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Abstract: In this paper, we present the application of the homotopy analysis method for solving
integrodifferential equations. In this method, a series is created, the successive elements of which
are determined by calculating the appropriate integral of the previous element. In this elaboration,
we prove that, if this series is convergent, then its sum is the solution of the objective equation.
We formulate and prove the sufficient condition of this convergence, and we give also the estimation
of error of an approximate solution obtained by taking the partial sum of the considered series.
Moreover, we present in this paper the example of using the investigated method for determining
the vibrations of the freely supported reinforced concrete beam as well as for solving the equation of
movement of the electromagnet jumper mechanical system.

Keywords: integrodifferential equation; homotopy analysis method; convergence; error estimation;
electromagnet jumper; vibrations

MSC: 65R20; 45J05; 45A05

1. Introduction

The integrodifferential equations occur in the mathematical models of many real and scientific
phenomena. The exact solutions of equations of this kind are usually difficult to find. Therefore,
the various approximate methods are applied for finding their solutions. In this paper, we propose the
application of the homotopy analysis method for solving these kind of equations.

The homotopy analysis method was developed in the 1990s [1,2]. This method gives the possibility
to determine the solution of the wide class of problems described by means of various operator
equations. In particular, it can be the ordinary and partial differential equations [3,4], the fractional
differential or integrodifferential equations [5,6], and also the integral equations [7,8]. Theoretical
results concerning the convergence of the homotopy analysis method in the case of differential
equations can be found, among others, in References [2,9,10], whereas, in the case of integral equations,
can be found in References [8,11].

The homotopy analysis method was already applied for solving the integrodifferential equations
in some papers (see, for example, References [12,13]). In most of these papers, presented are only the
examples of applications without any theoretical results concerning the convergence of the method.
The theoretical result, the most frequently cited in the other papers, is the classical theorem stating that,
if the series created in the homotopy analysis method is convergent, then its sum is the solution of
the input equation. There are only two papers [14,15] that contain also some other theoretical results.
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In Reference [14], the theorem defining the sufficient conditions for convergence and divergence of the
created series is formulated. Next, in Reference [15], the authors used the homotopy analysis method
combined with the parametrization methods to solve the optimal control problems governed by the
integrodifferential equations. This paper includes also the sufficient condition for convergence of the
obtained series (in addition to the classical theorem mentioned before).

In the current paper, except the classical theorem, we also formulate and prove the sufficient
condition for convergence of the created series. Moreover, we give the estimation of error of the
approximate solution obtained by reducing the sum of the series to the partial sum. Additionally,
we present the example of using the examined method for determining the vibrations of the
freely supported reinforced concrete beam as well as for solving the equation of movement of the
electromagnet jumper mechanical system.

2. Homotopy Analysis Method

The homotopy analysis method serves to solve the following operator equations:

N(u(x)) = 0, x ∈ Ω, (1)

where N denotes the operator (in particular, it may be the nonlinear operator), while u is the unknown
function. In the first step, we specify the homotopy operatorH as given below:

H(Φ, p) ≡ (1− p) L
(
Φ(x; p)− u0(x)

)
− p h N

(
Φ(x; p)

)
, (2)

where p ∈ [0, 1] is the embedding parameter, h 6= 0 is the convergence control parameter [2,9,16,17],
u0 denotes an initial approximation of the solution of Equation (1), and L is the auxiliary linear operator
with property L(0) = 0.

Considering the equationH(Φ, p) = 0, we obtain the so-called zero-order deformation equation:

(1− p) L
(
Φ(x; p)− u0(x)

)
= p h N

(
Φ(x; p)

)
. (3)

Substituting p = 0, we get L(Φ(x; 0)− u0(x)) = 0, so we have Φ(x; 0) = u0(x). However, if we
assume p = 1, we obtain N(Φ(x; 1)) = 0. Therefore, Φ(x; 1) = u(x), where u is the desired solution
of Equation (1). Thus, the change of parameter p from zero to one involves a change from the trivial
problem to the original problem (and, thus, the solution from u0 to u). If the operator N has a unique
kernel, then Equation (1) has a single solution, which could be determined by using the described
method. If the kernel is not unique, the method allows to determine one of the existing solutions of
Equation (1).

Taking the Maclaurin series of function Φ(x; p) (with respect to parameter p), we get

Φ(x; p) =
∞

∑
m=0

um(x) pm, (4)

where u0(x) = Φ(x; 0) and

um(x) =
1

m!
∂mΦ(x; p)

∂pm

∣∣∣
p=0

, m = 1, 2, 3, . . . (5)

If the above series is convergent for p = 1, then we obtain the required solution:

u(x) =
∞

∑
m=0

um(x). (6)
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In order to determine the function um, we differentiate m times with respect to parameter p
the left- and the right-hand sides of dependence of Equation (3). Then, we divide the result by m! and
we substitute p = 0, obtaining the so-called mth-order deformation equation (m > 0):

L
(
um(x)− χm um−1(x)

)
= h Rm

(
um−1, x

)
, (7)

where um−1 = {u0(x), u1(x), . . . , um−1(x)}, and

χm =

{
0 m ≤ 1,
1 m > 1

(8)

and

Rm
(
um−1, x

)
=

1
(m− 1)!

(
∂m−1

∂pm−1 N
( ∞

∑
i=0

ui(x) pi
))∣∣∣∣

p=0
. (9)

If we are not able to determine the sum of series in Equation (6), then we can accept the partial
sum of this series as the approximate solution of considered equation:

ûn(x) =
n

∑
m=0

um(x). (10)

The proper selection of the convergence control parameter h affects the area of convergence of
the created series as well as the rate of this convergence [2,10,18]. In order to determine the value of
this parameter, we can use the so-called “optimization method” [2], in which we define the following
squared residual of governing equation:

En(h) =
∫
Ω

(
N
[
ûn(x)

])2
dx. (11)

Next, the optimal value of the convergence control parameter is obtained by minimizing the
above squared residual.

3. Integrodifferential Equations

We consider the integrodifferential equations of the form

u′(x)−
∫ g(x)

f (x)
K1(x, t) R1(u(t)) dt− R2(u(x)) = F(x), (12)

with condition u(a) = c0, where x ∈ [a, b], c0 ∈ R, and where, for k = 1, 2, Rk : C[a, b]→ C[a, b] is the
bounded linear operators f , g ∈ C[a, b], a 6 f (x) 6 g(x) 6 b, K1 ∈ C([a, b]× [a, b]) and F ∈ C[a, b],
whereas the function u is sought. In this elaboration, we will use the norm in space C0(Ω), where Ω is
the compact set, defined as follows:

‖v‖ = sup
x∈Ω
|v(x)|

and the norm in C1(Ω) is defined as follows:

‖v‖1 = sup
x∈Ω
|v(x)|+ sup

x∈Ω
|v′(x)|.

We assume Ω = [a, b] or Ω = [a, b] × [a, b]. The norm in space C1(Ω) can be also defined as
given below:

‖v‖1 = |v(w)|+ sup
x∈Ω
|v′(x)|,
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where w is a fixed element of set Ω.
Integrating both sides of Equation (12), we get the equivalent form of this equation:

u(x) = c0(x) +
∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(u(t)) dt dx +

∫ x

a
R2(u(x)) dx, (13)

where we used the condition u(a) = c0 and we assumed that

c0(x) = c0 +
∫ x

a
F(x) dx.

The above equation gives the ground for defining operators L and N:

L(v) = v, (14)

N(v) = v(x)− c0(x)−
∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(v(t)) dt dx−

∫ x

a
R2(vu(x)) dx. (15)

By setting u0 ∈ C[a, b] and by applying the homotopy analysis method, we get the following
formula for functions um:

um(x) = χm um−1(x) + h Rm(um−1, x), (16)

where χm and operator Rm are determined by Equations (8) and (9).
In the considered case, the operator Rm takes the following form (under assumption that the

series is convergent, which will be discussed later):

Rm(um−1, x) =
1

(m− 1)!

(
∂m−1

∂pm−1 N
( ∞

∑
i=0

ui(x) pi
))

p=0
=

=
1

(m− 1)!
∂m−1

∂pm−1

[ ∞

∑
i=0

ui(x) pi − c0(x)−

−
∫ x

a

∫ g(x)

f (x)
K1(x, t) R1

( ∞

∑
i=1

ui(t) pi
)

dt dx−
∫ x

a
R2

( ∞

∑
i=1

ui(x) pi
)

dx
]

p=0
=

=
1

(m− 1)!
∂m−1

∂pm−1

[ ∞

∑
i=0

ui(x) pi − c0(x)−

−
∞

∑
i=0

∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(ui(t)) pi dt dx−

∞

∑
i=0

∫ x

a
R2(ui(x)) pi dx

]
p=0

=

=
1

(m− 1)!

(
(m− 1)! um−1(x)− (1− χm) c0(x)−

−
∫ x

a

∫ g(x)

f (x)
K1(x, t) (m− 1)! R1(um−1(t)) dt dx− (m− 1)!

∫ x

a
R2(um−1(x)) dx

)
=

= um−1(x)− 1− χm

(m− 1)!
c0(x)−

∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(um−1(t)) dt dx−

∫ x

a
R2(um−1(x)) dx.

Hence, we obtain the following formulae for function um:

u1(x) = h
(

u0(x)− c0(x)−
∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(u0(t)) dt dx−

∫ x

a
R2(u0(x)) dx

)
(17)

and for m > 2:

um(x) = (1 + h) um−1(x)− h
( ∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(um−1(t)) dt dx +

∫ x

a
R2(um−1(x)) dx

)
. (18)
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Now, we intend to present and to prove the following three theorems describing the application
of the homotopy analysis method for solving linear integrodifferential equations.

Theorem 1. Let the functions um and m ≥ 1, be defined by Equations (17) and (18). If the series in Equation (6)
is uniformly convergent, then the sum of this series is the solution of Equation (12).

Proof. Let us assume that the series in Equation (6) is convergent. For any x ∈ [a, b], according to the
necessary condition for convergence of the series, we have

lim
m→∞

um(x) = 0.

Using the definition of operator L, we can write

n

∑
m=1

L
(
um(x)− χm um−1(x)

)
=

n

∑
m=1

(
um(x)− χm um−1(x)

)
=

= u1(x) + (u2(x)− u1(x)) + (u3(x)− u2(x)) + . . . + (un(x)− un−1(x)) = un(x).

Hence, we have
∞

∑
m=1

L
(
um(x)− χm um−1(x)

)
= lim

n→∞
un(x) = 0.

From Equation (7), we get

h
∞

∑
m=1

Rm
(
um−1, x

)
=

∞

∑
m=1

L
(
um(x)− χm um−1(x)

)
.

And because h 6= 0, we obtain
∞

∑
m=1

Rm
(
um−1, x

)
= 0.

By using the convergence of series in Equation (6) and the continuity of respective operators, we get

0 =
∞

∑
m=1

Rm
(
um−1, x

)
=

∞

∑
m=1

(
um−1(x)− 1− χm

(m− 1)!
c0(x)−

−
∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(um−1(t)) dt dx−

∫ x

a
R2(um−1(x)) dx

)
=

=
∞

∑
m=1

um−1(x)−
∞

∑
m=1

1− χm

(m− 1)!
c0(x)−

−
∫ x

a

∫ g(x)

f (x)
K1(x, t) R1

( ∞

∑
m=1

um−1(t)
)

dt dx−
∫ x

a
R2

( ∞

∑
m=1

um−1(x)
)

dx =

= u(x)− c0(x)−
∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(u(t)) dt dx−

∫ x

a
R2(u(x)) dx.

Thus, we obtain

u(x) = c0(x) +
∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(u(t)) dt dx +

∫ x

a
R2(u(x)) dx.

This means that the function u(x) = ∑∞
m=0 um(x) satisfies Equation (13), and therefore,

it satisfies Equation (12).

In the next theorem, we prove the sufficient condition for convergence of the series created in the
discussed method.



Mathematics 2019, 7, 904 6 of 15

Theorem 2. If the inequality

A :=
(
‖K1‖ ‖R1‖ (b− a)2 + ‖R2‖ (b− a)

)
< 1, (19)

is satisfied, then with a suitable choice of the control parameter h, the series in Equation (6) is uniformly
convergent in the interval [a, b].

Proof. Let u0 be the function of class C1[a, b]. Let us find the boundaries of functions um in interval [a, b]:

|u0(x)| 6 ‖u0‖ 6 ‖u0‖1,

|u1(x)| =
∣∣∣h (u0(x)− c0(x)−

∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(u0(t)) dt dx−

∫ x

a
R2(u0(x)) dx

)∣∣∣ 6
6 |h|

(
|u0(x)|+ |c0(x)|+

∫ x

a

∫ g(x)

f (x)
|K1(x, t)| |R1(u0(t))| dt dx +

∫ x

a
|R2(u0(x))| dx

)
6

6 |h|
(
‖c0‖+ ‖u0‖+

(
‖K1‖ ‖R1‖ (b− a)2 + ‖R2‖ (b− a)

)
‖u0‖

)
6

6 |h|
(
‖c0‖+ (1 + A) ‖u0‖

)
,

|u2(x)| =
∣∣∣(1 + h)u1(x)− h

(∫ x

a

∫ g(x)

f (x)
K1(x, t) R1(u1(t)) dt dx +

∫ x

a
R2(u1(x)) dx

)∣∣∣ 6
6
(
|1 + h|+ |h|

(
‖K1‖ ‖R1‖ (b− a)2 + ‖R2‖ (b− a)

))
‖u1‖ 6

6
(
|1 + h|+ |h| A

)
‖u1‖ = γh ‖u1‖,

where
γh := |1 + h|+ |h| A.

It can be shown by induction that, for m > 1 and x ∈ [a, b], we have

|um(x)| 6 γm−1
h ‖u1‖ 6 γm−1

h ‖u1‖1.

Thus, for the considered series in Equation (6), we get

∞

∑
m=0

um(x) 6
∞

∑
m=0
|um(x)| 6 ‖u0‖1 + ‖u1‖1

∞

∑
m=1

γm−1
h .

In the above estimation, the last series is the geometric series with common ratio γh. Thus, if only
γh < 1 (of course we have γh > 0), then based on the comparison test, we state that the investigated
series is uniformly convergent in the interval [a, b].

Let us investigate whether one can choose such value of parameter h, that γh < 1, that is

|1 + h|+ |h| A < 1.

We consider the above inequality in three cases: for h < −1, for h ∈ [−1, 0) and for h > 0. In the
first case, we get the conditions

h >
−2

1 + A
and A < 1,

In the second case, we have A < 1, whereas the third case leads to contradiction. It means
that, if the inequality of Equation (19) is fulfilled, then we can select such a value of the parameter
controlling convergence (it would be enough to take any h ∈ ( −2

1+A , 0)) that γh < 1.

The estimations introduced in the previous proof will be also used in the proof of the
following theorem.
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Theorem 3. If the inequality (19) is fulfilled and n ∈ N, then for the approximate solution ûn, we have the
following error estimation:

|u(x)− ûn(x)| 6
γn

h
1− γh

‖u1‖ 6
γn

h
1− γh

‖u1‖1, (20)

|u′(x)− û′n(x)| 6
γn

h
1− γh

‖u1‖1 (21)

for all x ∈ [a, b].
Thus, we have

‖u− ûn‖1 6
( γn

h
1− γh

+
γn

h
1− γh

)
‖u1‖1, (22)

where γh = |1 + h|+ |h| A and γh = |1 + h|+ |h| A
b−a .

Proof. For all x ∈ [a, b], we have

|u(x)− ûn(x)| =
∣∣∣ ∞

∑
m=n+1

um(x)
∣∣∣ 6 ∞

∑
m=n+1

|um(x)| 6

6 ‖u1‖
∞

∑
m=n+1

γm−1
h =

γn
h

1− γh
‖u1‖ 6

γn
h

1− γh
‖u1‖1.

Now, we proceed to the proof of the second inequality. For this purpose, we apply the homotopy
analysis method for Equation (12) by defining the operators L and N in the following way:

L(v) = v′(x),

N(v) = v′(x)− F(x)−
∫ g(x)

f (x)
K1(x, t) R1(v(t)) dt− R2(v(x)).

Then, we get the following relations for the derivatives of functions um:

u′1(x) = h
(

u′0(x)− F(x)−
∫ g(x)

f (x)
K1(x, t) R1(u0(t)) dt− R2(u0(x))

)
and for m > 2:

u′m(x) = (1 + h) u′m−1(x)− h
( ∫ g(x)

f (x)
K1(x, t) R1(um−1(t)) dt + R2(um−1(x))

)
.

Now, we determine the boundaries of functions u′m:

|u′0(x)| 6 ‖u0‖1,

|u′1(x)| =
∣∣∣h (u′0(x)− F(x)−

∫ g(x)

f (x)
K1(x, t) R1(u0(t)) dt− R2(u0(x))

)∣∣∣ 6
6 |h|

(
|u′0(x)|+ |F(x)|+

∫ g(x)

f (x)
|K1(x, t)| |R1(u0(t))| dt + |R2(u0(x))|

)
6

6 |h|
(
‖F‖+ ‖u0‖1 +

(
‖K1‖ ‖R1‖ (b− a) + ‖R2‖

)
‖u0‖1

)
6

6 |h|
(
‖F‖+

(
1 +

A
b− a

)
‖u0‖1

)
,
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|u′2(x)| =
∣∣∣(1 + h)u′1(x)− h

( ∫ g(x)

f (x)
K1(x, t) R1(u1(t)) dt + R2(u1(x))

)∣∣∣ 6
6
(
|1 + h|+ |h|

(
‖K1‖ ‖R1‖ (b− a) + ‖R2‖

))
‖u1‖1 6

6
(
|1 + h|+ |h| A

b− a
)
‖u1‖1 = γh ‖u1‖1.

Hence, we get in general for m > 1

|u′m(x)| 6 γm−1
h ‖u1‖1.

By using the above estimations, we have for any x ∈ [a, b]

|u′(x)− û′n(x)| =
∣∣∣ ∞

∑
m=n+1

u′m(x)
∣∣∣ 6 ∞

∑
m=n+1

|u′m(x)| 6
γn

h
1− γh

‖u1‖1,

which proves the inequality of Equation (21).
The last inequality follows from the definition of the taken norm:

‖u− ûn‖1 = sup
x∈[a,b]

|u(x)− ûn(x)|+ sup
x∈[a,b]

|u′(x)− û′n(x)|,

and from the inequalities already proven.

4. Examples

Example 1. We start with the solution of the following Volterra–Fredholm equation:

u′(x) +
1
2

∫ x

0
(t− x)2 u(t) dt +

1
4

∫ 1

0
(t− x) u(t) dt =

3
16

+
5
3

x +
x3

6
+

x5

60

with condition u(0) = 1. In this equation, we have K1(x, t) = − 1
2 (t− x)2, R1(u) = u, R2(u) = − 1

4

∫ 1
0 (t−

x) u(t) dt, F(x) = 3
16 + 5

3 x + x3

6 + x5

60 , and f (x) = 0, g(x) = 1, where x ∈ [0, 1], and c0 = 1. The solution
of Equation (14) is then the function ue(x) = x2 + 1. Let us mention that all the calculations presented here
were carried out with the aid of Mathematica software.

In the considered equation, we have

‖K1‖ =
1
2

, ‖R1‖ = 1, ‖R2‖ =
1
4

.

Hence, we get

A =
3
4

,

which means that the sum of the created series is the solution of the discussed equation.
Assuming the initial approximation u0(x) = F(x), in the first step, we get

u1(x) =
h

362880
(
−294840 + 598905 x− 350721 x2 +

+ 60480 x3 − 12285 x4 + 11088 x5 − 1008 x6 + 72 x7 + 2 x9).
The optimal value of the convergence control parameter equals −0.9858834. Figure 1 displays the graph of

logarithm of the squared residual for n = 9.
Table 1 compiles the errors of reconstruction of the exact solution for the successive approximate solutions

ûn, n ∈ {1, 2, . . . , 10}. As revealed by the above results, together with an increase of the number of components
in Equation (10), the errors quickly decrease. The errors decrease most quickly for the optimal value of parameter
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h. For this value, the approximate solution û5 provides the approximation of the sought function with the error
not higher than 8.363 · 10−8, whereas the approximate solution û10 gives the error not higher than 4.4409 · 10−16.
Also, for example, in the case of h = −1, we obtain, respectively, 4.7787 · 10−7 and 3.2792 · 10−14. Table 1
contains also the estimation of error resulting from the inequalityof Equation (22). In the considered example,
we have γh = γh = 0.753529, ‖u1‖1 6 17.3483 for the optimal value of convergence control parameter
h = −0.9858834. Equation (22) gives the estimation of error of the approximate solution (the worst possible
case). In fact, the errors of approximate solutions are, in general, much smaller than the value determined in the
right-hand side of this inequality. In Figure 2, the absolute error |ue(x)− ûn(x)| for n = 4 and n = 7 is plotted.
The obtained results show that the investigated method is very quickly convergent and that the calculation of
only a few first terms of the series ensures very good approximation of the exact solution.
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Figure 1. Logarithm of the squared residual E9.

Table 1. Values of errors of the exact solution reconstruction (∆n = ‖ue − ûn‖1).

n 1 2 3 4 5

∆n 5.101× 10−2 1.007× 10−3 1.963× 10−5 3.296× 10−7 5.946× 10−9

∆(22) 106.077 79.932 60.231 45.386 34.200

n 6 7 8 9 10

∆n 8.882× 10−11 1.519× 10−12 2.309× 10−14 1.332× 10−15 4.441× 10−16

∆(22) 25.770 19.419 14.633 11.026 8.308
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Figure 2. Distribution of error of the exact solution approximation for n = 4 (a) and n = 7 (b).

Example 2. Vibrations of the freely supported reinforced concrete beam of span l = 6 m and cross section
(b/h) 0.30 m/0.60 m can be described by means of the linear differential equation. Evenly distributed mass m′

of the beam per length unit, by assuming that the density of beam material (reinforced concrete) is of value
$ = 2500 kg/m3, equals

m′ = b h $ = 450 kg/m. (23)



Mathematics 2019, 7, 904 10 of 15

The discussed beam is considered as the set of segments of length dx, and the kinetic energy of such
an elementary segment, that is, the element of mass m′ dx (see Figure 3a) [19,20], is expressed as follows:

m′ dx ẏ2(x)
2

, (24)

where ẏ(x) denotes the velocity of point of coordinate x (in the beam). In case of the freely supported beam
wrapped by the mass m′, the deflection curve y(x) is symmetrical with respect to the centre of gravity and,
for 0 6 x 6 1

2 , is expressed by the following relation:

y(x) =
16
5

ym

( x
l
− 2

x3

l3 +
x4

l4

)
, (25)

where ym denotes the largest deflection of the beam (see Figure 3a).
The velocity of each point of coordinate x is described by the following formula:

ẏ(x) =
16
5

ẏm

( x
l
− 2

x3

l3 +
x4

l4

)
, (26)

where ẏm = dym
dt and the kinetic energy of the whole beam is equal to

Ek = 2
∫ l/2

0

m′ ẏ2(x)
2

dx. (27)

By substituting Equation (26) into Equation (27) and by integrating, we get

Ek =
3968
7875

m′ l
ẏ2

m
2

= 0.504 m′ l
ẏ2

m
2

. (28)

The kinetic energy described by Equation (28) corresponds to the kinetic energy of the system with one
degree of freedom, and the substitute mass equals

m = 0.504 m′ l = 1633 kg (29)

attached in the vibration arrow, that is, at the point where the displacement of beam is the highest (see Figure 3b).
Stiffness of the substitute system is expressed by the following formula:

k =
48 E I

l3 , (30)

where E = 27 GPa is the modulus of elasticity of the beam material and I denotes the moment of inertia of the
cross section b h3

12 = 5.4 · 10−3 m4. Thus, we have k = 32.4 MN/m.

a) b)

Figure 3. Reduction of the beam with continuous mass distribution to the system with one degree of
freedom: (a) system with continuous mass distribution m′ and (b) substitute mass m concentrated in
a point where the vibration arrow of the system with continuous mass distribution occurs.
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The equation describing the first free vibration of the reinforced concrete beam of span l = 6 m and cross
section (b/h) 0.30 m/0.60 m has then the following form:

m ÿ + k y = 0, (31)

where m = 1633 kg is the beam substitute mass and k = 32.4 MN/m describes the beam stiffness in the center
of span (see Figure 4).

Figure 4. Oscillator of parameters k and m as the substitute system for the reinforced concrete beam.

Equation (31), after dividing by m, takes the form

ÿ(t) + ω2
0 y(t) = 0, (32)

where ω0 =
√

k
m = 140.9 rad/s denotes the circular frequency of undamped vibrations. The above equation

must be completed by the initial conditions

y(0) = y0, ẏ(0) = v0. (33)

Now, we will demonstrate how to apply the homotopy analysis method to solve Equation (32) with the
conditions of Equation (33). For this purpose, let us integrate Equation (32) in limits from 0 to t, obtaining

ẏ(t) + ω2
0

∫ t

0
y(τ) dτ = v0, (34)

with condition y(0) = y0. For the initial conditions y0 = 0.01 and v0 = 0, the exact solution takes the form

ye(t) = 0.01 cos(140.9 t).

Equation (34) can be solved by using the procedure described in this paper. If we take the function u0(t) = 0
as the initial approximation, then in the first steps of the method, we get

u1(t) = −
h

100
,

u2(t) = −
1

20000
h
(
200 + h (200 + 1985281 t2)

)
,

...

Figure 5 displays the logarithm of squared residual for n = 9. The optimal value of the convergence control
parameter, determined numerically, is equal to −0.94423256. In Table 2, there are collected the errors (in norm
‖ · ‖1) of reconstructing the exact solution by the successive approximate solutions ûn, n ∈ {1, 2, . . . , 20}.
At the beginning, that is, until n = 3, the errors increase, but after that, the errors start quickly decrease.
So, for n = 10, the errors are at the level of 10−4; for n = 15, they are at the level of 10−10; and for n = 20,
the errors are at the level of 10−14. The main part of these errors is generated by the approximation of derivative.
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For n = 4, the error in norm ‖ · ‖1 is equal to 43.243, whereas in norm ‖ · ‖, it is only equal to 0.351. A similar
situation can be observed in the other cases. As revealed by the above results, starting from some moment, we can
observe that an increase of the number of components in Equation (10) causes the errors to quickly decrease
(see also Figure 6).

The investigated equation shows that the homotopy analysis method can be successfully applied also for
solving the equations not satisfying the condition in Equation (19). In the above considered case, we have
A = 39.478 because the condition of Equation (19) is only the sufficient condition and it is not the necessary
condition for convergence of the method.
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g

E
9

Figure 5. Logarithm of the squared residual E9.

Table 2. Values of errors of the exact solution reconstruction (∆n).

n 1 2 3 4 5

∆n 1.428 8.117 40.616 43.243 18.710

n 6 7 8 9 10

∆n 3.508 0.155 2.878× 10−2 1.233× 10−3 2.843× 10−4

n 11 12 13 14 15

∆n 9.155× 10−6 1.788× 10−6 1.812× 10−7 6.266× 10−9 9.220× 10−10

n 16 17 18 19 20

∆n 1.131× 10−10 5.933× 10−12 2.335× 10−13 9.648× 10−14 6.550× 10−14
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(b)
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Figure 6. Distribution of error of the exact solution approximation for n = 10 (a) and n = 15 (b).
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Example 3. The equation of movement of the electromagnet jumper mechanical system can be presented in the
following way:

m y′′(t) + b1 y′(t) + k1

∫ t

0
y(t) dt = f (y, t), (35)

where m is the mass, b1 denotes the damping, y describes the displacement of the electromagnet jumper,
and f denotes the force occurring in consequence to the electrical system action. In this example, we take
f (y, t) = f1 − c1 y(t). The third term in the left-hand side of the equation is the result of taking into account in
the mechanical system the nonlinear spring, which generates the force component depending on the displacement.
The above differential equation is completed by the following initial conditions:

y(0) = y0, (36)

y′(0) = v0, (37)

Now: we present the application of the homotopy analysis method for solving Equation (32) with the
conditions of Equation (33). Equation (35), after integration in limits from 0 to t and some transformations,
can be written in the following form:

y′(t) +
t∫

0

( k1

m

τ∫
0

y(s) ds +
c1

m
y(τ)

)
dτ +

b1

m
y(t) = fr(t), (38)

where fr(t) is the function depending on the initial conditions.
In the considered example, we take m = 1, b1 = 2/10, k1 = 1/1000, f1 = 10, c1 = 10, v0 = 1/10,

y0 = 0. In order to test the usage of investigated method, we select the function fr(t) = 1/10 + t/50 + t2/2 +
t3/60000 so that the exact solution of above equation is known (y(t) = t/10).

By applying the homotopy analysis method for solving Equation (38) and by taking u0(t) = fr(t),
we obtain in the first step

u1(t) = h
( t6

7200000000
+

t5

60000
+

499997t4

1200000
− 2999t3

30000
+

124t2

125
− 3t

50
+

1
10

)
.

The optimal value of the convergence control parameter, determined numerically, is equal to −0.99.
In Table 3, there are compiled the errors (in norm ‖ · ‖1) of reconstructing the exact solution by the
successive approximate solutions ûn, n ∈ {1, 2, . . . , 20}. As revealed by the above results, starting from some
moment, the errors quickly decrease together with an increase of the number of components in Equation (10).
Next, in Figure 7, the absolute error ‖ye − ûn‖ is plotted for n = 7 and n = 12. Again, we may conclude, on
the basis of the obtained results, that the method is very quickly convergent to the exact solution.

Table 3. Values of errors of the exact solution reconstruction (∆n = ‖ye − ûn‖1).

n 1 2 3 4 5

∆n 3.153 2.944 1.317 0.324 4.852× 10−2

n 6 7 8 9 10

∆n 4.739× 10−5 3.132× 10−4 1.417× 10−5 4.290× 10−7 7.948× 10−9

n 11 12 13 14 15

∆n 5.889× 10−11 7.592× 10−13 1.704× 10−14 2.498× 10−16 5.551× 10−17
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Figure 7. Distribution of error of the exact solution approximation for n = 7 (a) and n = 12 (b).

5. Conclusions

This paper presents the application of the homotopy analysis method for solving linear
integrodifferential equations. In this method, we create a series, the successive elements of which are
calculated by integrating properly the previous elements. In this paper, it is proven that, if the created
series is convergent, then its sum is the solution of the input equation. The sufficient condition of this
convergence is also formulated and proven. Moreover, the estimation of error of approximate solution,
obtained by reducing the considered series to its partial sum, is also given.

The series created with the discussed method is, in general, very quickly convergent. After selecting
the optimal value of the convergence control parameter, calculation of only a few or several first terms of
the series ensures very good approximation of the sought solution. The executed calculations show that
the homotopy analysis method is effective in solving the problems under consideration.

The results obtained in this paper can be easily generalized to the case of equations having the
following form:

u′(x)−
n

∑
k=1

∫ gk(x)

fk(x)
Kk(x, t) Rk(u(t)) dt = F(x),

where all the functions are defined analogously to Equation (12). In this case, the condition
of Equation (19) should be replaced by the condition in the following form:

(b− a)2
n

∑
k=1

(
‖Kk‖ ‖Rk‖

)
< 1.

The homotopy analysis method can be also applied for solving the equation of the following form:

l

∑
j=1

aj(x) u(j)(x)−
n

∑
k=1

∫ gk(x)

fk(x)
Kk(x, t) Rk(u(t)) dt = F(x)

in a similar way as described above, with the appropriate initial conditions. One has to only integrate l
times the given equation and to repeat the procedure described in this paper.

It is also possible to find another formulation of the homotopy operator [2], namely

H(Φ, p) ≡ (1− p) L
(
Φ(x; p)− u0(x)

)
− p h H(x) N

(
Φ(x; p)

)
,

where H is an auxiliary function. Also in this case, all the results obtained and presented in this work
are true. The only change concerns the formula for constant γh.

Author Contributions: Conceptualization, D.S. and R.W.; formal analysis, D.S.; investigation, D.S., E.H., R.W.,
K.G. and T.T.; methodology, D.S., E.H. and R.W.; writing—original draft, D.S. and E.H.; writing—review and
editing, R.W., K.G. and T.T.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2019, 7, 904 15 of 15

References

1. Liao, S. Homotopy analysis method: A new analytic method for nonlinear problems. Appl. Math. Mech.
1998, 19, 957–962.

2. Liao, S. Homotopy Analysis Method in Nonlinear Differential Equations; Springer: Berlin, Germany;
Higher Education Press: Beijing, China, 2012.

3. Van Gorder, R. Control of error in the homotopy analysis of semi-linear elliptic boundary value problems.
Numer. Algor. 2012, 61, 613–629. [CrossRef]

4. Hetmaniok, E.; Słota, D.; Wituła, R.; Zielonka, A. An analytical method for solving the two-phase inverse
Stefan problem. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 583–590. [CrossRef]

5. Zurigat, M.; Momani, S.; Odibat, Z.; Alawneh, A. The homotopy analysis method for handling systems of
fractional differential equations. Appl. Math. Model. 2010, 34, 24–35. [CrossRef]

6. Zhang, X.; Tang, B.; He, Y. Homotopy analysis method for higher-order fractional integro-differential
equations. Comput. Math. Appl. 2011, 62, 3194–3203. [CrossRef]

7. Abbasbandy, S.; Shivanian, E. A new analytical technique to solve Fredholm’s integral equations.
Numer. Algor. 2011, 56, 27–43. [CrossRef]

8. Hetmaniok, E.; Nowak, I.; Słota, D.; Wituła, R. Convergence and error estimation of homotopy analysis
method for some type of nonlinear and linear integral equations. J. Numer. Math. 2015, 23, 331–344.
[CrossRef]

9. Van Gorder, R.; Vajravelu, K. On the selection of auxiliary functions, operators, and convergence control
parameters in the application of the homotopy analysis method to nonlinear differential equations: A general
approach. Commun. Nonlinear Sci. Numer. Simulat. 2009, 14, 4078–4089. [CrossRef]

10. Odibat, Z. A study on the convergence of homotopy analysis method. Appl. Math. Comput. 2010, 217, 782–789.
[CrossRef]
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