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Abstract: Point orthogonal projection onto planar algebraic curve plays an important role in computer
graphics, computer aided design, computer aided geometric design and other fields. For the case
where the test point p is very far from the planar algebraic curve, we propose an improved curvature
circle algorithm to find the footpoint. Concretely, the first step is to repeatedly iterate algorithm
(the Newton’s steepest gradient descent method) until the iterated point could fall on the planar
algebraic curve. Then seek footpoint by using the algorithm (computing footpoint q) where the
core technology is the curvature circle method. And the next step is to orthogonally project the
footpoint q onto the planar algebraic curve by using the algorithm (the hybrid tangent vertical foot
algorithm). Repeatedly run the algorithm (computing footpoint q) and the algorithm (the hybrid
tangent vertical foot algorithm) until the distance between the current footpoint and the previous
footpoint is near 0. Furthermore, we propose Second Remedial Algorithm based on Comprehensive
Algorithm B. In particular, its robustness is greatly improved than that of Comprehensive Algorithm
B and it achieves our expected result. Numerical examples demonstrate that Second Remedial
Algorithm could converge accurately and efficiently no matter how far the test point is from the plane
algebraic curve and where the initial iteration point is.

Keywords: point projection; intersection; planar algebraic curve; Newton’s iterative method;
the improved curvature circle algorithm

1. Introduction

Reconstructing curve/surface is an important work in the field of computer aided geometric
design, especially in geometric modeling and processing where it is crucial to fit curve/surface in
high accuracy and reduce the error of representation curve/surface. The representation of the four
curve types are the explicit-type, implicit-type, parametric-type and subdivision-type. Because implicit
representation has unique advantage in the process of computer aided geometric design, it has wide
and far-reaching applications. From scattered and unorganized three-dimensional data, Bajaj et al. [1]
reconstructed surface and functions on surfaces. They [2,3] have constructed the algebraic B-spline
surfaces with least-squares fitting feature using tensor product technique. Schulz et al. [4] constructed
an enveloping algebraic surface using gradually approximate algebraization method. Kanatani et al. [5]
applied the algebraic curve to construct geometric ellipse fitting using unified strict maximum
likelihood estimation method. Mullen et al. [6] reconstructed robust and accurate algebraic surface
functions to sign the unsigned from scattered and unorganized three-dimensional data point sets.
Upreti et al. [7] used a technique to sign algebraic level sets on NURBS surface and algebraic Boolean
level sets on NURBS surfaces. Rouhani et al. [8] applied the algebraic function for polynomial
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representation system. And L.G. Zagorchev et al. [9] applied the algebraic function for general
algebraic surface.

Up to now, there are three main types of methods to solve the problem of point orthogonal
projection onto planar algebraic curve: local method, global method and compromise method between
these two methods. Here are three typical approaches.

According to the most basic geometric characteristic, orthogonal projection of test point p onto
the planar algebraic curve is actually the point x on the curve such that cross product of vectors −→xp and
∇ f (x) is 0.

∇ f (x)× (p− x) = 0. (1)

Equation (1) can be transformed into Newton’s iteration formula (3). Furthermore, Sullivan et al. [10]
adopted a hybrid method with Lagrange multiplier and Newton’s iterative method to compute the
closest point on the planar algebraic curve for each test point. Some orthogonal projection problems can
be transformed into solving system of nonlinear equations. The common characteristic of methods [10,11]
is that they converge locally and fast, while methods [10,11] are dependent on the initial points.

The first global method of solving system of nonlinear equations is the Homotopy
continuous method [12,13]. They constructed Homotopy continuous formula.

H(x, t) = (1− t)P(x) + tQ(x), t ∈ [0, 1] (2)

where t is a parameter of continuous transformation from 0 to 1, P(x) = 0 is the original system of
nonlinear equations to be solved, Q(x) is the objective solution of system of nonlinear equations
P(x) = 0. All isolated solutions of system of nonlinear equations P(x) = 0 can be computed
by the numerical continuous Homotopy methods [12,13]. So the Homotopy methods [12,13]
are global convergence. The Homotopy methods’ robustness is proved by [14] and their high
time-consuming property is verified in [15]. Of course, the Homotopy methods [12,13] are ideal
in theory, but it is difficult to find or construct the objective system of nonlinear equations Q(x) = 0 in
practical engineering applications.

The second global resultant methods convert system of nonlinear equations into the expression
of the resultants and then solve the resultants [16–19]. According to classical elimination theory,
system of two nonlinear equations with two variables can be turned into a resultant polynomial with
one variable, which is equivalent to the two simultaneous equations. The Sylvester’s resultant and
Cayley’s statement of Bézout’s method are the most famous resultant methods [16–19]. Because the
resultant methods [16–19] can solve all roots if the degree of the planar algebraic curve is less than 4,
they are good global methods. However, if the degree of the planar algebraic curve is more than
quintic, it becomes harder and harder with increasing degree to solve two-polynomial system with the
resultant methods.

The third global method is the adoption of the Bézier clipping technique [20–22]. In the first step,
solving the nonlinear system of Equation (1) is transformed into solving all roots of Bernstein-Bézier
representation with convex hull property. In the second step, if the parts of the domains do not
include the solution, we clip the parts of the domains by using convex hull box with Bernstein-Bézier
form such that the discarded parts of the region has no solution and all the solutions are in the
retained parts of the region. In the third step, the de Casteljau subdivision rule is used to segment
the remaining part of the curve obtained by elimination in step 2. Repeat steps 2 and 3 until we
can find all the solutions to Equation (1). The advantage of this method is that all solutions of
Equation (1) can be found. But this global clipping method has one difficulty: sometimes Equation (1)
is difficult or even impossible to convert into Bernstein-Bézier form. For example, specific Equation (1)
∇ f (x) × (p− x) = −36p1y17 + 36xy17 + 6p2x5 − 6x5y − 4p1x + 4p2y + 4x2 − 4y2 is impossible to
convert into Bernstein-Bézier form where f (x) = x6 + 4xy + 2y18 − 1 = 0.

The compromise method is between local and global methods. Consisting of the geometric
property with computing the nearest point is proposed by Hartmann [23,24] named as the first
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compromise method. Repeatedly run the Newton’s steepest gradient descent method (3) until the
iterative point falls on the planar algebraic curve, where the initial iterative point is unrestricted.

xn+1 = xn − ( f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn). (3)

q = p− (〈p− yn,∇ f (yn)〉 / 〈∇ f (yn),∇ f (yn)〉)∇ f (yn). (4)

Running the iterative formula (4) one time, the method [23,24] can obtain the vertical foot point
q where the iterative point yn of the formula (4) is the final iterative point obtained by formula (3).
Continuously iterate the above two steps until the vertical foot point q is on the planar algebraic
curve f (x). Unluckily, progressive geometric tangent approximation iteration method with computing
vertical foot point q fails for some planar algebraic curves f (x).

The second compromise method is developed by Nicholas [25] who adopted the osculating
circle technique to realize orthogonal projection onto the planar algebraic curve. Calculate the
corresponding curvature at one point on the planar algebraic curve, and then the radius and center of
the curvature circle. The line segment formed by the test point and the center of the curvature circle
intersects the curvature circle at footpoint q. Approximately take the footpoint q as a point on the
planar algebraic curve. For the new point on the planar algebraic curve, repeat the above procedure
to get a new footpoint and corresponding new approximate point on the planar algebraic curve.
Repeat the above behavior until the footpoint q is the orthogonal projection point pΓ. Because the
planar algebraic curve does not have parametric control like parametric curve, taking the footpoint
as an approximate point on the planar algebraic curve will bring about large errors. So it makes the
operation of the whole algorithm unstable.

The third compromise method is the circle shrinking technique [26]. Repeatedly run the iterative
formula (3) such that the final iterative point pc falls on the planar algebraic curve as far as possible,
where the selection of initial iterative point is arbitrary. The next iterative point on the planar algebraic
curve is obtained through a series of combined operations of circle and the planar algebraic curve,
where the center and radius of the circle are test point p and ‖p− pc‖, respectively. A series of
combined operations include the two most important steps: Find a point p+ on the circle by means of
the mean value theorem; Seek the intersection of the line segment pp+ and the circle where we call
this intersection as the current intersection point pc. Repeatedly run this series of combined operations
until the distance between the current point pc and the previous point pc is 0. The circle shrinking
technique [26] takes a lot of time to seek point p+ each time. The algorithm has one difficulty: if the
degree of the planar algebraic curve is higher than 5, the intersection point pc of line segment pp+ and
the planar algebraic curve cannot be solved directly by formula or the iterative methods to find the
intersection pc will lead to instability.

The four compromise method is a circle double-and-bisect algorithm [27]. The circle doubling
algorithm begins with a very small circle where the center is the test point p and the radius is very
small r1. Keep the same center of the circle, take the radius r2 twice of r1 to draw a new circle. If there
is no intersection between the new circle and the curve, draw a new circle with radius twice of r2.
Continuously repeat the above process until new circle can intersect with the planar algebraic curve
and the former circle does not. Naturally, the former circle and the current circle are called interior
circle and exterior circle, respectively. Moreover, the bisecting technology implements the rest of
the process. Continue to draw a new circle with new radius r = (r1 + r2)/2. If the new current circle
whose radius is r intersects with the curve, substitute r for r2, else for r1. Repeatedly run the above
progress until the difference between the two radii is approximate zero(|r1 − r2| < ε). But this method
is very difficult to judge whether the exterior circle intersects the planar algebraic curve or not [27].

The fifth compromise method is the integrated hybrid second order algorithm [28]. It includes two
sub-algorithms: the hybrid second order algorithm and the initial iterative value estimation algorithm.
They mainly exploint three ideas: (1) the tangent orthogonal vertical foot method coupled with
calibration method; (2) Newton’s steepest gradient descent iterative method to impel the iteration point



Mathematics 2019, 7, 912 4 of 24

to be on the planar implicit curve; (3) Newton’s iterative method to speed up the whole iteration process.
Before running the hybrid second order algorithm, the initial iterative value estimation algorithm is
used to force the initial iterative value of the formula (17) of the hybrid second order algorithm and
the orthogonal projection point pΓ as close as possible. After a lot of tests, if the distance between
the test point p and the curve is not very far, the advantages of this algorithm are obvious in term of
robustness and efficiency. But when the test point is very far from the curve, the integrated hybrid
second order algorithm is invalid.

2. The Improved Curvature Circle Algorithm

In Reference [28], when the test point p is not particularly far away, the integrated hybrid
algorithm can have ideal result. But if the test point p is very far from the curve, the algorithm is
invalid where the test point p can not be robustly and effectively orthogonally projected onto the
planar algebraic curve. In order to overcome this difficulty, we propose an improved curvature circle
algorithm to ensure robustness and effective convergence with the test point p being arbitrarily far
away. No matter how far the test point p is from the planar algebraic curve, if the initial iteration point
x0 is very close to the orthogonal projection point of the test point p, the preconceived algorithm can
converge well. So we attempt to construct an algorithm to find an initial iterative point very close to
the orthogonal projection point pΓ of the test point p. The general idea is the following. Repeatedly
iterate the formula (3) by utilizing the Newton’s steepest gradient descent method until the iteration
point fall on the planar algebraic curve as far as possible, written as pc. This time, the distance between
the iteration point pc and the orthogonal projection point pΓ is much smaller than that between the
original iteration point x0 and the orthogonal projection point pΓ. The iteration point pc is closer to the
orthogonal projection point pΓ. In order to further promote the iteration point pc and the orthogonal
projection point pΓ to be closer, we introduce a key step with curvature circle algorithm. Draw a
curvature circle through point pc on the planar algebraic curve with the radius R determined by the
curvature k and the center m being a normal direction point of point pc on the planar algebraic curve.
Line segment mp determined by the test point p and the center m intersects curvature circle at point
q. We take the intersection point q as the next iteration point for the iteration point pc. Of course,
the distance between the intersection point q and the orthogonal projection point pΓ is much smaller
than the previous one. We use the intersection point q as the new test point, and run the hybrid
algorithm again where the initial iterative point at this moment can be set as q− (0.1, 0.1). Repeatedly
iterate until the iteration point falls on the planar algebraic curve f (x), written as pc. We repeat the
last two key steps in this procedure until the iteration point pc and the orthogonal projection point pΓ
overlap (See Figure 1).

p

pΓ

f x( )

Figure 1. Test point p orthogonal projection onto planar algebraic curve f (x).

Let’s elaborate on the general idea. Let p be a test point on the plane. There is an planar algebraic
curve Γ on the plane.

f (x, y) = 0. (5)
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The plane algebraic curve (5) can be simply written as

f (x) = 0, (6)

where x = (x, y). The goal of this paper is to find a point pΓ on the planar algebraic curve f (x) to
satisfy the basic relationship

‖p− pΓ‖ = min
x∈Γ
‖p− x‖ . (7)

The above problem can be written as
f (pΓ) = 0,
∇ f (pΓ)× (p− pΓ) = 0,
‖p− pΓ‖ = min

x∈Γ
‖p− x‖ ,

(8)

where ∇ f =

[
∂ f
∂x

,
∂ f
∂y

]
is Hamiltonian operator and symbol × is cross product. We take s as the arc

length parameter of the planar algebraic curve f (x) and t =
[

dx
ds

,
dy
ds

]
is unit tangent vector along the

planar algebraic curve f (x). Take derivative of Equation (6) with respect to arc length parameter s and
combine with unit tangent vector condition ‖t‖ = 1, we obtain the following simultaneous system of
nonlinear equations, {

〈t,∇ f 〉 = 0,
‖t‖ = 1.

(9)

It is easy to get the solution of Equation (9).

t =
[
−∂ f

∂y
,

∂ f
∂x

]
/ ‖∇ f ‖ . (10)

Repeatedly iterate Equation (3) called as the Newton’s steepest gradient descent method until until
the iterative termination criteria | f (xn+1)| < ε, where the initial iterative point is x0 = p− (0.1, 0.1)
and refer to the iterative point xn+1 as pc. The first advantage of the Newton’s steepest gradient descent
method (3) is to make the iteration point fall on the planar algebraic curve f (x) as far as possible. Its
second advantage of the Newton’s steepest gradient descent method (3) is that the iteration point
fallen on the planar algebraic curve is relatively close to the orthogonal projection point pΓ, and it
brings great convenience to implementation of the subsequent sub-algorithms. The Newton’s steepest
gradient descent method (Algorithm 1) can be specifically described as (See Figure 2).

Algorithm 1: The Newton’s steepest gradient descent method.
Input: The test point p and the planar algebraic curve f (x) = 0
Output: The iterative point pc fallen on planar algebraic curve f (x) = 0
Description:
Step 1:

xn+1 = p− (0.1, 0.1);
Do {

xn = xn+1 ;
Update xn+1 according to the iterative Equation (3);

}while (| f (xn+1)| > ε&& ‖xn+1 − xn‖ > ε);
Step 2:

pc = xn+1 ;
Return pc;
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(a)

p

pΓ
f x( )

pc

(b)

Figure 2. The entire graphic demonstration of Algorithm 1. (a) The whole iterative process of the
Newton’s steepest gradient descent method; (b) The last step of the iterative point pc fallen on the
planar algebraic curve f (x) through the Newton’s steepest gradient descent method.

In this case, if the iterative point pc fallen on the planar algebraic curve f (x) is taken as the initial
iterative point of the hybrid algorithm, convergence or divergence may occur where divergence can not
improve the algorithm. As for divergence, it can not achieve the purpose of improving the algorithm.
From another point of view, the distance between iteration point pc and orthogonal projection point
pΓ of the test point p should be closer. It lays a good foundation for the implementation of subsequent
sub-algorithms. In order to get the iteration point and the orthogonal projection point pΓ closer,
we adopt curvature circle way to promote the iteration point and the orthogonal projection point pΓ
being closer. Because the iterative point is on the planar algebraic curve, the curvature k at the iterative
point pc fallen on the planar algebraic curve f (x) is defined as [29],

k = k(x, y) =

[
− fy, fx

]
G
[
− fy, fx

]T

‖∇ f ‖3 , (11)

where G =

(
fxx fxy

fyx fyy

)
. The radius R and the center m of the curvature circle© directed by the

curvature k are
R = |1/k| , (12)

and

m = pc +
−→n
k

, (13)

where the unit normal vector −→n is −→n =
∇ f
‖∇ f ‖ . The line segment mp determined by the test point p

and the center m of the curvature circle© intersects the curvature circle© at point q which is named
as footpoint q. From elementary geometric knowledge, the parametric equation of the line segment
mp can be expressed as

x = p + (m− p)w, (14)

where parametric 0 ≤ w ≤ 1 is undetermined. In addition, the equation of the curvature circle© can
be written as

‖m− x‖ = R. (15)
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By solving Equation (14) and Equation (15) together, the analytic expression of the intersection q
is obtained

q = p + (m− p)w, (16)

where the undetermined parameter w is accurately identified as w = 1− R
‖m− p‖ . The computation

of the footpoint q can be realized through Algorithm 2 (See Figure 3).

Algorithm 2: Computing footpoint q via the curvature circle© and the line segment mp.
Input: The test point p, the planar algebraic curve f (x) = 0 and the iterative point pc on the
planar algebraic curve f (x) = 0.

Output: The footpoint q.
Description:
Step 1:

Compute the curvature k of the iterative point pc fallen on the planar algebraic curve
f (x) = 0 by the curvature calculation formula (11).

Step 2:
Calculate the radius R and the center m of the curvature circle© through the formulas

(12) and (13), respectively.
Step 3:

Compute the footpoint q by the formula (16).
Return q;

Remark 1. The important formula for computing the curvature k is the formula (11). If the denominator of
the curvature k with the formula (11) is 0, the whole iteration process will degenerate. In order to solve this
special degeneration, we adopt a small perturbation of the curvature k of the formula (11) in programming
implementation of Algorithm 2. Namely, the denominator of the curvature k with the formula (11) could be
incremented by a small positive constant ε, the denominator of the curvature k is the denominator of the curvature
k +ε, and Algorithm 2 continues to calculate the center and the radius of the curvature circle corresponding
to the curvature after disturbance. Of course, in all subsequent formulas or iterative formulas, we also do
the same denominators perturbation treatment for the case of the zero denominators of the formulas or the
iterative formulas.

p

pΓ

f x( )

pc

m

q

Figure 3. Graphic demonstration for Algorithm 2.

Under this circumstance, if the footpoint point q at this moment is taken as the initial iteration
point of the hybrid algorithm, the convergence probability of the hybrid algorithm is much greater than
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that of using the point pc in Algorithm 1 as the initial iterative point of the hybrid algorithm. The reason
is that the distance ‖q− pΓ‖ is smaller than the distance ‖pc − pΓ‖. But divergence may happen in
this case. In order to further guarantee the robustness,we orthogonally project the footpoint q onto the
planar algebraic curve f (x) by using the hybrid algorithm, instead of directly using the footpoint q
as the initial iterative point. At this time we still call the orthogonal projection point of the footpoint
q as the point pc which is just fallen on the planar algebraic curve f (x). Because at this time the
footpoint q is close to the planar algebraic curve f (x), the algorithm can ensure complete convergence.
The distance between the iterative point pc and the orthogonal projection point pΓ of the test point p
becomes smaller again. The core iterative formula (17) of the hybrid algorithm is as follows (See [28]).

yn = xn − ( f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
zn = yn − (F(yn)/ 〈∇F(yn),∇F(yn)〉)∇F(yn),
Q = q− (〈(q− zn),∇ f (zn)〉 / 〈∇ f (zn),∇ f (z n)〉)∇ f (zn),
un = zn+sign(〈q− zn, t0〉)t0∆s,
vn = un − (F(un)/ 〈∇F(un),∇F(un)〉)∇F(un),

xn+1= vn + [−∆e, 0]
[
∇ f T , (∆vn)

T
]−1

(i f
∣∣[∇ f T , (∆vn)T]∣∣ = 0, xn+1 = vn),

(17)

where F0(x) = [(q− x)×∇ f (x)] = 0, F(x) =
F0(x)√

〈∇ f (x),∇ f (x)〉
, t0 =

[
− fy, fx

]
‖∆ f ‖ , ∆s = ‖Q− zn‖,

f (vn) = ∆e, ∆vn = −(F(un)/ 〈∇F(un),∇F(un)〉)∇F(un).
The iterative formula (17) mainly contains four techniques. The core technology is the tangent

foot vertical method with the third step and the fourth step of the iterative formula (17). Draw a
tangent line L from a point on a plane algebraic curve f (x). Through the footpoint q (The footpoint q
at this time is as the test point of iterative formula (17)), make a vertical line of the tangent L and get its
corresponding vertical foot point Q, which is equivalent to the third step in the formula (17). From the
fourth step of the iterative formula (17), we get the next iteration point of particular importance for the
initial iteration point. When the next iteration point is not very close to the planar algebraic curve f (x),
we adopt the second important technique with the iteration point correction method, equivalent to
the sixth step of the iterative formula (17). The iteration point is to move to the plane algebra curve
as close as possible such that the distance between the correction point of the iteration point and the
plane algebra curve f (x) is as close as possible. These two techniques are pure geometric techniques.
When the distance between the test point and the planar algebraic curve is very close, the effect of
convergence is obvious. Of course, when the distance between the test point and the planar algebraic
curve is relatively long, sometimes there will be non-convergence. In order to improve the robustness
of convergence, we add the Newton’s steepest gradient descent method before the first technique with
the third step and the fourth step of the iterative formula (17). Its first aim is to bring the initial iteration
point closer to the planar algebraic curve f (x). Its second aim is to promote the accuracy of subsequent
iterations. In order to accelerate the whole iteration process of the iterative formula (17), we once
again incorporate the fourth technology of Newton’s iterative method which is closely related to the
footpoint q. This technique not only accelerates the convergence rate of the whole iteration process but
also improves the iteration robustness. Furthermore, the accuracy of the whole iteration process can be
improved by the fourth technique. So we add Newton’s iterative method after the first step with the
second technique, and then add it again before the last step with the third technique. Based on the
above explanation and illustration, we get the following the hybrid tangent vertical foot algorithm
(Algorithm 3).
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Algorithm 3: The hybrid tangent vertical foot algorithm (See Figure 4).
Input: The footpoint q and the planar algebraic curve f (x) = 0.
Output: The point pc fallen on the planar algebraic curve f (x) = 0.
Description:
Step 1:

xn+1 = q− (0.1, 0.1);
Do {

xn = xn+1;
Execute xn+1 according to the iterative Equation (17);

}while (‖xn+1 − xn‖2 > ε&&| f (xn+1)| > ε)

Step 2:
pc = xn+1;
Return pc;

With the description of the above three algorithms, we propose a comprehensive and complete
algorithm (Algorithm 4) closely related to Algorithm 2 (See Figure 4).

Algorithm 4: The first improved curvature circle algorithm (Comprehensive Algorithm A).
Input: Test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p which orthogonally projects the test
point p onto a planar algebraic curve f (x).

Description:
Step 1: Starting from the neighbor point of the test point p, calculate the point pc fallen on the

f (x) via Algorithm 1.
Do{

Step 2: Compute the footpoint q via Algorithm 2.
Step 3: Project footpoint q onto the planar algebraic curve f (x) via Algorithm 3, then get

the new iterative point pc fallen on the f (x).
}while (distance (the current pc, the previous pc)> ε).
pΓ = pc;
Return pΓ;

Through a series of rigorous deductions, Comprehensive Algorithm A is the important algorithm
of our paper. No matter how far the test point p is from the planar algebraic curve f (x), test point
p could very robustly orthogonally projects onto the planar algebraic curve f (x). This has achieved
our desired result. After a lot of testing and observation, when the point on the curve is close to the
orthogonal projection point, we find that Comprehensive Algorithm A presents two characteristics:
(1) difference between the first distance and the second distance decreases slower and slower, where the
first distance and the second distance are the one between the previous iterative point pc on the planar
algebraic curve and the orthogonal projection point pΓ, and the one between the current iterative point
pc on the planar algebraic curve and the orthogonal projection point pΓ, respectively; (2) the rate goes
even slower at which the absolute value of the inner product gradually approaches zero. These two
characteristics are what we don’t want to obtain because they are contrary to the efficiency of computer
systems. On the premise of ensuring robustness, we try our best to improve and excavate a certain
degree of efficiency for the problem of point orthogonal projection onto planar algebraic curve.
We have an ingenious discovery. After each running of Algorithm 3, we run the Newton’s iterative
method associated with the original test point p, which can improve the convergence and ensure
the orthogonality. Namely, that is to add this step after the last step of the formula (17). Thus the
iterative formula (18) is obtained.
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yn = xn − ( f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
zn = yn − (F(yn)/ 〈∇F(yn),∇F(yn)〉)∇F(yn),
Q = q− (〈(q− zn),∇ f (zn)〉 / 〈∇ f (zn),∇ f (z n)〉)∇ f (zn),
un = zn+sign(〈q− zn, t0〉)t0∆s,
vn = un − (F(un)/ 〈∇F(un),∇F(un)〉)∇F(un),

wn= vn + [−∆e, 0]
[
∇ f T , (∆vn)

T
]−1

(i f
∣∣[∇ f T , (∆vn)T]∣∣ = 0, then wn = vn),

xn+1 = wn − (G(wn)/ 〈∇G(wn),∇G(wn)〉)∇G(wn),

(18)

where F0(x) = [(q− x)×∇ f (x)] = 0, F(x) =
F0(x)√

〈∇ f (x),∇ f (x)〉
, t0 =

[
− fy, fx

]
‖∆ f ‖ , ∆s = ‖Q− zn‖,

f (vn) = ∆e, ∆vn = −(F(un)/ 〈∇F(un),∇F(un)〉)∇F(un), G0(x) = [(p− x)×∇ f (x)] = 0, G(x) =
G0(x)√

〈∇ f (x),∇ f (x)〉
. Because the iterative formula (17) of Algorithm 3 naturally becomes the iterative

formula (18), so Algorithm 3 naturally becomes the following Algorithm 5.

Algorithm 5: The hybrid tangent vertical foot algorithm.
Input: The footpoint q and the planar algebraic curve f (x) = 0.
Output: The point pc fallen on planar algebraic curve f (x) = 0.
Description:
Step 1:

xn+1 = q− (0.1, 0.1);
Do {

xn = xn+1;
Execute xn+1 according to the iterative Equation (18);

}while (‖xn+1 − xn‖2 > ε&&| f (xn+1)| > ε)

Step 2:
pc = xn+1;
Return pc;

Now let’s replace Algorithm 3 of Comprehensive Algorithms A with Algorithm 5. We get the
following Comprehensive Algorithm B (Algorithm 6).

Algorithm 6: The second improved curvature circle algorithm (Comprehensive Algorithm B).
Input: Test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p which orthogonally projects the test
point p onto the planar algebraic curve f (x).

Description:
Step 1: Starting from the neighbor point of the test point p, calculate the point pc fallen on the

f (x) via Algorithm 1.
Do{

Step 2: Compute the footpoint q via Algorithm 2.
Step 3: Project footpoint q onto the planar algebraic curve f (x) via Algorithm 5, then get

new point pc fallen on the f (x).
}while(distance(the current pc, the previous pc)> ε).
pΓ = pc;
Return pΓ;
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Figure 4. Graphic interpretation of the whole iteration process in Algorithm 3. (a) Newton’s steepest
gradient descent method in the first step; (b) The Newton’s iteration method related to the test point in
the second step; (c) The vertical foot point Q being the footpoint q orthogonal projection onto tangent
line induced by the iterative point zn on the planar algebraic curve in the third step; (d) Calculating line
incremental iterative value in the fourth step; (e) Once again running the Newton’s iteration method
related to the test point in the fifth step; (f) Correcting the previous iteration value to improve the
robustness of iteration in the last step.

Comprehensive Algorithm A and Comprehensive Algorithm B share common advantage:
the robustness of the two algorithms is substantially improved than that of the existing algorithms
because our algorithms are not subject to any restrictions on test points and initial iteration points.
By comparison, Comprehensive Algorithm B has four advantages over Comprehensive Algorithm A.
(1) The last step of the iterative formula (18) in Comprehensive Algorithm B can make corrections
continuously; (2) The last step of the iterative formula (18) in Comprehensive Algorithm B accelerates
the whole Comprehensive Algorithm B; (3) The last step of the iterative formula (18) in Comprehensive
Algorithm B accelerates the inner product of two vectors to 0, where the first vector refers to the
vector connecting the test point p and the iteration point zn+1 of Comprehensive Algorithm B and
the second vector

[
− ∂ f

∂y , ∂ f
∂x

]
|x=xn+1

is the tangent vector derived from the iteration point xn+1 on the

planar algebraic curve, respectively; (4) Comprehensive Algorithm B overcomes two shortcomings of
Comprehensive Algorithm A.

Of course, when the test point is not too far from the plane algebra curve, Comprehensive
Algorithm is also convergent for any initial iterative point. However, Comprehensive Algorithm A
takes more time than directly using the hybrid second order algorithm. In practical applications such
as computer graphics, it’s hard to know if the test point p is close to or far from a planar algebraic
curve. Because the main reason is that the degree and the type of the planar algebraic curve restrict the
relative distance between the test point p and the planar algebraic curve. In order to optimize time
efficiency, we take advantage of Comprehensive Algorithm A and the hybrid second order algorithm
such that no matter where the test point p is located, it can be orthogonally projected onto the planar
algebraic curve efficiently and robustly. First, the hybrid second order algorithm is iterated. If it does
not converge after 100 iterations, it will be changed to Comprehensive Algorithm A to iterate until the
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iteration point reaches the orthogonal projection point pΓ. Specific algorithm implementation is the
following Comprehensive Integrated Algorithm A (Algorithm 7).

Algorithm 7: The first comprehensive integrated improved curvature circle algorithm
(Comprehensive Integrated Algorithm A).

Input: Test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p.
Description:
Step 1:

xn+1 = p− (0.1, 0.1);
for(i = 0; i < N; i ++) {

xn = xn+1;
xn+1=Hybrid second order algorithm( f , p, xn);
if(‖xn+1 − xn‖ < ε) break ;

}
Step 2:

if(i ≥ N&&d ≥ 1e− 15) {
xn = xn+1 ;
xn+1=Comprehensive Algorithm A( f , p, xn);

}
pΓ = xn+1;
Return pΓ;

Number N is an empirical value of the iterative times where the value N is specified as 5 or 6.
Similar to Comprehensive Algorithm A, by replacing Algorithm 3 with Algorithm 5, the following

Comprehensive Integrated Algorithm B (Algorithm 8) can be obtained naturally.

Algorithm 8: The second comprehensive integrated improved curvature circle algorithm
(Comprehensive Integrated Algorithm B).

Input: The test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p.
Description:
Step 1:

xn+1 = p− (0.1, 0.1);
for(i = 0; i < N; i ++) {

xn = xn+1;
xn+1=Hybrid second order algorithm( f , p, xn);
if(‖xn+1 − xn‖ < ε) break ;

}
Step 2:

if(i ≥ N&&d ≥ 1e− 15) {
xn = xn+1 ;
xn+1=Comprehensive Algorithm B( f , p, xn);

}
pΓ = xn+1;
Return pΓ;

Number N is an empirical value of the iterative times where the value N is specified as 5 or 6.
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To sum up, we have presented four synthesis algorithms altogether. After analysis and judgment,
Comprehensive Algorithm B and Comprehensive Integrated Algorithm B are the most robust
and efficient. On the problem of orthogonal projection of point onto planar algebraic curve, if the
distance between the test point and the planar algebraic curve is close, we recommend the hybrid
second order algorithm, if the distance between the test point and the planar algebraic curve is not
close, we recommend Comprehensive Algorithm B. Of course, if the distance between the test point
and the planar algebraic curve cannot be known to be very far or close, Comprehensive Integrated
Algorithm B is the best choice.

Remark 2. In sum, Comprehensive Algorithm B has strong superiority over existing algorithms [10–28].
If the distance between the test point and the planar algebraic curve is very far away, the test point can
be ideally orthogonally projected onto the planar algebraic curve. But when there are singular points
∂ f
∂x
· ∂ f

∂x
+

∂ f
∂y
· ∂ f

∂y
= 0 in the planar algebraic curve, this case will seriously hinder the correct execution

and implementation of Comprehensive Algorithm B. In order to solve the problem in the case of singularities in
the planar algebraic curves, we propose a remedy to Comprehensive Algorithm B (Algorithm 9). The specific
description is as follows (See Figure 5).

Algorithm 9: The first remedial algorithm of Comprehensive Algorithm B.
Input: Test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p.
Description:
Step 1.

Starting from the neighbor point of the test point p, calculate the iterative point pc fallen
on the planar algebraic curve f (x) via Algorithm 1.

Step 2.
Judge whether to use curvature circle method or tangent method in the next step.

Step 3.
Find the left endpoint L0 on the other side of f (x) relative to the test point p. According

to the result of step 2, if use curvature circle method, then the left endpoint L0 is equal to the
intersection point q which is computed by the curvature circle method with the formula (16).
If not, then the left endpoint L0 is equal to the vertical foot Q which is computed by the
tangent method with the third step of the formula (17).

Step 4.
Calculate the intersection point pc of the line segment L0p connecting the current left

endpoint L0 and the test point p and the planar algebraic curve f (x) by the hybrid method of
combining Newton’s iterative method and binary search method. The intersection point pc is
called as the current iterative point pc;

Step 5.
Repeat Step 2,Step 3 and Step 4 until the distance between the current iterative point pc

and the previous iterative point pc is near zero;
Step 6.

pΓ= pc;
Return pΓ;

Now let’s describe the hybrid method of combining Newton’s iterative method and binary search
method in detail. The parameter equation of the line segment L0p can be expressed as{

x = L1 + (p1 − L1)w,
y = L2 + (p2 − L2)w,

(19)
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where L0 = (L1, L2), p = (p1, p2), and 0 ≤ w ≤ 1 is a parameter of Equation (19). Substitute
Equation (19) into Equation (6) of the planar algebraic curve to get a equation on the parameter w,

K(w) = f (x, y) = 0, (20)

where the x and y of Equation (20) are completely determined by the x and y of Equation (19). So the
most basic Newton’s iterative formula corresponding to Equation (20) is not difficult to write as,

wn+1 = wn −
K(wn)

DK(wn)
, (21)

where DK(w) is the first derivative of K(w) about the parameter w. Now we start to iterate the
Newton’s iterative formula (21) with the initial iterative value w0 = 0.0. Based on the actual situation,
the intersection of the line segment L0p and the planar algebraic curve is much closer to the left
endpoint L0 and much farther from the original test point p, therefore, the initial interval of the binary
search method can be specified as [a, b] = [0.0, 0.5]. The detailed description of the hybrid method of
combining Newton’s iterative method and binary search method is as following Algorithm 10.

Algorithm 10: The hybrid method of combining Newton’s iterative method and binary
search method.

Input: The planar algebraic curve f (x), the original test point p = (p1, p2), the iterative point
pc via Algorithm 1.

Output: The intersection pc between the line segment L0p and the planar algebraic curve f (x).
Description:
Step 1:

The initial interval of the binary search method [a, b] = [0.0, 0.5], the initial iterative
value w = 0.0;
Step 2:

w = w− K (w) /DK (w);
kmin=min(K(a),K(b));
kmax=max(K(a),K(b));
if (K(w) < kmin or K(w) > kmax)

w = (a + b) /2;
sa=sign(K(a));
sw=sign(K(w));
if(sa == sw)

a = w;
else

b = w;
Step 3:

Repeatedly iterate Step 2 until |a− b| < ε;
Step 4:

pc = L0 + (p− L0)w;
Return pc;
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Figure 5. Graphical interpretation for the first remedial algorithm of Comprehensive Algorithm B.
(a) The intersection point q between the line segment mp and the curvature circle and the test point p
on the opposite side of the planar algebraic curve f (x); (b)The vertical foot Q of the tangential line L
and the test point p on the opposite side of the planar algebraic curve f (x).

The robustness of the first remedial algorithm of Comprehensive Algorithm B is much better than
that of Comprehensive Algorithm B while the first remedial algorithm of Comprehensive Algorithm B
takes much more time than Comprehensive Algorithm B. The hybrid method of combining Newton’s
iterative method and binary search method is a hybrid method which binary search method ensures global
convergence and the Newton’s iterative method plays an accelerating role. In order to ensure robustness
and improve efficiency, we have fully excavated Comprehensive Algorithm B. We have developed Second
Remedial Algorithm (Algorithm 11). The specific description is as follows (See Figure 6).

pΓ

f( )x m
q

pc L

p

pc

Figure 6. Graphic demonstration for Second Remedial Algorithm.

Algorithm 11: Second Remedial Algorithm.
Input: Test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p which orthogonally projects the test
point p onto the planar algebraic curve f (x)

Description:
Step 1: Starting from a certain percentage of the test point p, calculate the point pc fallen on the

f (x) via Algorithm 1.
Do{

Step 2: Compute the footpoint q via Algorithm 2.
Step 3: Starting from the footpoint q, compute the iterative point pc fallen on the f (x) via

Algorithm 1.
}while(distance(the current pc, the previous pc)> ε).
Step 4: Compute the orthogonal projection point pΓ of the test point p via Algorithm 12.

Return pΓ;
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Algorithm 12: The hybrid Newton-type iterative algorithm.
Input: The current iterative point pc fallen on the planar algebraic curve f (x) and the planar
algebraic curve f (x).

Output: Orthogonal projection point pΓ of the test point p which orthogonally projects the test
point p onto the planar algebraic curve f (x).

Description:
Step 1:

xn+1 = pc;
Do {

xn = xn+1;
Compute xn+1 according to the iterative formula (22);

}while (‖xn+1 − xn‖2 > ε&&| f (xn+1)| > ε)

Step 2:
pΓ = xn+1;
Return pΓ;

The expression of the iterative formula (22) is as follow,
yn = xn − ( f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
zn = yn − (F(yn)/ 〈∇F(yn),∇F(yn)〉)∇F(yn),

xn+1 = zn + [−∆e, 0]
[
∇ f T , (∆zn)

T
]−1

(i f
∣∣[∇ f T , (∆zn)T]∣∣ = 0, then xn+1 = zn),

(22)

where F0(x) = [(p− x)×∇ f (x)] = 0, F(x) =
F0(x)√

〈∇ f (x),∇ f (x)〉
, f (zn) = ∆e, ∆zn =

−(F(yn)/ 〈∇F(yn),∇F(yn)〉)∇F(yn).

Remark 3. In this remark, we present the geometric interpretation of Second Remedial Algorithm. The purpose
of the first step is to make the iterative point pc fall on the planar algebraic curve as much as possible through
Newton’s steepest gradient descent method of Algorithm 1, where the coordinates of the initial iterative
point take proportional value of that of the test point p to ensure that Algorithm 1 converges successfully.
Otherwise, the distance between the initial iterative point and the planar algebraic curve is very large, which
easily leads to the divergence of Algorithm 1. The purpose of Do . . . While cycle body in Second Remedial
Algorithm is to continuously and gradually move the iterative point pc to fall on the planar algebraic curve to
the orthogonal projection point pΓ. The second step in Do. . . While cycle body in Second Remedial Algorithm
has two characteristics. Since the footpoint q is the unique intersection point of the curvature circle and the
straight line segment mp connecting the centre m of the curvature circle and the test point q, the footpoint
q is always closely related to the iterative point pc fallen on the planar algebraic curve and the test point p.
The first characteristic is that the footpoint q can guarantee the global convergence of the whole algorithm
(Second Remedial Algorithm). The second characteristic is that the distance between the footpoint q and the
planar algebraic curve is much smaller than the distance between the test point p and the planar algebraic curve.
So the third step with Algorithm 1 in Do . . . While cycle body can very robustly iterate the footpoint q onto
the planar algebraic curve. The core thought of Do . . . While cycle body in Second Remedial Algorithm is to
keep the iterative point pc to fall on the planar algebraic curve and to move towards the orthogonal projection
point pΓ such that the distance ‖pc − pΓ‖ between the iterative point pc and the orthogonal projection point
pΓ becomes smaller and smaller. As the distance ‖pc − pΓ‖ gets smaller and smaller, we have found that there
is a defect in Do . . . While cycle body in Second Remedial Algorithm. The decreasing speed of the distance
‖pc − pΓ‖ is getting slower and slower. Especially the second formula of the formula (8) is very difficult
to be satisfied. Namely, it is difficult to orthogonalize the vector −→ppc and the vector ∇ f (pc). In order to
overcome the difficulty, we add Algorithm 12 behind Do . . . While cycle body in Second Remedial Algorithm.
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Algorithm 12 includes three components: (1) The Newton’s steepest gradient descent method in the first step;
(2) The Newton’s iterative method closely associated with the test point p in the second step; (3) Correcting
method in the third step. Algorithm 12 has four advantages and important roles: (1) Algorithm 12 plays a role
for accelerating the whole algorithm (Second Remedial Algorithm); (2) The first step plays a role for making the
iteration point fall on the planar algebraic curve as far as possible; (3) The second step plays a role for accelerating
orthogonalization between the vector −→ppc and the vector ∇ f (pc); (4) The third step plays a dual role for the
accelerating orthogonalization and the promoting the iterative point to fall on the planar algebraic curve. The
numerical tests of Second Remedial Algorithm achieve our expected results. No matter how far the test point p is
from the planar algebraic curve f (x), Second Remedial Algorithm can converge very robustly and efficiently.
Second Remedial Algorithm is the best one in our paper. Of course, the robustness and the efficiency of Second
Remedial Algorithm are better than that of the existing algorithms. We are very happy about that.

Remark 4. In order to further improve the efficiency of the test point p orthogonal projecting onto plane algebraic
curve f (x), we construct a Comprehensive Integrated Algorithm C which includes two parts: the hybrid second
order algorithm in [28] and Second Remedial Algorithm. Firstly run the hybrid second order algorithm in [28].
If the hybrid second order algorithm converges, then it means that Comprehensive Integrated Algorithm C
is finished. Otherwise, Second Remedial Algorithm runs until it converges successfully. That is the end of
Comprehensive Integrated Algorithm C. The specific description of Comprehensive Integrated Algorithm C
is similar to that of Comprehensive Integrated Algorithm B. Here, we are not giving a detailed description of
Comprehensive Integrated Algorithm C. When the distance between the test point p and the planar algebraic
curve f (x) is not far, the hybrid second order algorithm in [28] has very high robustness and efficiency.
When the distance between the test point p and the planar algebraic curve f (x) is particularly far, the hybrid
second order algorithm does not converge and fails, while Second Remedial Algorithm converges particularly
robustly and successfully. To sum up, Comprehensive Integrated Algorithm C absorbs the advantages of two
sub-algorithms and overcomes their respective shortcomings such that the robustness and the efficiency of
Comprehensive Integrated Algorithm C are maximized.

3. Convergence Analysis

This section proves that several Comprehensive Algorithms do not depend on the initial
iteration points.

Theorem 1. Comprehensive Algorithm A is independent of the initial iterative point.

Proof. Firstly, we state the whole operation process of Comprehensive Algorithm A. Comprehensive
Algorithm A contains three sub-algorithms (Algorithms 1–3). The role of Algorithm 1 is to repeatedly
iterate the iterative formula (3) through Newton’s steepest gradient descent method such that the
final iteration point xn+1 could fall on the planar algebraic curve where the final iteration point xn+1

is denoted as pc. The function of Algorithm 2 is to seek the footpoint q. The curvature circle ©
determined by the point pc is obtained from the iterative point pc on the planar algebraic curve f (x)
of Algorithm 1, where the curvature k, the radius R and the center m are determined by formulas
(11)–(13), respectively. The intersection of the line segment mp connecting the center m and the test
point p and the curvature circle© is foot point q. The footpoint q could be orthogonally projected
onto the planar algebraic curve f (x) by repeated iteration of Algorithm 3 where at this moment the
test point is not the original test point p but the footpoint point q solved by Algorithm 2. Repeatedly
run Algorithm 2 and Algorithm 3 bound together until the distance between the current footpoint q
and the previous footpoint q is near zero.

Secondly, the Comprehensive Algorithm A is independent of the initial iterative point. No matter
how far the original test point p is from the planar algebraic curve f (x), no matter where the initial
iterative point x0 is located, Algorithms 1 can ensure that the final iterative point xn+1 or pc of the initial
iterative point can fall on the planar algebraic curve f (x). It is obvious that the distance ‖pc − pΓ‖
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between the iteration point pc and the orthogonal projection point pΓ is much smaller than the distance
‖p− pΓ‖ between the orthogonal projection point pΓ and the original test point p. From the iterative
point pc fallen on the planar algebraic curve f (x), we can calculate the corresponding curvature k and
its center m and radius R. The intersection point q of the curvature circle© and the line segment mp
connecting the original test point p and the center m of the curvature circle© is just the footpoint q.
That is to say, the footpoint q is directly generated by the curvature circle© and the line segment
mp, and the curvature circle© is controlled by the iterative point pc fallen on the planar algebraic
curve f (x). So the footpoint q is directly controlled by the original test point p and the iterative
point pc, while the current footpoint q is between the orthogonal projection point pΓ and the current
iterative point pc. It also shows that Algorithm 2 plays a decisive role in the convergence robustness of
Comprehensive Algorithm. In addition, we can also know that the distance between the footpoint
point q and the planar algebraic curve f (x) is much smaller than the distance between the original
test point p and the planar algebra curve f (x). At this point, we keep running Algorithm 3 with the
footpoint point q as the current test point until the current test point can be orthogonally projected
onto the plane algebraic curve f (x) with guaranteed convergence of Algorithm 3. And now we can
call the orthogonal projection point of the footpoint point q as also the iterative point pc fallen on
the planar algebraic curve f (x). The first reason is the distance between the current iterative point
pc and the orthogonal projection point pΓ of the original test point point p is smaller than the one
between the previous iterative point pc and the orthogonal projection point pΓ of the original test
point p. The second reason is that it establishes a solid foundation for the convergence robustness of the
subsequent sub-algorithms implementation. Then according to the requirements of Comprehensive
Algorithm A, the second step and third step of Comprehensive Algorithm A are executed once per
cycle, the distance ‖pc − pΓ‖ between the current iterative point pc on the planar algebraic curve and
the orthogonal projection point pΓ of the original test point p of the execution result is smaller than
that between the previous iterative point pc on the planar algebraic curve f (x) and the orthogonal
projection point pΓ of the original test point p. The distance ‖pc − pΓ‖ between the current iterative
point pc and the orthogonal projection point pΓ of the original test point p is becoming smaller. So
repeatedly iterate the second step and the third step of Comprehensive Algorithm A until the distance
‖pc − pΓ‖ between the current iterative point pc and the orthogonal projection point pΓ of the original
test point p is becoming smaller and smaller. Ultimately, the distance ‖pc − pΓ‖ between the current
iterative point pc and the orthogonal projection point pΓ of the original test point p is becoming zero. It
also demonstrates that Comprehensive Algorithm A is completely convergent. This further proves that
Comprehensive Algorithm A can completely converge no matter how far away the original test point p
is from the planar algebraic curve and no matter where the initial iterative point x0 of Comprehensive
Algorithm A is on the plane. This means Comprehensive Algorithm A is independent of the initial
iterative point.

Theorem 2. Comprehensive Algorithm B is independent of the initial iterative point.

Proof. In the last step of the iterative formula (18) in Algorithm 5, Newton’s iteration method, which is
closely related to the original test point p, is added. In this way, the iterative formula (17) is transformed
into the iterative formula (18) in Algorithm 5. Algorithm 5 has several advantages over Algorithm 3.
It can speed up the iteration, improve its accuracy and promote the orthogonalization of the tangent
vector derived from the iteration point on the planar algebraic curve and the tangent vector connecting
the test point and the iterative point. Replace Algorithm 3 of Comprehensive Algorithm A with
Algorithm 5 to get Comprehensive Algorithm B. Since Comprehensive Algorithm A is independent
of the initial iterative point, so Comprehensive Algorithm B is naturally independent of the initial
iterative point.

Theorem 3. Comprehensive Integrated Algorithm A is independent of the initial iterative point.
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Proof. Comprehensive Integrated Algorithm A consists of two parts: the hybrid second order
algorithm and Comprehensive Algorithm A. Whether the test point is very far or very close to the
planar algebraic curve, the hybrid second order algorithm is executed several times. If this algorithm
converges, then it represents that the execution of Comprehensive integrated Algorithm A is over.
So Comprehensive Integrated Algorithm A is independent of the initial iterative point. If the hybrid
second order algorithm does not converge, then run Comprehensive Algorithm A of the second step
of Comprehensive Integrated Algorithm A. Because whether the test point is very far from or very
close to the planar algebraic curve, we know from Theorem 1 that Comprehensive Algorithm A is
independent of the initial iterative point. To sum up, Comprehensive Integrated Algorithm A is
independent of the initial iterative point.

In a similar way to the proof of Theorem 3, we can state the following result.

Theorem 4. Comprehensive Integrated Algorithm B is independent of the initial iterative point.

Theorem 5. The first remedial algorithm of Comprehensive Algorithm B is independent of the initial
iterative point.

Proof. From the Figure 5, for any initial iterative point, the final iterative point pc of Algorithm 1 in the
first step of the first remedial algorithm of Comprehensive Algorithm B can ensure that it falls on the
planar algebraic curve f (x). The left endpoint L0 is the only one that can be determined through third
step of the first remedial algorithm of Comprehensive Algorithm B. Graphic display shows that the
left endpoint L0 and the original test point p are on both sides of the planar algebraic curve. Namely,
there is only one intersection point (also written as pc) between the line segment L0p and the planar
algebraic curve f (x). Because the hybrid method of combining Newton’s iterative method and binary
search method is global convergence method, the intersection pc of the line segment L0p and the
planar algebraic curve f (x) can be accurately and uniquely solved by this method. Then repeatedly
iterate and run Step 2, Step 3 and Step 4, the distance ‖pc − pΓ‖ between the current intersection point
pc and the orthogonal projection point pΓ of the original test point p continues to shrink to zero. So we
have this conclusion that the first remedial algorithm of Comprehensive Algorithm B is independent
of the initial iterative point.

Theorem 6. Second Remedial Algorithm is independent of the initial iterative point.

Proof. In Remark 3, we give a detailed description of the geometric interpretation of Second Remedial
Algorithm. In this proof, we only elaborate on the most important geometric significance of Second
Remedial Algorithm. The first step of Second Remedial Algorithm is to let the initial iteration point fall
on the planar algebraic curve as much as possible through Newton’s steepest gradient descent method
of Algorithm 1. Moreover, there is few restriction on the selection of the initial iterative point. The
purpose of Do . . . While cycle body in Second Remedial Algorithm is to continuously and gradually
move the iterative point pc to fall on the planar algebraic curve to the orthogonal projection point
pΓ. The second step in Do. . . While cycle body in Second Remedial Algorithm has two characteristics.
Since the footpoint q is the unique intersection point of the curvature circle and the straight line
segment mp connecting the centre m of the curvature circle and the test point p, the footpoint q is
always closely related to the iterative point pc fallen on the planar algebraic curve and the test point
p. The first characteristic is that the footpoint q can guarantee the global convergence of the whole
algorithm (Second Remedial Algorithm). The second characteristic is that the distance between the
footpoint q and the planar algebraic curve is much smaller than the distance between the test point
p and the planar algebraic curve. So the third step with Algorithm 1 in Do . . . While cycle body
can very robustly iterate the footpoint q onto the planar algebraic curve. The core thought of Do
. . . While cycle body in Second Remedial Algorithm is to keep the iterative point pc fallen on the planar
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algebraic curve moving towards the orthogonal projection point pΓ such that the distance ‖pc − pΓ‖
between the iterative point pc and the orthogonal projection point pΓ becomes smaller and smaller.
If the distance ‖pc − pΓ‖ gets smaller and smaller, we have found that the decreasing speed of the
distance ‖pc − pΓ‖ is getting slower and slower. Especially the second formula of the formula (8) is
very difficult to be satisfied. Algorithm 12 behind the loop body has four advantages and important
roles: (1) Algorithm 12 plays a role for accelerating the whole algorithm (Second Remedial Algorithm);
(2) The first step plays a role for making the iteration point fall on the planar algebraic curve as far
as possible; (3) The second step plays a role for accelerating orthogonalization between the vector
−→ppc and the vector ∇ f (pc); (4) The third step plays a dual role for the accelerating orthogonalization
and the promoting the iterative point to fall on the planar algebraic curve. No matter how far the test
point is from the planar algebraic curve, Second Remedial Algorithm converges very robustly and
efficiently. By adding this step, the efficiency and the robustness for Algorithm 12 of Second Remedial
Algorithm is further improved. Then the robustness and the efficiency of Second Remedial Algorithm
is also further improved. So Second Remedial Algorithm is independent of the initial iterative point.
In addition, in a similar way to the proof of Theorem 3, it is not difficult to know that Comprehensive
Integrated Algorithm C is also independent of the initial iterative point.

4. Numerical Comparison Results

We now present some examples to illustrate the efficiency and the comparison of the newly
developed method of Comprehensive Algorithm B and Second Remedial Algorithm to show the two
algorithms’ high robustness and efficiency for very remote test points. We have three examples to
represent closed planar algebraic curve, two sub-closed planar algebraic curves, two branches but
not closed planar algebra curves and a single branch not closed the planar algebra curve, respectively.
All computations were done using VC++6.0. We used ε = 10−16. The following stopping criteria
is used for Comprehensive Algorithm B and Second Remedial Algorithm . In Tables 1–3, the four
symbols p, pΓ, | f (pΓ)| and |〈V1, V2〉| are the original test point, the orthogonal projection point of the
original test point, the deviation degree of the orthogonal projection point on the planar algebraic
curve and the absolute value of the inner product of two vectors V1 and V2, respectively, where V1

is −→ppΓ and V2 is the tangent vector
[
− ∂ f

∂y , ∂ f
∂x

]
of the orthogonal projection point pΓ on the planar

algebraic curve f (x). Thanks to the suggestions by the reviewers, the fourth quadrant result values of
the three tables are implemented by Second Remedial Algorithm in Maple 18 environment.

Example 1 (Reference to [28]). Suppose a planar algebraic curve
f (x, y) = x6 + 2x5y− 2x3y2 + x4 − y3 + 2y8 − 4 = 0 (See Figure 7). In each of the four quadrants,
randomly select four distant test points. We calculate the corresponding orthogonal projection point for each test
point via computation by Comprehensive Algorithm B and Second Remedial Algorithm. The specific results are
shown in Table 1).

Example 2. Suppose a planar algebraic curve f (x, y) = x10 + 6xy + 2y18 − 2 = 0(See Figure 8). In each of
the four quadrants, randomly select four distant test points. We calculate the corresponding orthogonal projection
point for each test point via computation by Comprehensive Algorithm B and Second Remedial Algorithm. The
specific results are shown in Table 2.

Example 3. Suppose a planar algebraic curve f (x, y) = x10 + 6xy + 2y16 + 2 = 0(See Figure 9). In each of
the four quadrants, randomly select four distant test points. We calculate the corresponding orthogonal projection
point for each test point via computation by Comprehensive Algorithm B and Second Remedial Algorithm. The
specific results are shown in Table 3.
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Figure 7. Graphical representation of the planar algebraic curve for Example 1.

Figure 8. Graphical representation of the planar algebraic curve for Example 2.

Figure 9. Graphical representation of the planar algebraic curve for Example 3.
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Table 1. Test results of Comprehensive Algorithm B for Example 1.

p (1325, 7447) (779, 325) (990, 1375) (0.59, 1377) (−0.5, 8623) (−16, 598) (−3, 231) (−21, 247)

pΓ (3.1087, −1.8666) (3.3647, −1.8184) (3.3695, −1.8380) (0.60, 1.140) (−0.01582, 1.13368) (−0.3353, 1.13074) (−0.2268, 1.1328) (−0.6071, 1.1166)
| f (pΓ)| 3.9 · 10−10 7.9 · 10−11 1.4 · 10−11 2.7 · 10−12 2.3 · 10−12 4.0 · 10−12 1.9 · 10−12 2.3 · 10−12

|〈V1, V2〉| 2.3 · 10−10 4.4 · 10−11 2.9 · 10−09 4.8 · 10−12 2.1 · 10−13 1.5 · 10−12 1.4 · 10−11 9.6 · 10−12

p (−42, −127) (−5, −38) (−9,−579) (−537, −11) (78, −123) (168, −12) (537, −31) (91, −221)
pΓ (0.6633, -0.9941) (0.4951, −1.0292) (−0.2183, −1.0445) (−1.2752, 0.7396) (3.3519, −1.8685) (3.3694, −1.8417) ( 3.3694, −1.8414) (3.3415, −1.8736)
| f (pΓ)| 7.4 · 10−12 1.4 · 10−12 1.7 · 10−12 6.1 · 10−12 4.9 · 10−12 1.8 · 10−13 5.4 · 10−13 8.6 · 10−12

|〈V1, V2〉| 1.7 · 10−13 1.2 · 10−12 1.1 · 10−12 1.7 · 10−12 2.3 · 10−13 5.7 · 10−14 2.8 · 10−13 4.5 · 10−12

Table 2. Test results of Comprehensive Algorithm B for Example 2.

p (565, 945) (979, 325) (375, 405) (1959, 1377) (−9356, 8623) (−816, 798) (−3987, 1231) (−4821, 647)

pΓ (0.2978, −0.9108 ) (1.0773, −0.0164 ) (0.6094, 0.5450) (0.4780, 0.6961 ) (−1.2055, 1.0209 ) (−1.2035, 1.0230 ) (−1.2288, 0.9794 ) (−1.2341, 0.9554 )
| f (pΓ)| 1.1 · 10−14 6.0 · 10−13 8.0 · 10−18 9.2 · 10−15 5.8 · 10−15 1.1 · 10−14 2.5 · 10−15 1.1 · 10−14

|〈V1, V2〉| 0 1.8 · 10−12 2.3 · 10−13 4.5 · 10−12 6.9 · 10−10 2.1 · 10−11 1.7 · 10−10 1.1 · 10−10

p (−7942, −275) (−598, −98) (−3709, −1979) (−2937, −1391) (9708, −323) (2608, −1912) (7347, −931) (5091, −1921)
pΓ (−1.2367, 0.8930 ) (−1.1847, 0.4851 ) (−1.0035, −0.1601) (−1.0225, 0.1224 ) (1.1427, −0.9100) (1.1224, −0.9787) (1.1414, −0.9273) (1.1344,−0.9563)
| f (pΓ)| 2.3 · 10−15 1.3 · 10−11 9.5 · 10−15 1.4 · 10−13 4.7 · 10−15 3.2 · 10−15 4.4 · 10−15 1.7 · 10−17

|〈V1, V2〉| 4.0 · 10−11 3.6 · 10−12 8.7 · 10−11 7.2 · 10−12 5.8 · 10−11 8.7 · 10−11 7.2 · 10−12 2.1 · 10−10

Table 3. Test results of Comprehensive Algorithm B for Example 3.

p (1387, 645) (1879, 395) (3075, 205) (1956, 777) (−9256, 4603) (−836, 1798) (−5987, 1031) (−4181, 1247)

pΓ (−1.0629, 0.6023) (0.4232, −0.8650) (0.4214, −0.8515) (0.4276, −0.8795) (−1.1305, 0.9655 ) (−1.0823, 1.0103 ) (−0.4232, 0.8220) (−1.1369, 0.9490 )
| f (pΓ)| 1.7 · 10−13 1.3 · 10−16 8.1 · 10−17 1.0 · 10−16 5.3 · 10−17 1.8 · 10−15 6.1 · 10−17 1.0 · 10−17

|〈V1, V2〉| 3.6 · 10−12 3.2 · 10−12 6.3 · 10−13 6.3 · 10−12 1.7 · 10−10 4.3 · 10−11 1.8 · 10−12 6.5 · 10−11

p (−7342, −1275) (−5098, −918) (−3217, −2079) (−2337, −1251) (9508, −375) (6608, −712) (2347, −931) (1491, −1321)
pΓ (−0.4226, 0.8617 ) (−0.4227, 0.8623 ) (−1.0274, 0.5370) (−1.0471, 0.5706) (1.2367, −0.9267) (1.2353, −0.9460) (1.2255, −0.9888) (1.2068, −1.0194)
| f (pΓ)| 5.7 · 10−17 1.3 · 10−16 4.4 · 10−14 1.1 · 10−13 2.2 · 10−15 2.8 · 10−15 1.8 · 10−15 1.1 · 10−15

|〈V1, V2〉| 1.0 · 10−11 5.5 · 10−12 7.3 · 10−12 9.1 · 10−12 2.2 · 10−11 3.6 · 10−12 5.4 · 10−11 2.2 · 10−11
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Remark 5. Besides all test points of the three examples mentioned above are tested by Comprehensive Algorithm
B, we have tested them again with the Second Remedial Algorithm. All the test results are consistent with those
of Comprehensive Algorithm B and convergent. In addition, in the region [−3000, 3000]× [−3000, 3000] of
each example, we randomly select a large number of test points, the probability of non-convergence is particularly
low by Second Remedial Algorithm. Further, we use Second Remedial Algorithm other examples with test points
in a very large area, and the probability of non-convergence is also very low. Second Remedial Algorithm is
verified to be the best one again in our paper. Of course, the robustness and the efficiency of Second Remedial
Algorithm is better than that of the existing algorithms.

5. Conclusions and Future Work

In this paper, we have constructed a Comprehensive Algorithm which is an improved curvature
circle algorithm for orthogonal projecting onto planar algebraic curve. Based on an integrated hybrid
second-order algorithm [28], the Comprehensive Algorithm (the improved curvature circle algorithm)
has also incorporated the curvature circle technique and Newton’s gradient steepest descent method
such that it can converge robustly and efficiently no matter how far the test point is from the planar
algebraic curve and no matter where the initial iterative point is located. Furthermore, we propose
Second Remedial Algorithm based on Comprehensive Algorithm B. In particular, its robustness
and efficiency is greatly improved than that of Comprehensive Algorithm B and it achieves our
expected result. The numerical examples show that the improved curvature circle algorithm is superior
to the existing ones. In future work, we try to refine the idea of Comprehensive Algorithm and Second
Remedy Algorithm. And the idea is applied to point orthogonal projecting onto spatial algebraic curve
and algebraic surface.
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