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Abstract: The present article investigates Darcy–Forchheimer 3D nanoliquid flow because of a rotating
disk with Arrhenius activation energy. Flow is created by rotating disk. Impacts of thermophoresis
and Brownian dispersion are accounted for. Convective states of thermal and mass transport at
surface of a rotating disk are imposed. The nonlinear systems have been deduced by transformation
technique. Shooting method is employed to construct the numerical arrangement of subsequent
problem. Plots are organized just to investigate how velocities, concentration, and temperature
are influenced by distinct emerging flow variables. Surface drag coefficients and local Sherwood
and Nusselt numbers are also plotted and discussed. Our results indicate that the temperature and
concentration are enhanced for larger values of porosity parameter and Forchheimer number.

Keywords: Arrhenius activation energy; rotating disk; Darcy–Forchheimer flow; binary chemical
reaction; nanoparticles; numerical solution

1. Introduction

Nanofluid is the blend of nanometer-measured particles and the conventional base liquid.
Nanofluids are generally used to conquer the low warm exhibition of normal base liquids such as oil,
water, ethylene glycol, and propylene glycol. Because of intriguing physical characteristics,
the nanofluids have potential use in earthenware production, metal working procedures,
covering related applications, atomic reactor cooling, cooling, transportation, attractive medication,
and a few others. Choi and Eastman [1] are credited with the word nanofluid. They established that
nanomaterials are remarkable candidates for development in warmth transport of ordinary fluids.
Regarding the convective vehicle of nanofluid, a numerical relation is accounted by Buongiorno [2].
Here, thermophoresis and Brownian movement are viewed as the most significant slip instruments.
A few ongoing progressions in nanofluid streams can be found in references [3–25].

The present examiners are associated with breaking down the liquid stream due to a turning
disk because of its tremendous applications in rotational air cleaners, diffusive siphons, nourishment
handling advances, turbomachinery, PC stockpiling gadgets, therapeutic hardware, gas turbine rotors,
greases, pivoting plate cathodes, and numerous other examples. Initially, the pivoting plate issue was
tended to by von Karman [26]. Cochran [27] created asymptotic answer for the von Karman issue.
Stewartson [28] broke down liquid stream between pivoting co-axial plates. Chappel and Stirs [29]
talked about the liquid stream among turning and stationary plate. Ackroyd [30] thought about
suction/infusion impacts in the Karman issue and created arrangements containing exponentially
rotting coefficients. Shaky progression of thick fluid instigated by noncoaxial turns of a disk was
explained by Erdogan [31]. Attia [32] talked about liquid stream by turning circles submerged in a
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permeable space using Wrench Nicolson strategy. Warmth and mass exchange attributed to pivoting
streams of thick fluid because of a permeable circle was analyzed by Turkyilmazoglu and Senel [33].
They registered the numerical arrangement of the overseeing stream issue. Rashidi et al. [34] inspected
the impact of entropy in a hydromagnetic stream of viscous liquid by pivoting plate. Mustafa et al. [35]
investigated the progression of nanoliquid actuated by an extending circle. They inferred that constant
extending of disk is a significant part of lessening limit-layer thickness. Hydromagnetic stream of a
turning plate by taking slip and nanoparticles impacts was examined by Hayat et al. [36]. Mustafa [37]
analyzed MHD nanoliquid flow by turning disk subjects to slip impacts. Hayat et al. [38] discussed
the Darcy–Forchheimer stream of CNTs instigated by turning disk.

Concentration difference of species exists in a blend, subject to mass exchange. By fluctuating
the grouping of species in a blend, they move from a high-fixation area to low-focus locale. The least
compulsory vitality that is needed by reactants before synthetic response occurs is characterized as
enactment vitality. A mass exchange mechanism alongside substance response with enactment vitality
for the most part discovers applications in concoction building, mechanics of oil, and water emulsions,
nourishment preparation etc. The regular convection stream of double-blend in a permeable medium
with initiation vitality was proposed by Bestman [39]. Makinde et al. [40] explored temperamental
characteristic convection stream subject to nth-request response and initiation vitality. Maleque [41]
studied exothermic/endothermic response in blended convection streams subject to initiation vitality.
Adjusted Arrhenius capacity was used by Awad et al. [42] to examine shaky pivoting streams of
two-fold liquid past an indiscreet twisted surface. Abbas et al. [43] explored casson liquid streams
subject to actuation vitality. Shafique et al. [44] inspected turning visco-elastic streams joining artificially
receptive species with initiation vitality. Further recent attempts on binary chemical reaction and
Arrhenius activation energy can be seen in the studies [45–47].

Darcy–Forchheimer nanoliquid flow because of rotating disk subject to binary chemical
reaction and Arrhenius activation energy is investigated. Thermophoretic dispersion and arbitrary
movement viewpoints are held. Heat and mass exchange highlights are broken down via convective
factors. The administrative frameworks are comprehended numerically through shooting procedure.
Additionally, velocities, concentration, temperature, surface drag coefficients, and local Sherwood and
Nusselt numbers are discussed graphically.

2. Statement

Here, steady, laminar Darcy–Forchheimer 3D flow of viscous nanoliquid because of a rotating disk
with binary chemical reaction and Arrhenius activation energy is examined. The disk at z = 0 rotates
with constant angular velocity Ω (see Figure 1). Effects of thermophoresis and Brownian dissemination
are additionally accounted for. Convection factors for warmth and mass exchange are employed. It is
additionally accepted that the surface is warmed by hot liquid with concentration C f and temperature
Tf that give mass and warmth exchange coefficients km? and h f respectively. Velocities are (u, v, w) in
directions of (r, ϕ, z) separately. Ensuing boundary layer articulations are [22,38,44]:
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Subjected boundary conditions are

u = 0, v = rΩ, w = 0, − k
∂T
∂z

= h f
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)
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at z = 0, (7)

u→ 0, v→ 0, T → T∞, C → C∞ as z→ ∞. (8)

Here u, v and w represent velocities in directions of r, φ and z while ρ f , ν
(
= µ/ρ f

)
and µ show density,

kinematic and dynamic viscosities respectively, (ρc)p effective heat capacity of nanoparticles, Ea the
activation energy, (ρc) f heat capacity of liquid, k∗ the permeability of porous space, C the concentration,

n the fitted rate constant, C∞ the ambient concentration, F = Cb/rk∗
1/2

the non-uniform inertia factor,
DT the thermophoretic factor, Cb the drag factor, h f the uniform heat transfer factor, α∗ = k/(ρc) f and
k the thermal diffusivity and thermal conductivity respectively, T the fluid temperature, kr the reaction
rate, DB the Brownian factor, κ the Boltzmann constant, km∗ the uniform mass transfer factor and T∞

the ambient temperature. Selecting
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Continuity expression (1) is verified while Equations (2)–(8) yield
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f (0) = 0, f ′(0) = 0, g(0) = 1, θ′(0) = −γ1 (1− θ (0)) , φ′(0) = −γ2 (1− φ (0)) , (14)

f ′(∞)→ 0, g(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0. (15)

Here Fr stands for Forchheimer number, γ2 for concentration Biot number, λ for porosity parameter,
γ1 for thermal Biot number, Nt thermophoresis parameter, Pr Prandtl number, σ for chemical reaction
parameter, Nb for Brownian motion, δ for temperature difference parameter, Sc Schmidt number, and
E for nondimensional activation energy. Nondimensional variables are defined by
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The coefficients of skin-friction and Nusselt and Sherwood expressions are

Re1/2
r C f = f ′′(0), Re1/2

r Cg = g′(0),
Re−1/2

r Nu = −θ′(0), Re−1/2
r Sh = −φ′(0),

}
(17)

where Rer = 2(Ωr)r/ν represents local rotational Reynolds number.

1 
 

Figure 1. Flow configuration.

3. Numerical Results and Discussion

The present section outlines the commitment of various relevant parameters including Schmidt
number Sc, porosity parameter λ, thermophoresis parameter Nt, Prandtl number Pr, Forchheimer
number Fr, nondimensional activation energy E, thermal Biot γ1, chemical reaction parameter σ,
concentration Biot γ2 and Brownian number Nb on velocities f ′(ζ) and g(ζ), concentration φ(ζ) and
temperature θ (ζ) distributions. Figure 2 portrays how porosity parameter λ influences the speed
appropriation f ′(ζ). It has been discovered that the speed profile f ′(ζ) and its related energy layer
are devalued by upgrading porosity λ. The presence of permeable space improves the protection
from liquid stream which relates to bringing down liquid speed and its related energy layer. Figure 3
delineates the impact of Forchheimer variable Fr on f ′(ζ). Higher estimations of Forchheimer variable
Fr establish lower speed profile f ′(ζ). Figure 4 shows how the speed conveyance g(ζ) is influenced
by porosity parameter λ. Here the speed dissemination is rotted by expanding λ. Figure 5 delineates
a variety of speed circulation g(ζ) for unmistakable Fr. By expanding Fr, a decrease showed up in
speed dissemination and related layer. Figure 6 shows warm Biot γ1 impact on temperature θ (ζ).
More grounded convection is delivered by upgrading warm Biot number γ1. Thus, temperature
and warm layer are raised by expanding warm Biot number γ1. Figure 7 presents a variety in
temperature field θ (ζ) for Pr. Here, temperature is rotted for bigger Pr. The proportion of force
diffusivity to warm diffusivity is termed as the Prandtl number. Higher estimations of Pr depict more
fragile warm diffusivity, which compares to diminishing in the warm layer. Figure 8 is shown to
investigate Nt impact on temperature field θ (ζ). Bigger thermophoresis parameter Nt establishes a
higher temperature field and progressively warm layer thickness. The purpose of such contention is
that augmentation in Nt yields high grounded thermophoresis power which further permits motion of
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the nanoparticles in liquid zone. Far from surface in this way shapes a more grounded temperature
dispersion θ (ζ) and progressively warm layer. The effect of Nb on temperature profile θ (ζ) is depicted
in Figure 9. From a physical perspective, an unpredictable movement of nanoparticles increments
by improving Brownian movement parameter Nb causes a crash of particle. As a result, the active
vitality is changed into warmth vitality which causes upgrade in θ (ζ) and associated warm layer.
Figure 10 shows how concentration φ(ζ) is influenced by concentration Biot number γ2. Concentration
is upgraded for higher estimations of γ2. From Figure 11 we can see that bigger Sc rots concentration
φ(ζ). Schmidt number Sc is conversely relative to Brownian diffusivity. Higher Sc yields a more
fragile Brownian diffusivity. Such Brownian diffusivity prompts low concentration φ(ζ). Figure 12
demonstrates how the thermophoresis parameter Nt influences the concentration φ(ζ). By improving
thermophoresis parameter Nt, concentration φ(ζ) and related concentration layers are upgraded.
Figure 13 depicts the Brownian movement Nb and minor departure from concentration φ(ζ). It can be
seen that a more fragile concentration φ(ζ) is produced by using higher Nb. Figure 14 explains the
impact of nondimensional initiation vitality E on concentration φ(ζ). An improvement in E rots altered

Arrhenius work
(

T
T∞

)n
exp

(
− Ea

κT

)
. Such inevitably builds up the generative synthetic response

because of which concentration φ(ζ) upgrades. Figure 15 shows that an improvement in σ shows a
rot in concentration φ(ζ) and its related layer. Highlights of Nt and Nb on Nu(Rer)−1/2 are revealed
through Figures 16 and 17 respectively. True to form, Nu(Rer)−1/2 reduces for Nt and Nb. Effects of
Nt and Nb on Sh(Rer)−1/2 have been portrayed in Figures 18 and 19 respectively. Here Sh(Rer)−1/2 is
an expanding capacity of Nt, while the inverse pattern is seen for Nb. Table 1 is developed to validate
the present results with the previously published results in a limiting case. Here, we demonstrate that
the present numerical solution has good agreement with the previous solution by Naqvi et al. [48] in a
limiting case.

1 
 

Figure 2. Curves of f ′(ζ) for λ.
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Figure 3. Curves of f ′(ζ) for Fr.

 

2 

Figure 4. Curves of g(ζ) for λ.
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Figure 5. Curves of g(ζ) for Fr.

 

3 

Figure 6. Curves of θ(ζ) for γ1.
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Figure 7. Curves of θ(ζ) for Pr.

 

4 

Figure 8. Curves of θ(ζ) for Nt.
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Figure 9. Curves of θ(ζ) for Nb.

 

5 

Figure 10. Curves of φ(ζ) for γ2.
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Figure 11. Curves of φ(ζ) for Sc.

 

6 

Figure 12. Curves of φ(ζ) for Nt.
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7 

Figure 13. Curves of φ(ζ) for Nb.

 

7 

Figure 14. Curves of φ(ζ) for E.
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8 

Figure 15. Curves of φ(ζ) for σ.

 

8 

Figure 16. Curves of Nu(Rer)−1/2 for Nt.
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9 

Figure 17. Curves of Nu(Rer)−1/2 for Nb.

 

9 

Figure 18. Curves of Sh(Rer)−1/2 for Nt.
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10 

 
Figure 19. Curves of Sh(Rer)−1/2 for Nb.

Table 1. Comparative values of f ′′(0) and g′(0) for value of Fr when λ = 0.2.

Present Results Naqvi et al. [48]

Fr f ′′(0) g′(0) f ′′(0) g′(0)
0.2 0.43478 −0.78139 0.4347813 −0.7813904

4. Conclusions

Darcy–Forchheimer flow of viscous nanofluid due to a rotating disk with binary chemical
reaction and Arrhenius activation energy was studied. The shooting algorithm leads to the
solutions of dimensionless quantities. We noticed that temperature rises for larger thermal Biot
number. Temperature is less in the absence of thermal Biot number. Enhancing concentration Biot
number leads to higher concentration and thickness of concentration boundary layer. An increase in
activation energy leads to higher temperature. We further demonstrated that enhancement in chemical
reaction parameter gives a reduction in the curves of concentration.
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