

rn
− Axn − µ, yn − ν

〉
≥ 0.

Taking into account the fact that A is a sequentially weakly continuous account, one arrives at
〈−Ax̄− µ, x̄− ν〉 ≥ 0. This guarantees −Ax̄ ∈ Bx̄, that is, x̄ ∈ (A + B)−1(0).

On the other hand, we have that x̄ ∈ Fix(S). Indeed, set limn→∞ ‖xn− x∗‖ = d. It follows from (2)
that ‖SProjH

C zn − x∗‖ ≤ ‖xn − x∗‖ +
√

2‖en‖. This shows that lim supn→∞ ‖SProjH
C zn − x∗‖ ≤ d.

It follows from Lemma 2 that
lim

n→∞
‖SProjH

C zn − xn‖ = 0. (4)

Since A is L-Lipschitz continuous, we find that

‖Syn − yn‖ ≤ ‖Syn − SProjH
C zn‖+ ‖SProjH

C zn − xn‖+ ‖xn − yn‖
≤ ‖yn − ProjH

C zn‖+ ‖SProjH
C zn − xn‖+ ‖xn − yn‖

≤ (1 + rnL)‖yn − xn‖+ ‖en‖+ ‖SProjH
C zn − xn‖.

Combining (3) with (4), we obtain that limn→∞ ‖Syn− yn‖ = 0. Thanks to Lemma 3, one concludes
that x̄ ∈ Fix(S).

Next, one claims that vector sequence {xn} converges to x̄ weakly. If not, one finds that there exists
some subsequence {xnj} of {xn} and this subsequence {xnj} converges to x̂ ∈ C weakly, and x̂ 6= x̄.
Similarly, one has x̂ ∈ (A + B)−1(0). From the fact that limn→∞ ‖xn − p‖ exists, ∀p ∈ (A + B)−1(0),
one may suppose that limn→∞ ‖xn − x̄‖ = d, where d is a nonnegative number. By using the Opial’s
inequality, one arrives at

d = lim inf
i→∞

‖xni − x̄‖ < lim inf
i→∞

‖xni − x̂‖

= lim inf
j→∞

‖xnj − x̂‖ < lim inf
j→∞

‖xnj − x̄‖ = d.

One reaches a contradiction. Hence, x̄ = x̂.

The following result is not hard to derive from Theorem 1.

Corollary 1. Let C be a convex and closed set in a Hilbert space H. Let A : C → H be a monotone and both
L-Lipschitz continuous and sequentially weakly continuous mapping. Let B be a maximally monotone mapping
on H. Suppose that Dom(B) ⊂ C and (A + B)−1(0) is not empty. Let {αn} be a real number sequence in [a, b]
for some a, b ∈ (0, 1) and let {rn} be a real number sequence in [c, d] for some c, d ∈ (0, 1/

√
2L). Let {xn} be

a vector sequence defined and generated in the following process:
x0 ∈ C, arbitrarily chosen,

yn = Jrn(xn − rn Axn − en),

xn+1 = αnxn + (1− αn)ProjH
C (yn + rn Axn − rn Ayn + en), ∀n ≥ 0,

where {en} is an error sequence in H such that ∑∞
n=0 ‖en‖ < ∞. Then, {xn} converges to a point x̄ ∈

(A + B)−1(0) weakly.

Next, one is ready to present the other convergence theorem.

Theorem 2. Let C be a convex and closed set in a Hilbert space H. Let S be a non-expansive self mapping
on C, whose fixed-point set is non-empty. Let A : C → H be a monotone and both L-Lipschitz continuous
and sequentially weakly continuous mapping. Let B be a maximally monotone mapping on H. Assume that
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Dom(B) lies in C and Fix(S) ∩ (A + B)−1(0) is not empty. Let {αn} be a real number sequence in [0, a]
for some a ∈ [0, 1) and let {rn} be a real number sequence in [b, c] for some b, c ∈ (0, 1/

√
2L). Let {xn} be

a vector sequence defined and generated in the following iterative process:

x0 ∈ H arbitrarilychosen,

C0 = C,

zn = Jrn(xn − rn Axn − en),

yn = αnxn + (1− αn)SProjH
C (zn − rn Azn + rn Axn + en),

Cn+1 = {w ∈ Cn : ‖yn − w‖2 ≤ ‖xn − w‖2 − (1− αn)(1− 2r2
nL2)‖xn − zn‖2 + 2‖en‖2},

xn+1 = ProjH
Cn+1

x0, n ≥ 0,

where {en} is an error sequence with the restriction limn→∞ ‖en‖ = 0. Then, {xn} converges strongly to
ProjH

Fix(S)∩(A+B)−1(0)x0.

Proof. First, we show that the set Cn is closed and convex. It is clear that Cn is closed. We only show
the convexness of Cn. From assumption, we see that C0 is convex. We suppose that Cm is a convex set
for some m ≥ 0. Next, one claims that Cm+1 is also a convex set. Since

‖w− yn‖2 ≤ ‖w− xn‖2 − (1− αn)(1− 2r2
nL2)‖xn − zn‖2 + 2‖en‖2

is equivalent to

‖yn‖2 − ‖xn‖2 + (1− αn)(1− 2r2
nL2)‖xn − zn‖2 − 2‖en‖2 + 2〈xn − yn, w〉 ≤ 0,

we easily find that Cm+1 is a convex set. This claims that set Cn is convex and closed. Next, we show
that Fix(S) ∩ (A + B)−1(0) ⊂ Cn. From the assumption, we see that Fix(S) ∩ (A + B)−1(0) ⊂ C0.

Suppose that Fix(S) ∩ (A + B)−1(0) ⊂ Cm for some m ≥ 0. Next, we show that Fix(S) ∩ (A +

B)−1(0) ⊂ Cm+1 for the same m. Set vn = zn − rn Azn + rn Axn + en. For any w ∈ Fix(S) ∩ (A +

B)−1(0) ⊂ Cm, we find that

‖xn − w‖2 = ‖xn − zn + zn − vn + vn − w‖2

= ‖zn − xn‖2 + ‖vn − zn‖2 + ‖vn − w‖2 + 2〈xn − zn, zn − w〉
+ 2〈zn − vn, vn − w〉
≥ ‖xn − zn‖2 − ‖rn Azn − rn Axn − en‖2 + ‖vn − w‖2.

Thanks to the fact that A is a Lipschitz continuous mapping, one asserts that

‖vn − w‖2 ≤ ‖xn − w‖2 − ‖zn − xn‖2 + ‖rn Azn − rn Axn − en‖2

≤ ‖xn − w‖2 − ‖zn − xn‖2 + 2r2
n‖Azn − Axn‖2 + 2‖en‖2

≤ ‖xn − w‖2 − (1− 2r2
nL2)‖zn − xn‖2 + 2‖en‖2.

It follows that

‖yn − w‖2 ≤ (1− αn)‖SProjCvn − w‖2 + αn‖xn − w‖2

≤ (1− αn)‖vn − w‖2 + αn‖xn − w‖2

≤ 2‖en‖2 − (1− αn)(1− 2r2
nL2)‖xn − zn‖2 + ‖xn − w‖2.

This implies that w ∈ Cn+1. This proves that Fix(S) ∩ (A + B)−1(0) ⊂ Cn. Since xn = ProjH
Cn

x0
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and xn+1 = ProjH
Cn+1

x0 ∈ Cn+1, which is a subset of Cn, we find that

0 ≤ 〈xn − x0, xn+1 − xn〉
≤ −‖xn − x0‖2 + ‖xn − x0‖‖xn+1 − x0‖.

This implies that ‖xn − x0‖ ≤ ‖xn+1 − x0‖. For any w ∈ Fix(S) ∩ (A + B)−1(0) ⊂ Cn,

we find from xn = ProjH
Cn

x0 that ‖x0 − xn‖ ≤ ‖x0 − w‖, in particular, ‖x0 − xn‖ ≤ ‖x0 −
ProjH

Fix(S)∩(A+B)−1(0)x0‖.
This claims that vector sequence {xn} is bounded and limit limn→∞ ‖x0 − xn‖ exists. Note that

‖xn − xn+1‖2 = 2〈xn − x0, x0 − xn + xn − xn+1〉+ ‖x0 − xn+1‖2 + ‖xn − x0‖2

= ‖x0 − xn+1‖2 − ‖xn − x0‖2 + 2〈x0 − xn, xn+1 − xn〉
≤ ‖x0 − xn+1‖2 − ‖xn − x0‖2.

Letting n→ ∞, one obtains ‖xn − xn+1‖ → 0. In light of xn+1 = ProjH
Cn+1

x0 ∈ Cn+1, we see that

‖yn − xn+1‖2 ≤ 2‖en‖2 − (1− αn)(1− 2r2
nL2)‖xn − zn‖2 + ‖xn − xn+1‖2.

It follows that limn→∞ ‖yn − xn+1‖ = 0. This proves that limn→∞ ‖yn − xn‖ = 0. Using

the restrictions imposed on the sequence {αn}, {rn} and {en}, we also find that limn→∞ ‖xn − zn‖ = 0.

By using the fact that {xn} is a bounded sequence, there exists a sequence {xni}, which is a subsequence
of {xn}, converging to x̄ ∈ C weakly. One also obtains that the sequence {zni} also converges to x̄
weakly. Note that xn−zn−en

rn
− Axn ∈ Bzn. Next, we suppose µ is a point in Bν. The monotonicity of

B yields that 〈 xn−zn−en
rn

− Axn − µ, zn − ν〉 ≥ 0. Since A is sequentially weakly continuous mapping,

we obtain that 〈x̄− ν,−Ax̄− µ〉 ≥ 0. These yield that−Ax̄ ∈ Bx̄. Hence, one obtains x̄ ∈ (A+ B)−1(0).

One now is in a position to claim that x̄ ∈ Fix(S). Since limn→∞ ‖yn − xn‖ = 0, which in turn
implies that limn→∞ ‖SProjH

C vn − xn‖ = 0. Since A is Lipschitz continuous, one has

‖Sxn − xn‖ ≤ ‖Sxn − Szn‖+ ‖Szn − SProjH
C vn‖+ ‖SProjH

C vn − xn‖
≤ ‖xn − zn‖+ ‖zn − ProjH

C vn‖+ ‖SProjH
C vn − xn‖

≤ (1 + rnL)‖zn − xn‖+ ‖en‖+ ‖SProjH
C vn − xn‖.

This proves that limn→∞ ‖Sxn − xn‖ = 0. In light of Lemma 3, one finds x̄ ∈ Fix(S). Put x̃ =

ProjH
(A+B)−1(0)x0. Since xn = ProjH

Cn
x0 and x̃ ∈ Cn, we find that ‖x0 − xn‖ ≤ ‖x0 − x̃‖. Note that

‖x0 − x̃‖ ≤ ‖x0 − x̄‖ ≤ lim inf
i→∞

‖x0 − xni‖ ≤ lim sup
i→∞

‖x0 − xni‖ ≤ ‖x0 − x̃‖.

It follows that
‖x0 − x̄‖ = lim

i→∞
‖x0 − xni‖ = ‖x0 − x̃‖,

from which one gets xni → x̄ = x̃. From the arbitrariness of {xni}, one has xn → x̃.

The following results can be derived immediately from Theorem 2.

Corollary 2. Let C be a convex and closed set in a Hilbert space H. Let A : C → H be a monotone and both
L-Lipschitz continuous and sequentially weakly continuous mapping. Let B be a maximally monotone mapping
on H. Assume that Dom(B) lies in C and (A + B)−1(0) is not empty. Let {αn} be a real number sequence in
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[0, a] for some a ∈ [0, 1) and let {rn} be a real number sequence in [b, c] for some b, c ∈ (0, 1/
√

2L). Let {xn}
be a vector sequence defined and generated in the following iterative process:

x0 ∈ H chosen arbitrarily,

C0 = C,

zn = Jrn(xn − rn Axn − en),

yn = αnxn + (1− αn)ProjH
C (zn − rn Azn + rn Axn + en),

Cn+1 = {w ∈ Cn : ‖yn − w‖2 ≤ ‖xn − w‖2 − (1− αn)(1− 2r2
nL2)‖xn − zn‖2 + 2‖en‖2},

xn+1 = ProjH
Cn+1

x0, n ≥ 0,

where Jrn = (I + rnB)−1 and {en} is an error sequence in H such that limn→∞ ‖en‖ = 0. Then, {xn}
converges to Proj(A+B)−1(0)x0 strongly.

Corollary 3. Let C be a convex and closed set in a Hilbert space H. Let S be a non-expansive self mapping on C,
whose fixed-point set is non-empty. Let {αn} be a real number sequence in [0, a] for some a ∈ [0, 1). Let {xn}
be a vector sequence defined and generated in the following iterative process:

x0 ∈ H chosen arbitrarily,

C0 = C,

yn = (1− αn)Sxn + αnxn,

Cn+1 = {w ∈ Cn : ‖yn − w‖2 ≤ ‖xn − w‖2 − (1− αn)(1− 2r2
nL2)‖xn − zn‖2},

xn+1 = ProjH
Cn+1

x0, n ≥ 0.

Then, {xn} converges strongly to ProjH
Fix(S)x0.

3. Applications

This section gives some results on solutions of variational inequalities, minimizers of convex
functions, and solutions of equilibrium problems.

Let H be a real Hilbert space and let C be a convex and closed set in H. Let iC be a function
defined by

iC(x) =

{
0, x ∈ C,

∞, x /∈ C.

One knows that indicator function iC is proper convex and lower semicontinuous, and its
subdifferential ∂iC is maximally monotone. Define the resolvent mapping of subdifferential operator
∂iC by Jr := (I + r∂iC)−1. Letting x = Jry, one finds

y ∈ r∂iCx + x ⇐⇒ y ∈ rNCx + x

⇐⇒ 〈y− x, z− x〉 ≤ 0, ∀z ∈ C

⇐⇒ x = ProjH
C y,

where NCx := {z ∈ H|〈z, v− x〉, ∀v ∈ C}. If B = ∂iC in Theorem 1 and Theorem 2, then the following
results can be derived immediately.

Theorem 3. Let C be a convex and closed set in a Hilbert space H. Let S be a non-expansive self mapping
on C, whose fixed-point set is non-empty. Let A : C → H be a monotone and both L-Lipschitz continuous
and sequentially weakly continuous mapping. Assume that Fix(S) ∩ VI(C, A) is not empty. Let {αn} be
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a real number sequence in [a, b] for some a, b ∈ (0, 1) and let {rn} be a real number sequence in [c, d] for some
c, d ∈ (0, 1/

√
2L). Let {xn} be a vector sequence defined and generated in the following iterative process:

x0 ∈ C, chosen arbitrarily,

yn = ProjH
C (xn − rn Axn − en),

xn+1 = αnxn + (1− αn)SProjH
C (yn − rn Ayn + rn Axn + en), ∀n ≥ 0,

where {en} is an error sequence in H such that ∑∞
n=0 ‖en‖ < ∞. Then, {xn} converges to a point x̄ ∈

Fix(S) ∩VI(C, A) weakly.

Theorem 4. Let C be a convex and closed set in a Hilbert space H. Let S be a non-expansive self mapping
on C, whose fixed-point set is non-empty. Let A : C → H be a monotone and both L-Lipschitz continuous
and sequentially weakly continuous mapping. Assume that Fix(S) ∩VI(C, A) is not empty. Let {αn} be a real
number sequence in [0, a] for some a ∈ [0, 1) and let {rn} be a real number sequence in [c, d] for some
c, d ∈ (0, 1/

√
2L). Let {xn} be a vector sequence defined and generated in the following iterative process:

x0 ∈ H chosen arbitrarily,

C0 = C,

zn = ProjC(xn − rn Axn − en),

yn = αnxn + (1− αn)SProjH
C (zn − rn Azn + rn Axn + en),

Cn+1 = {w ∈ Cn : ‖yn − w‖2 ≤ ‖xn − w‖2 − (1− αn)(1− 2r2
nL2)‖xn − zn‖2 + 2‖en‖2},

xn+1 = ProjH
Cn+1

x0, n ≥ 0,

where {en} is an error sequence in H such that limn→∞ ‖en‖ = 0. Then, {xn} converges to
ProjH

Fix(S)∩VI(C,A)x0 strongly.

Next, we consider minimizers of a proper convex and lower semicontinuous function.
Let f : H → (−∞, ∞] be a proper lower semicontinuous convex function. One can define

subdifferential mapping ∂ f by ∂ f (x) = {x∗ ∈ H : f (x) + 〈y − x, x∗〉 ≤ f (y), ∀y ∈ H}, ∀x ∈ H.
Rockafellar [3] proved that subdifferential mappings are maximally monotone and 0 ∈ ∂ f (v)
if and only if f (v) = minx∈H f (x).

Theorem 5. Let C be a convex and closed set in a Hilbert space H. Let f : H → (−∞,+∞] be a proper convex
lower semicontinuous function such that (∂ f )−1(0) is not empty. Let {αn} be a real number sequence in [a, b]
for some a, b ∈ (0, 1) and let {rn} be a real number sequence in [c, d] for some c, d ∈ (0, 1/

√
2L). Let {xn} be

a vector sequence defined and generated in the following iterative process:
x0 ∈ C, chosen arbitrarily,

yn = arg minz∈H{ f (z) + ‖z−xn+en‖2

2rn
},

xn+1 = αnxn + (1− αn)SProjH
C (yn + en), ∀n ≥ 0,

where {en} is an error sequence in H such that ∑∞
n=0 ‖en‖ < ∞. Then, {xn} converges to a point x̄ ∈

(∂ f )−1(0) weakly.

Proof. From the assumption that f : H → (−∞, ∞] is proper, convex, and lower semicontinuous,
one obtains that subdifferential ∂ f is maximally monotone. Setting A = 0 and yn = Jrn(xn − en),
one sees that

yn = arg min
z∈H
{ f (z) +

‖z− xn + en‖2

2rn
}
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is equivalent to

0 ∈ ∂ f (yn) +
1
rn
(yn − xn + en).

It follows that
xn − en ∈ yn + rn∂ f (yn).

By using Theorem 2.1, we draw the desired conclusion immediately.

Theorem 6. Let C be a convex and closed set in a Hilbert space H. Let f : H → (−∞,+∞] be a proper convex
lower semicontinuous function such that (∂ f )−1(0) is not empty. Let {αn} be a real number sequence in [0, a]
for some a ∈ [0, 1) and let {rn} be a real number sequence in [b, c] for some b, c ∈ (0, 1/

√
2L). Let {xn} be

a vector sequence defined and generated in the following iterative process:

x0 ∈ H chosen arbitrarily,

C0 = C,

zn = arg minz∈H{ f (z) + ‖z−xn+en‖2

2rn
},

yn = αnxn + (1− αn)SProjC(zn + en),

Cn+1 = {w ∈ Cn : ‖yn − w‖2 ≤ ‖xn − w‖2 − (1− αn)(1− 2r2
nL2)‖xn − zn‖2 + 2‖en‖2},

xn+1 = ProjH
Cn+1

x0, n ≥ 0,

where {en} is an error sequence in H such that limn→∞ ‖en‖ = 0. Then, {xn} converges to ProjH
(∂ f )−1(0)x0

strongly.

Proof. From the assumption that f : H → (−∞, ∞] is proper, convex and lower semicontinuous,
one sees that subdifferential ∂ f is maximally monotone. Setting A = 0 and zn = Jrn(xn − en), one
sees that

zn = arg min
z∈H
{ f (z) +

‖z− xn + en‖2

2rn
}

is equivalent to

0 ∈ ∂ f (zn) +
1
rn
(zn − xn + en).

It follows that
xn − en ∈ zn + rn∂ f (zn).

By using Theorem 2, we draw the desired conclusion immediately.
Finally, we consider an equilibrium problem, which is also known as Ky Fan inequality [36],

in the sense of Blum and Oettli [37].
We employ R to denote the set of real numbers. Let F be a bifunction mapping C × C to R.

The equilibrium problem consists of

Finding x ∈ C such that F(x, y) ≥ 0, ∀y ∈ C. (5)

Hereafter, EP(F) means the solution set of problem (5).
In order to study solutions of equilibrium problem (5), the following routine restrictions on F

are needed:

(R1) for each x ∈ C, y 7→ F(x, y) is convex and lower semi-continuous;
(R2) for each x, y, z ∈ C, lim supt↓0 F(tz + (1− t)x, y) ≤ F(x, y);
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(R3) for each x ∈ C, F(x, x) = 0;
(R4) for each x, y ∈ C, F(x, y) + F(y, x) ≤ 0.

The following lemma is on a resolvent mapping associated with F, introduced in [38].

Lemma 4. Let F : C× C → R be a bifunction with restriction (R1)–(R4). Let r > 0 and x ∈ H. Then, there
exists a vector z ∈ C such that 〈y− z, z− x〉+ rF(z, y) ≥ 0, ∀y ∈ C. Define a mapping Tr : H → C by

Trx =
{

z ∈ C : 〈y− z, z− x〉+ rF(z, y) ≥ 0, ∀y ∈ C
}

(6)

for each x ∈ H and each r > 0. Then, (1) Fix(Tr) = EP(F) is convex and closed; (2) Tr is single-valued firmly
non-expansive.

Lemma 5. [39]. Let F be a bifunction with restrictions (R1)–(R4), and let AF be a mapping on H defined by

AFx =

{
∅, x /∈ C,

{z ∈ H : F(x, y) + 〈x− y, z〉 ≥ 0, ∀y ∈ C}, x ∈ C.
(7)

Then, AF is a maximally monotone mapping such that D(AF) ⊂ C, EP(F) = A−1
F (0), and Trx =

(I + rAF)
−1x, ∀x ∈ H, r > 0, where Tr is defined as in (6).

Thanks to Lemmas 4 and 5, one finds from Theorem 1 and Theorem 2 the following results on
equilibrium problem (5) immediately.

Theorem 7. Let C be a convex and closed set in a Hilbert space H. Let S be a non-expansive self mapping on C,
whose fixed-point set is non-empty. Let F : C×C → R be a bifunction with restrictions (R1)–(R4). Assume that
Fix(S) ∩ EP(F) is not empty. Let {αn} be a real number sequence in [a, b] for some a, b ∈ (0, 1) and let {rn}
be a real number sequence such that rn ≥ c, where c is some positive real number. Let {xn} be a vector sequence
defined and generated in the following iterative process: x0 ∈ C, xn+1 = αnxn + (1− αn)S(I + rAF)

−1xn,
∀n ≥ 0, where AF is defined by (7). Then, {xn} converges to a point x̄ ∈ Fix(S) ∩ EP(F) weakly.

Theorem 8. Let C be a convex and closed set in a Hilbert space H. Let S be a non-expansive self mapping on C,
whose fixed-point set is non-empty. Let F : C× C → R be a bifunction with restrictions (R1)–(R4). Assume
that Fix(S)∩ EP(F) is not empty. Let {αn} be a real number sequence in [0, a] for some a ∈ [0, 1) and let {rn}
be a real number sequence such that rn ≥ c, where c is some positive real number. Let {xn} be a vector sequence
defined and generated in the following iterative process:

x0 ∈ H chosen arbitrarily,

C0 = C,

yn = αnxn + (1− αn)S(I + rAF)
−1xn,

Cn+1 = {w ∈ Cn : ‖yn − w‖2 ≤ ‖xn − w‖2 − (1− αn)(1− 2r2
nL2)‖xn − zn‖2},

xn+1 = ProjH
Cn+1

x0, n ≥ 0,

where AF is defined by (7). Then, {xn} converges to ProjH
Fix(S)∩EP(F)x0 strongly.
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