
mathematics

Article

Superring of Polynomials over a Hyperring

Reza Ameri 1,*,† , Mansour Eyvazi 1,† and Sarka Hoskova-Mayerova 2,†

1 School of Mathematics, Statistic and Computer Sciences, University of Tehran, Tehran 79416-55665, Iran;
mansoureyvazi@ut.ac.ir

2 Department of Mathematics and Physics, University of Defence in Brno, Kounicova 65,
662 10 Brno, Czech Republic; sarka.mayerova@unob.cz

* Correspondence: rameri@ut.ac.ir
† These authors contributed equally to this work.

Received: 14 August 2019; Accepted: 23 September 2019; Published: 26 September 2019
����������
�������

Abstract: A Krasner hyperring (for short, a hyperring) is a generalization of a ring such that the
addition is multivalued and the multiplication is as usual single valued and satisfies the usual ring
properties. One of the important subjects in the theory of hyperrings is the study of polynomials over
a hyperring. Recently, polynomials over hyperrings have been studied by Davvaz and Musavi, and
they proved that polynomials over a hyperring constitute an additive-multiplicative hyperring that
is a hyperstructure in which both addition and multiplication are multivalued and multiplication
is distributive with respect to the addition. In this paper, we first show that the polynomials over
a hyperring is not an additive-multiplicative hyperring, since the multiplication is not distributive
with respect to addition; then, we study hyperideals of polynomials, such as prime and maximal
hyperideals and prove that every principal hyperideal generated by an irreducible polynomial is
maximal and Hilbert’s basis theorem holds for polynomials over a hyperring.

Keywords: hyperring; Krasner hyperring; hyperfield; superring; polynomial; fundamental relation;
hyperideal

1. Introduction

A well established branch of classical algebraic theory is the theory of algebraic hyperstructures
respectively hyperalgebraic system. In 1934, Marty first defined hyperstructures and began examining
their properties, particularly with respect to group applications, rational fractions, and the algebraic
functions [1]. At first, the research of properties and relations continued slowly, but, since the
end of the last century, it has been very popular with mathematicians. Corsini in his work [2,3]
showed that the theory of hyperstructures has many applications in both pure and applied sciences,
e.g., semi-hypergroups are the simplest algebraic hyperstructures having closure and associativity
properties. Since then, the theory of hyperstructures has been widely studied by many mathematicians.
Let us mention at least some of them: Ameri and his school studied hypergroups, hypermodules,
multialgebras, hyperideals, etc., in [4–9]. A recent paper of Asadi and Ameri deals with categorical
connection between categories (m, n)-hyperrings and (m, n)-rings via the fundamental relation [10].
Hoskova-Mayerova provided a deep analysis of topological properties of hypergroupoids in her
paper [11]. Th. Vougiouklis studied the fundamental relation in hyperrings and the general hyperfield
in his paper [12]. Extension of elliptic curves on Krasner hyperfields was studied in [13].

In 1956, Krasner introduced the notion of the hyperfield in order to define a certain approximation
of a complete valued field by sequences of such fields [14]. Krasner’s hyperfield is based on the
generalization of the additive group in a field by the structure of a special hypergroup. Later on, this
hypergroup was named by Mittas “canonical hypergroup” [15]. The hyperfield that appears in [14]
was named by Krasner “residual hyperfield”. Krasner also introduced the hyperring, which is related
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to the hyperfield in the same way as the ring is related to the field. In 1973, Mittas introduced the
superring as an outcome of his study on expressions with coefficients from a hyperring. He named
these expressions hyperpolynomials because the hyperpolynomials become polynomials when the
hyperring is a ring. C. G Massouros studied the theory of hyperrings and hyperfields in [16–18]. G. G.
Massouros and Ch. G. Massouros also defined hyperringoids and applied them in a generalization of
rings in [19].

Some examples and results on Krasner hyperrings that are a generalization of classical rings was
also published Davvaz [20]. In what follows, we, for short use, sometimes only use a hyperring.

Contrary to classical algebra, in hyperstructure theory, there are various kinds of hyperrings.
Hyperrings and hyperfields in the sense of Krasner are more interesting classes of hyperrings and,
recently, the authors in [21–24] studied noncommutative geometry and algebraic geometry. In addition,
hyperfield extension is one of the important topics in the theory of algebraic hyperstructures, which
not only can be considered as a development of the classical field theory, but it is also an important
tool to study non-commutative geometry and algebraic geometry [25].

As it is well known, polynomials are important tools to study hyperfield theory [26,27]. For
instance, to characterize hyperalgebraic extension or algebraic closure of a hyperfield, we need to use
polynomials over a hyperfield [28,29]. However, contrary to polynomials over a ring (or a field) in
classical algebra, the behaviour of polynomials over a hyperring or hyperfield is completely different
and much more complicated, since the product of two polynomials is not only a polynomial, but it is
also a set of polynomials. In addition, in this regard, we show that, for polynomials over a hyperring
even over a hyperfield [30], the product is not distributive with respect to addition (Theorem 3.7); in
fact, it has a weak distributive property, and it constitutes a hyperring, which is called a superring.
We will proceed to study the hyperideals of this superring such as prime and maximal hyperideals.
Finally, we prove that, for a Krasner hyperfield F, its superring F[x] is a PHH (a principal hyperideal
hyperdomain), and investigate some main properties of F[x]. In particular, it is shown that the Hilbert’s
Basis theorem holds for a Krasner hyperring R that is, if R is a Noetherian Krasner hyperring, so is the
superring R[x].

2. Preliminaries

Let H be a non-empty set and P∗(H) be the set of all non-empty subsets of H. A hyperoperation
is a mapping from ◦ : H × H −→ P∗(H), where (x, y) 7−→ x ◦ y, and (H, ◦) is called a hypergroupoid
or a hyperstructure. For subsets A and B of H, A ◦ B =

⋃
a∈A,b∈B

a ◦ b. A hypergroupoid (H, ◦), with an

associative property, which is ∀a, b, c ∈ H, (a ◦ b) ◦ c = a ◦ (b ◦ c), is called a semihypergroup. A
hypergroup is a semihypergroup (H, ◦) with a reproduction axiom, that is,

a ◦ H = H ◦ a = H, ∀a ∈ H.

Definition 1 ([25,31,32]). A Krasner hyperring (or, for short, a hyperring) is an algebraic hyperstructure
(R,+, .), such that the following conditions are satisfied:

1. (R,+) is a canonical hypergroup, i.e.:

(i) for every x, y, z ∈ R, x + (y + z) = (x + y) + z; (ii) for every x, y ∈ R, x + y = y + x; (iii) there
exists 0 ∈ R such that 0 + x = x, ∀x ∈ R; (iv) for every x ∈ R, there exists a unique element x

′ ∈ R
such that 0 ∈ x + x

′
(we write −x for x

′
); (v) z ∈ x + y implies y ∈ z− x and x ∈ z− y.

2. (R, .) is a semigroup having zero as a bilaterally absorbing element, i.e., x.0 = 0.x = 0.
3. the multiplication . is distributive with respect to the hyperoperation +, that is, for all a, b, c in R, the

following hold:

a.(b + c) = a.b + a.c and (a + b).c = a.c + b.c.
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Definition 2 ([25,32,33]). A hyperfield is a hyperring in which (R�{0}, .) is a commutative group.

Example 1. K = {0, 1} is a hyperfield with hyperoperation and multiplication given as follows:

+ 0 1

0 0 1
1 1 K

· 0 1

0 0 0
1 0 1

Example 2. (Sign hyperfield) S = {−1, 0, 1} is a hyperfield with hyperoperation and multiplication given by
as follows:

+ −1 0 1

−1 −1 −1 S
0 −1 0 1
1 S 1 1

· −1 0 1

−1 1 0 −1
0 0 0 0
1 −1 0 1

Example 3 ([14]). Let (R,+, ·) be a ring with identity and G be a normal subgroup of semigroup (R×, ·). Take
R̄ = R/G = {aG|a ∈ R} with the hyperaddition and multiplication given by:{

aG⊕ bG = {cG|c ∈ aG + bG},
aG� bG = abG,

then (R,⊕,�) is a hyperring, which is called a quotient hyperring. Moreover, if R is a field, then (R,⊕,�) is a
hyperfield.

Remark 1. Note that, in the above example, the normal condition for G is not necessary, since Massouross
in [16] generalized this construction using it for no normal multiplicative subgroups, since he proved that, in
a ring, there exist multiplicative subgroups G of multiplicative semigroup (R, .), which satisfy the property
xGyG = xyG, even though they are not normal.

Example 1 is the trivial case of monogene hyperfields introduced by Massouross in [17] with
self-opposite elements. The construction of this monogene hyperfield is as follows:

Let K be the union of a multiplicative group (G, .) with a bilaterally absorbing element 0. In K,
the following hypercomposition + is introduced:

x + y = {x, y}, for all x, y in G with x 6= y,
x + 0 = 0 + x = x, for all x in K,
x + x = K, for all x in G.
Then, (K,+, .) is a hyperfield. If G = 1, then K is the hyperfield of Example 1.
Similarly, Example 2 is the trivial case of monogene hyperfields with no self-opposite elements,

which is constructed over the multiplicative group G = {−1, 1}.
Both Examples 1 and 2 are quotient hyperfields, since Example 1 is the quotient of a field by

its multiplicative group, while Example 2 is, for example, the quotient of the field of real numbers
by the multiplicative subgroup of the positive real numbers. The question of whether all monogene
hyperfields are quotient hyperfields is a hitherto open question [17].

In this step, we recall one of the important relations on a hyperring (R,+, ◦). Let U denotes the
set of all finite sums of finite products of elements of R. Note that an element u ∈ U may be the sum of
only one element. Define a relation Γ on R as follows:

aΓb ⇐⇒ ∃u ∈ U : {a, b} ⊆ u.
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In fact, there exist n, ki ∈ N and xij ∈ R, such that u = Σn
i=1Πki

j=1xij. Clearly, Γ is reflexive
and symmetric relation on R. Let Γ∗ denote the transitive closure of Γ. Consider the quotient R/Γ∗.
Define hyperoperations ⊕ and operation � on R/Γ∗ as follows:

Γ∗(a)⊕ Γ∗(b) = Γ∗(c), ∀c ∈ Γ∗(a) + Γ∗(b),

Γ∗(a)� Γ∗(b) = Γ∗(d), ∀d ∈ Γ∗(a) ◦ Γ∗(b).

Then, Γ∗ is the smallest equivalence relation on R, such that the quotient space R/Γ∗ is a ring,
and it is called the fundamental relation of R and R/Γ∗ is called fundamental ring of R (for more details,
see [12]).

Definition 3. (Homomorphism of hyperrings) Let R and S be two hyperrings. A map f : R −→ S is called a
(resp. good) homomorphism if the following holds:

1. f (a + b) ⊆ f (a) + f (b)(resp. f (a + b) = f (a) + f (b)), ∀a, b ∈ R.
2. ∀a, b ∈ R, f (ab) = f (a) f (b).

Definition 4. A map f is said to be an isomorphism if it is a bijective good homomorphism.

3. Polynomials over Krasner Hyperrings

In this section, we discuss on polynomials over a hyperring( hyperfield) and prove that they
constitute a superring.

Definition 5. A hyperstructure (S,+, .) is said to be a superring if + and . are both hyperoperations on S such
that the following statements are satisfied:

(i) (S,+) is a canonical hypergroup;
(ii) (S, .) is a semihypergroup having zero as a bilaterally absorbing element, i.e., x.0 = 0 = 0.x = 0;

(iii) multiplication hyperoperation . is distributive from left and right with respect to hyperaddition + that is

a.(b + c) ⊆ a.b + a.c, (b + c).a ⊆ b.a + c.a;

(iv) for all a, b ∈ S, −(a.b) = (−a).b = a.(−b).

Remark 2.

(i) If in (iii) of the above definition the equality holds, then R is called an strongly distributive superring.
(ii) Every strongly distributive superring R is in fact an additive-multiplicative hyperring in the sense [34].

Example 4. Let S = {0, a, b, c} be a set with two hyperoperations “+” and “·” defined as follows:

+ 0 a b c

0 0 a b c
a a {0, a} c {b, c}
b b c {0, b} {a, c}
c c {b, c} {a, c} S

· 0 a b c

0 0 0 0 0
a 0 {0, a} 0 {0, a}
b 0 0 {0, b} {0, b}
c 0 {0, a} {0, b} {0, c}

Then, (S,+, .) is a superring.

Definition 6. A non-empty subset A of a superring S is a left(resp. right) hyperideal if,

1. for every a, b ∈ A implies a− b ⊆ A;
2. for every a ∈ A, r ∈ S implies r.a ⊆ A(resp. a.r ⊆ A).
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Let X be a subset of a superring S. Let {Ai|i ∈ J} be the family of all hyperideals in S which
contain X. Then,

⋂
i∈J

Ai is called the hyperideal generated by X. This hyperideal is denoted by < X >.

If X = {x1, x2, ..., xn}, then the hyperideal < X > is denoted by < x1, x2, ..., xn >.
Next, lemma is a superring version of Lemma 3.1 in [34]

Lemma 1. Let S be a superring and X ⊂ S. Then, for a ∈ S, the following statements are satisfied:

1. The principal hyperideal < a > is equal to

{t| t ∈ ra + as + na + k(a− a) +
m

∑
i=1

riasi, r, s, ri, si ∈ S, m ∈ N, n, k ∈ Z}.

2. If S has a unit element, then

< a >= {t| t ∈ k(a− a) +
m

∑
i=1

riasi, ri, si ∈ S, m, k ∈ N}.

3. If a is in the center of S, then

< a >= {t|t ∈ na + k(a− a) +
m

∑
i=1

ria, ri ∈ S, m, n, k ∈ N},

where the center of S is the set {x ∈ S| xy = yx, ∀y ∈ S}.
4. Sa = {

m
∑

i=1
ria|ri ∈ S, m, k ∈ N} is a left hyperideal in S and aS = {

m
∑

i=1
ari|ri ∈ S, m, k ∈ N} is a right

hyperideal in S.
5. If S has a unit element and a is in the center of S, then Sa =< a >= aS.
6. If S has a unit element and X is included in the center of S, then

< X >= {t| t ∈
m

∑
i=1

rixi, ri ∈ S, xi ∈ X, m ∈ N}.

Proof. The proof is similar to the proof for Krasner hyperrings in [20] by some manipulations.

Definition 7. A commutative hyperring R with identity is said to be Noetherian if every hyperideal of R
is finitely generated, i.e., if I is a hyperideal of R, then I =< a1, a2, ..., an > for some n ∈ N and ai ∈ I,
i ∈ {1, 2, ..., n}.

Let R be a Krasner hyperring and R[x] be the hyperring of polynomials introduced in [35].
Recall that hyperaddition and hypermultiplication on R[x] for f (x) = a0 + a1x + ... + anxn, and
g(x) = b0 + b1x + ... + bnxm are defined as follows:

f (x)⊕ g(x) = {
M

∑
i=0

cixi|ci ∈ ai + bi},

where
M = max{deg f (x), deg g(x)}

and

f (x)� g(x) = {
m+n

∑
k=0

ckxk | ck ∈ ∑
i+j=k

aibj}.

In [34], the authors stated and proved Theorem 3.2 as follows:

Theorem 1. (R[x],⊕,�) is an additive-multiplication hyperring.
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In the following, by some counterexamples, we will show that the Theorem 3.2 in [34] is not
true because, in the hyperstructure of polynomials over a Krasner hyperring, the hypermultiplication
is not strongly distributive with respect to the hyperaddition, even if we replace a hyperring with
a hyperfield. In the following, we will show that the polynomial over a hyperring(or a hyperfield)
constitutes a superring, which is called the superring of polynomials. For instance, we prove that, for
hyperfield K of order 2 and signs hyperfield, S of order 3, their polynomials hyperrings K[x] and S[x],
the hypermultiplication is not distributive with respect to the sum of hyperaddition.

Example 5. The polynomial hyperring K[x] is not an additive-multiplication hyperring because:

(1 + x2)(1⊕ 1) = (1 + x2){0, 1} = {0, 1 + x2}.

On the other hand, one has

(1 + x2)⊕ (1 + x2) = (1⊕ 1)⊕ (x2 ⊕ x2) = {0, 1} ⊕ {0, x2} = {0, 1, x2, 1 + x2}.

Thus, the distributivity does not hold in K[x] as an additive-multiplicative hyperring. In fact, K[x] is a
superring, which is not an additive-multiplication hyperring.

Example 6. The polynomial hyperring S[x] is not an additive-multiplication hyperring because:

(1 + x)(1	 1) = {0, 1 + x,−1− x}

and

(1 + x)	 (1 + x) = (1	 1) + (1	 1)x = {0, 1,−1, x,−x, 1 + x, 1− x,−1 + x,−1− x}.

In fact, for polynomials over a hyperring, even over a hyperfield, but only the left-hand side weak
distributivity holds, which is

f (g + h) ⊆ f g + f h, f , g, h ∈ F[x].

Thus, we issue the modified version of above mentioned Theorem 1.

Theorem 2. (R[x],⊕,�) is a superring.

Proof. Here, we just verify the weak distributivity. The proof of other properties is the as same as
Theorem 1. Suppose that M = max{deg g(x), deg h(x)} and n = deg f (x). Since R is a hyperring,
then, for every 0 ≤ i ≤ n and 0 ≤ j ≤ M, ai(bj + cj) = aibj + aicj. Thus, f (x) � (g(x) ⊕ h(x)) =

{
n+M

∑
l=0

dl xl |dl ∈ ∑
i+j=l

ai(bj + cj)} = {
n+M

∑
l=0

dl xl |dl ∈ ∑
i+j=l

aibj + ∑
i+j=l

aicj} = {
n+M

∑
l1=l2=l=0

dl xl |dl ∈

∑
i+j=l1

aibj + ∑
i+j=l2

aicj} ⊆ {
n+M

∑
l1=0

dl1 xl1 |dl1 ∈ ∑
i+j=l1

aibj} ⊕ {
n+M

∑
l2=0

dl2 xl2 |dl2 ∈ ∑
i+j=l2

aicj}.

Theorem 3. (Hyper-version of Hilbert’s Basis Theorem) If R is a Noetherian Krasner hyperring, so is the
superring R[x].

Proof. The sketch of proof is extracted from the proof of Theorem 21, Ch.9 in [36].
Let I be a hyperideal in R[x] and L be the set of all leading coefficients of elements in I. We first

prove that L is an hyperideal in R. Since 0 ∈ I, then 0 ∈ L. Let f = axd + ... and g = bxe + ... be
polynomials in I of degrees d, e and a, b ∈ R are leading coefficients of f , g, respectively. Then, for any
r ∈ R, ra− b is the leading coefficients of some elements of rxe f − xdg. Since polynomials are in I, we
have ra− b ⊆ L, which shows L is a hyperideal of R. Since R is a Noetherian hyperring, L is finitely
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generated (considering R as a R-hypermodule and, according to proposition 9.2. in [37]), denoted by
a1, ..., an ∈ R. For each i = 1, ..., n, let fi be an element of I with leading coefficient ai. Let us denote ei
the degree of fi and let N be the maximum of elements e1, ..., en. For each d ∈ {0, 1, ..., N − 1}, let Ld
be the set of all leading coefficients of polynomials in I of degree d and Ld also contains 0. A similar
argument as that for L proves that each Ld is a hyperideal of R, again finitely generated since R is
Noetherian. For each hyperideal Ld, let bd,1, ..., bd,nd

∈ R be a set of generators for Ld and let fd,i be a
polynomial of degree d in I with leading coefficients bd,i.

We prove that the polynomials f1, ..., fn cooperating polynomials fd,i are a set of generators for I,
i.e.,

I =< { f1, ..., fn} ∪ { fd,i|0 ≤ d ≤ N − 1, 1 ≤ i ≤ nd >}.

By construction of hyperideal, I′, the right-hand side of the above, is contained in I. If I′ 6= I, there
exists a non-zero polynomial f ∈ I with a minimum degree with f /∈ I′. Let d be deg f and let a
be the leading coefficient of f . Suppose first that d ≥ N. As a ∈ L, we can write it as an element
of R-linear combination of the generators of L, which is as a ∈ r1a1 + ... + rnan. Then, there exists
g ∈ r1xd−e1 f1 + ...+ rnxd−en fn an element of I′ with the same degree d and the same leading coefficient
a as f . Then, f − g contains a polynomial in I of smaller degree than f . By the minimality of f , we
must have 0 ∈ f − g (really 0 = f − g or there exists a non-zero element in f − g, which, by minimality
of f , has the same degree as the degree of f and f is a monomial), a contradiction.

Suppose next that d < N. In this case, a ∈ Ld for some d < N, and so we can write a ∈
r1bd,1 + ... + rnd bd,nd

for some ri ∈ R. Then, there exists g ∈ r1 fd,1 + ... + rnd fd,nd
inI′ with the same

degree d and the same leading coefficient a as f and we have a contradiction as before. It follows that
I = I′ is finitely generated and, since I was an arbitrary choice, the proof is complete.

At the following, we present some more examples of superrings:

Example 7. (Superring of matrices) Let R be a hyperring and Mn×n(R) denotes the set of all n× n matrices
over R. Then, Mn×n(R) by usual matrix addition and multiplication is a superring, which is not an
additive-multiplication hyperring.

Example 8. (Superring of formal power series) Define the set R[[x]] of formal power series in the indeterminate
x with coefficients from R to be all formal infinite sums

n

∑
i=1

anxn = a0 + a1x + a2x2 + · · · .

Define hyperaddition and hypermultiplication as classical operations for classical formal power series.
Then, R[[x]] is a superring, which is not an additive-multiplication hyperring.

Definition 8. A Krasner hyperring R with identity, which is zero-divisor free i.e., 0 ∈ ab⇒ a = 0 or b = 0
for a, b ∈ R, is called a hyperdomain.

Equivalently, one can define superdomain as a zero divisor free superring with identity element.

Theorem 4. If D is a hyperdomain, then D[x] is a superdomain.

Proof. Since D[x] is a superring with identity, it is enough that we show that D[x] is also zero divisor

free. Suppose that 0 ∈ f (x)g(x) for f (x) =
n
∑

i=0
aixi, g(x) =

m
∑

j=0
bjxj in D[x]. As D is a hyperdomain,

by Theorem 2 deg f (x) + degg(x) = 0, and so f (x) = a0 and g(x) = b0. Thus, 0 ∈ a0b0. Thus, a0 = 0 or
b0 = 0, since D is superdomain, and hence f (x) = 0 or g(x) = 0.

Theorem 5. Let (D,+, .) be a hyperdomain and f (x), g(x) ∈ D[x].
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1. If h(x) ∈ f (x)� g(x), then deg h(x) = deg f (x) + deg g(x).
2. If t(x) ∈ f (x) + g(x), then deg t(x) = max{deg f (x), deg g(x)}.

Theorem 6. Let F be a hyperfield. Then, F[x] is a PHH (Principal Hyperideal Hyperdomain).

Proof. We prove that all hyperideals of F[x] are to form < xm >, m 6= 0. Suppose that I is a hyperideal

and f (x) ∈ I. Thus, f (x) =
n
∑

j=0
ajxj, and hence f (x)	 f (x) =

n
∑

j=0
(aj − aj)xj. Then, a0 6= 0 implies that

< f (x) >= F[x]. Otherwise, suppose that am, m ∈ N, being the smallest first non-zero coefficient of all
elements of I. Then, I ⊆< xm >⊆ I. Thus, I =< xm >.

Definition 9. An element α ∈ F is a root of f (x) ∈ F[x] if 0 ∈ F(α) =
n
∑

i=0
aiα

i.

Theorem 7. If α is a root of f (x) ∈ F[x], then there exists g(x) ∈ F[x], such that f (x) ∈ (x− α)� g(x).

Proof. We prove by induction on the degree of f (x). If f (x) = a0 + a1x, it is trivial. For degree two
without loss of generality, we suppose that f (x) = a0 + a1x + x2. If α = 0, then the result is obvious.
Now, suppose that α 6= 0 and 0 ∈ f (α) = a0 + a1α + α2. Multiplying each side of the inclusion by α−1

one has 0 ∈ a0α−1 + a1 + α, then, by reversibility, we have

− a1 ∈ a0α−1 + α. (1)

Now, (x− α)� (x− a0α−1) = a0 − (a0α−1 + α)x + x2. Thus, by Equation (1), we have f (x) =
a0 + a1x + x2 ∈ (x− α)� (x− a0α−1). Suppose that the claim holds for every polynomial of degree
n− 1. For 0 ∈ f (α) and deg f (x) = n, 0 ∈ a0 + a1α + ... + αn (without loss of generality, it is supposed
that f (x) is monic). Again, multiplying each side of the inclusion by α−1, one has 0 ∈ a0α−1 + a1 +

a2α + ... + αn−1. ∃a′0 ∈ a0α−1 + a1 such that 0 ∈ a′0 + a2α + ... + αn−1. Put f ′(x) = a′0 + a2x + ... + xn−1.
Thus, 0 ∈ f ′(α). By hypothesis, ∃g(x) ∈ F[x] that f ′(x) ∈ (x− α)� g(x).

f (x) ∈ x � ( f ′(x) 	 α−1a0) ⊕ a0 = x � ((x − α) � g(x) 	 α−1a0) ⊕ a0 = (x − α) � x � g(x) 	
α−1a0x⊕ a0 = (x− α)� x� g(x)	 (x− α)� α−1a0 = (x− α)� (x� g(x)− a0α−1). Thus, f (x) ∈ (x−
α)� (x� g(x)	 a0α−1). There exists a g′(x) ∈ x� g(x)	 a0α−1 such that f (x) ∈ (x− α)� g′(x).

Remark 3. Note that, contrary to classical ring theory, for superring of polynomials over a hyperring, a
polynomial of degree n may have more than n roots. For example, consider the hyperfield of order 5 defined by
the following tables:

+ 0 1 a b c

0 0 1 a b c
1 1 {1, a, b} {1, a, c} {0, 1, a, b, c} {1, b, c}
a a {1, a, c} {a, b, c} {1, a, b} {0, 1, a, b, c}
b b {0, 1, a, b, c} {1, a, b} {1, b, c} {a, b, c}
c c {1, b, c} {0, 1, a, b, c} {a, b, c} {1, a, c}

· 0 1 a b c

0 0 0 0 0 0
1 0 1 a b c
a 0 a b c 1
b 0 b c 1 a
c 0 c 1 a b

For f (x) = 1 + x + x2, one can verify that 0 ∈ f (1) ∩ f (a) ∩ f (b) ∩ f (c).

Let R be a hyperring and α /∈ R. Define R[α] = {c0 + c1α + ... + cn−1αn−1|ci ∈ R, n ∈ N}. One
can define addition and multiplication hyperoperations on R[α] as follows:

n−1

∑
i=0

aiα
i ⊕

n−1

∑
i=0

biα
i =

n−1

∑
i=0

(ai + bi)α
i for ai, bi ∈ R,
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n−1

∑
i=0

aiα
i �

m−1

∑
j=0

bjα
j = {

m+n−2

∑
k=0

ckαk|ck ∈ ∑
i+j=k

aibj},

for ai, bi ∈ R, such that

αn = −(c′0 + c′1α + ... + c′n−1αn−1),

for some c′i ∈ R, i ∈ {0, ..., n− 1}.
It is easy to verify that (R[α],⊕,�) is a superring and it is an extension of R. In fact, this is a

method for constructing a superring via a hyperring.

Theorem 8. Let F be a commutative hyperfield and α2 = c ∈ F, α /∈ F. Then, f (x) = x2 − c has no root in F
if and only if F[α] is a superfield extension of F.

Proof. (⇒) Suppose that 0 ∈ (a0 + a1x)(b0 + b1x) and {a0, a1} 6= {0}. Then,
(a0 + a1x)(b0 + b1x) = a0b0 + (a0b1 + a1b0)x + a1b1x2 = a0b0 + (a0b1 + a1b0)x + a1b1c = (a0b0 +

a1b1c) + (a0b1 + a1b0)x. Thus, 0 ∈ a0b0 + a1b1c and 0 ∈ a0b1 + a1b0, and hence b0 = −a−1
0 a1cb1. Thus,

0 ∈ a0b1 − a1a−1
0 a1cb1. Thus, 0 ∈ (a2

0 − ca2
1)b1. Thus, it has to be 0 ∈ a2

0 − ca2
1 or b1 = 0. If the first case

happens, it leads to 0 ∈ a2
0a−2

1 − c = (a0a−1
1 )2 − c. Thus, a0a−1

1 ∈ F is a root of x2 − c. Therefore, x2 − c
has a root in F which contradicts the hypothesis. Thus, the second case happens i.e., b1 = 0. Since
b0 = −a−1

0 a1cb1, we also have b0 = 0. Thus, F[α] is a superdomain.
Now, for non-zero a0 ∈ F, consider (a0 + a1α)(b0 + b1α). Let b0 = a−1

0 and b1 = −a−2
0 a1. In this

case, it is obvious that 1 ∈ (a0 + a1α)(b0 + b1α). If a0 = 0, then a1αa−1
1 αc−1 = 1. Therefore, F[α] is

a superfield.
(⇐) Suppose that u ∈ F is a root of f (x) = x2 − c. By Theorem 7, we have f (x) ∈ (x− u)(x + u).

Hence, 0 ∈ f (α) ⊆ (α− u)(α + u), which means that F[α] is not a superdomain and naturally is not
a superfield.

Example 9. Let S = {0, 1, α, 1 + α} be a set with two hyperoperations as follows:

+ 0 1 α 1 + α

0 0 1 α 1 + α

1 1 {0, 1} 1 + α {α, 1 + α}
α α 1 + α {0, α} {1, 1 + α}

1 + α 1 + α {α, 1 + α} {1, 1 + α} S

· 0 1 α 1 + α

0 0 0 0 0
1 0 1 α 1 + α

α 0 α 1 1 + α

1 + α 0 1 + α 1 + α S

for which α 6= 1 is a root of f (x) = 1 + x2. It is easy to check that (S,+, .) is a superring, which is not
strongly distributive.

Example 10. Let K = {0, 1,−1, α1, α2, α3, α4, α5, α6}. Define two hyperoperations on K by the following
tables:

+ 0 1 −1 α1 α2 α3 α4 α5 α6

0 0 1 −1 α1 α2 α3 α4 α5 α6

1 1 1 −1, 0, 1 α3 α4 α3 α4 α5, α1, α3 α6, α2, α4
−1 −1 −1, 0, 1 −1 α4 α6 α5, α1, α3 α6, α2, α4 α5 α6

α1 α1 α3 α4 α1 α2, 0, α1 α3 α4, 1, α3 α5 α6,−1, α5

α2 α2 α4 α6 α2, 0, α1 α2 α4, 1, α3 α4 α6,−1, α5 α6

α3 α3 α3 α5, α1, α3 α3 α4, 1, α3 α3 α4, 1, α3 α5, α1, α3 K
α4 α4 α4 α6, α2, α4 α4, 1, α3 α4 α4, 1, α3 α4 K α6, α2, α4
α5 α5 α5, α1, α3 α5 α5 α6,−1, α5 α5, α1, α3 K α5 α6,−1, α5

α6 α6 α6, α2, α4 α6 α6,−1, α5 α6 K α6, α2, α4 α6,−1, α5 α6
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· 0 1 −1 α1 α2 α3 α4 α5 α6

0 0 0 0 0 0 0 0 0 0
1 0 1 −1 α1 α2 α3 α4 α5 α6

−1 0 −1 1 α2 α1 α6 α5 α4 α3

α1 0 α1 α2 −1 1 α5 α3 α6 α4
α2 0 α2 α1 1 −1 α4 α6 α3 α5

α3 0 α3 α6 α5 α4 α5, α1, α3 α4, 1, α3 α6,−1, α5 α6, α2, α4
α4 0 α4 α5 α3 α6 α4, 1, α3 α6, α2, α4 α5, α1, α3 α6,−1, α5

α5 0 α5 α4 α6 α3 α6,−1, α5 α5, α1, α3 α6, α2, α4 α4, 1, α3

α6 0 α6 α3 α4 α5 α6, α2, α4 α6,−1, α5 α4, 1, α3 α5, α1, α3

It is easy to check that K ⊇ S is a superring. Then, by Theorem 10 for c = −1, f (x) = x2 + 1 has no root
in S and since K = S[α] in which α1 = α, α2 = −α, α3 = 1 + α, α4 = 1− α, α5 = −1 + α, α6 = −1− α, is
a superfield extension of S.

Remark 4. Consider Example 10 for which K is a superfield in which distributivity is weak. For instance,
it is easy to verify that α4(α2 + α3) ( α4α2 + α4α3. Thus, the distributivity could be weak even though the
superring is really a superfield.

Theorem 9. (Division algorithm) Let F be a Krasner hyperfield with unit element 1, (F[x],⊕,�) is the
polynomial hyperring of F. If a(x) and b(x) ∈ F[x] and b(x) 6= 0, then there exists a pair of polynomials q(x)
and r(x) such that

a(x) ∈ q(x)� b(x)⊕ r(x), deg r(x) < deg b(x).

Proof. The proof is just the proof of Theorem 3.4 in [34] since q1(x)� b(x)⊕ r1(x)⊕ anb−1
m xn−m �

b(x) = q1(x) � b(x) ⊕ anb−1
m xn−m � b(x) ⊕ r1(x) = (q1(x) ⊕ anb−1

m xn−m) � b(x) ⊕ r1(x) as degree
q1(x) < n−m in superring F[x].

Definition 10. Let R be a hyperring and f , d ∈ R[x]; then, we say that d divides(counts) f if and only if
f ∈< d >; we denote it by d| f .

Definition 11. Let R be a hyperring. An element d ∈ R[x] such that d| f , d|g and, for every e ∈ R[x], e| f , e|g,
implies that e|d is said to be a great common divisor of f , g and denote it by d ∈ ( f , g).

Proposition 1. Let F be a hyperfield. Then, there exists a great common divisor for every two elements in F[x].

Proof. Let f , g ∈ F[x]. By a division algorithm, one has:

f ∈ p0g + r0,
g ∈ p1r0 + r1,
r0 ∈ p2r1 + r2,
r1 ∈ p3r2 + r3.

...
...

...
rn ∈ pn+2rn+1,

and hence rn+1| f , g. Thus, there exists a common divisor for every two elements in F[x]. Define
C = {d ∈ ( f , g)} ∪ { f , g}. One can define a partial relation on non-unit elements of C as r ≤ s⇔ r|s.
We make a totally ordered ascending chain of these elements with upper bound f . By Zorn’s lemma,
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this ascending chain has a maximal in C. If all common divisors are unit, we define a great common
divisor of the two elements by 1.

Proposition 2. Let F be a hyperfield and f , g, d ∈ F[x] and d ∈ gcd( f , g). Then, < f , g >=< d >.

Theorem 10. Let F be a hyperfield. Then, F[x]/ < x >∼= F.

Proof. By a division algorithm, the residue class is isomorphic to F.

Definition 12. Let R be a superring. Then, f ∈ R is called a unit element if < f >= R.

Definition 13. Let R be a superring. An element f ∈ R is said to be irreducible if f ∈< u >, u ∈ R; then,
< f >=< u >.

Theorem 11. Let R be a Krasner hyperring and I be a hyperideal of R[x] and (R[x]/I,⊕,�) be the quotient
of R[x] by I with hyperoperations ⊕,� defined as follows:

x̄⊕ ȳ = (x + I)⊕ (y + I) = {z + I|z ∈ x + y},
x̄� ȳ = (x + I)� (y + I) = {w + I|w ∈ xy}.

Then, (R[x]/I,⊕,�) is a superring.

Proof. Let x, y ∈ R[x]. We define x ≡ y (mod I) if and only if x ∈ (y+ I). This relation is an equivalence
relation. Thus, the set {x + I|x ∈ R[x]} is a partition of R[x]. Now, we prove that the hyperoperations
defined on R[x]/I are well defined. Let x′ ∈ x̄, y′ ∈ ȳ; then, there are u, v ∈ I, such that x′ ∈ x + u
and y′ ∈ y + v. x̄′ ⊕ ȳ′ = (x′ + I)⊕ (y′ + I) ⊆ (x + u + I)⊕ (y + v + I) = (x + I)⊕ (y + I) = x̄⊕ ȳ.
Thus, x̄′ ⊕ ȳ′ ⊆ x̄ ⊕ ȳ. x ∈ x′ − u and y ∈ y′ − v. Therefore, we have x̄ ⊕ ȳ ⊆ x̄′ ⊕ ȳ′. Thus,
x̄′ ⊕ ȳ′ = x̄⊕ ȳ.

x̄′ � ȳ′ = (x′ + I)� (y′ + I) ⊆ (x + u + I)� (y + v + I) = (x + I)� (y + I) = x̄� ȳ. Similarly,
we have x̄� ȳ ⊆ x̄′ � ȳ′. It is routine to verify the other conditions of the superring.

Theorem 12. Let R be a Krasner hyperring, f ∈ R[x] be monic and deg f ≤ 2. If < f > is a maximal
hyperideal in R[x], then, provided that R[x]/ < f > is finite, R[x]/ < f > is a hyperfield.

Proof. Since < f > is maximal, the quotient structure is zero-divisor free superring. We prove that,
for ā 6= 0,

ā� b̄ ∩ ā� c̄ = ∅.

Because if it is not true, then

0 ∈ ā� b̄− ā� c̄ = (a+ < f >)� (b+ < f >)− (a+ < f >)� (c+ < f >)

= (ab+ < f >)− (ac+ < f >) = (ab− ac)+ < f > .

Thus, it is enough to prove that, for a 6= 0, ∃u ∈< f >, such that u ∈ ab − ac ⇒ b̄ = c̄. By
hypothesis a = a0 + a1x, b = b0 + b1x, c = c0 + c1x and u = u0 + u1x + u2x2, then

ab − ac = a0b0 + (a0b1 + a1b0)x + a2b2 − a0c0 + (a0c1 + a1c0)x + a2c2 = a0(b0 − c0) + [a0(b1 −
c1) + a1(b0− c0)]x + a1(b1− c1)x2. Since u ∈< f >, u− u = (u0− u0) + (u1− u1)x + (u2− u2)x2 ⊆<
f >. Thus, u0(1− 1) ⊆< f >, u1x(1− 1) ⊆< f > and u2x2(1− 1) ⊆< f >.

Suppose that, for some ui, i ∈ {0, 1, 2}, ui /∈< f >. Then, xi ∈< f > or (1 − 1) ⊆< f >.
If xi ∈< f >, then, because < f > is a maximal hyperideal in R[x], we have x ∈< f >. Thus,
R[x]/ < f > is a Krasner hyperring. In addition, since it does not have any zero divisor element, then
it is a hyperdomain and, since it is finite, thus it is a hyperfield (see [37] Corollary 5.2). If (1− 1) ⊆< f >,
then 1̄− 1̄ = 0̄. Consequently, ā− ā = 0̄, and then ā ⊆ ā + b̄− b̄ = ā. Consider c̄, d̄ ∈ ā + b̄. Thus,
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c̄− b̄ = ā and d̄− b̄ = ā. Therefore, c̄− d̄ = 0̄, and hence c̄ = d̄. Thus, hyperaddition is single valued.
ā� b̄ = (ab+ < f >) = (a0b0 + [a0b1 + a1b0]x + a1b1x2+ < f >) = (c0 + [c1 + c′1]x + c2x2+ < f >

) = c̄0 ⊕ c̄1 ⊕ c̄′1 ⊕ c̄2 = d̄. Thus, the multiplication is also single valued. Therefore, R[x]/ < f > is a
ring. Since it is zero divisor free, it is an integral domain and, since it is finite, then it is a field, and
consequently a hyperfield.

Suppose that all coefficients of polynomial u belongs to < f >. Therefore,
u0 ∈ a0(b0 − c0)⇒ a0 ∈< f > or b̄0 = c̄0,

u1 ∈ [a0(b1 − c1) + a1(b0 − c0)]x,

u2 ∈ a1(b1 − c1)x2 ⇒ a1 ∈< f > or b̄1 = c̄1 or x2 ∈< f > .

If a0 /∈< f > and a1 /∈< f >, then one obtains that b̄0 = c̄0 and b̄1 = c̄1, which means b̄ = c̄
(for x2 ∈< f >, and hence the quotient superring is a hyperfield). If a0 ∈< f >, then a1 /∈< f >.
Therefore, b̄1 = c̄1. Since a0 ∈< f >, u0 ∈ a1(b0 − c0), then b̄0 = c̄0 and we have b̄ = c̄. For the
case a0 /∈< f > and a1 ∈< f >, similarly, we come to the conclusion that b̄ = c̄. Thus, for non-zero
ā ∈ R[x]/ < f >, ā� R[x]/ < f > is a partition of R[x]/ < f >. It is possible provided that the
multiplication is single valued. Thus, the quotient space is a multiring. Noticing that every element
has an inverse, it is easy to verify that distributivity of multiplication with respect to addition is
strong. In [38] Section 4.3, it has been proved that every multifield is a commutative hyperfield. The
commutativity is dispensable; since the result again holds, ab + ac = a−1a(ab + ac) = aa−1(ab + ac) ⊆
a(b + c). Thus, this multiring is a hyperfield and this completes the proof.

Theorem 13. Let R be a hyperring. Then, R[x]/Γ̄∗ ∼= R/Γ∗[x].

Proof. Define

ϕ : R[x] −→ R/Γ∗[x],

n

∑
i=0

aixi 7−→
n

∑
i=0

Γ∗(ai)xi.

1. At first, we show that ϕ is a good homomorphism.

Let f , g ∈ R[x], f =
n
∑

i=0
aixi and g =

m
∑

j=0
bjxj. Then, ϕ( f + g) = ϕ(

Max{m,n}
∑

k=0
(ak + bk)xk) =

{ϕ(
Max{m,n}

∑
k=0

ckixk)|cki ∈ ak + bk} = {
Max{m,n}

∑
k=0

Γ∗(cki)xk|cki ∈ ak + bk} =
Max{m,n}

∑
k=0

Γ∗(ak +

bk)xk =
Max{m,n}

∑
k=0

[Γ∗(ak) ⊕ Γ∗(bk)]xk =
Max{m,n}

∑
k=0

Γ∗(ak)xk ⊕
Max{m,n}

∑
k=0

Γ∗(bk)xk =
n
∑

k=0
Γ∗(ai)xi ⊕

m
∑

k=0
Γ∗(bj)xj = ϕ( f )⊕ ϕ(g).

2. ϕ is one to one:

ϕ(
n
∑

i=0
aixi) =

n
∑

i=0
Γ∗(ai)xi.

Kerϕ = {
n
∑

i=0
aixi|

n
∑

i=0
Γ∗(ai)xi = 0}.

n
∑

i=0
Γ∗(ai)xi = 0 ⇒ ∀ai, Γ∗(ai) = 0̄⇒ Γ∗(ai) = Γ∗(0).

( f Γg⇔ { f , g} ⊆ ∑
j

∏
Ij

f ji).
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Note that Γ̄∗(a0 + a1x + ... + anxn) = Γ̄∗(a0) ⊕ Γ̄∗(a1)x ⊕ ... ⊕ Γ̄∗(an)xn. 0̄ =
n
∑

i=0
Γ∗(ai)xi =

Γ̄∗(
n
∑

i=0
aixi)⇒ p ∈ kerϕ⇔ Γ̄∗(p) = 0̄.

Theorem 14. Let R be a hyperring. Then, Mn(R)/Γ̄∗ ∼= Mn(R/Γ∗).

Proof. We define the map

ψ : Mn(R) −→ Mn(R/Γ∗)
Mn(aij) 7−→ Mn(Γ∗(aij)).

1. Analogous to the proof of Theorem 13, we verify ψ to be a good homomorphism.
Let Mn(aij), Mn(bij) ∈ Mn(R). Then, ψ(Mn(aij) + Mn(bij)) = ψ(Mn(aij + bij)) =

{ψ(Mn(cij))|cij ∈ aij + bij} = {Mn(Γ∗(cij))|cij ∈ aij + bij} = Mn(Γ∗(aij + bij) = Mn(Γ∗(aij)⊕
Γ∗(bij)) = Mn(Γ∗(aij))⊕Mn(Γ∗(bij)) = ψ(Mn(aij))⊕ ψ(Mn(bij)).

2. ψ is one to one since ψ(Mn(aij)) = Mn(Γ∗(aij)).
kerψ = {Mn(aij)|ψ(Mn(aij) = 0}.
Thus, Mn(Γ∗(aij)) = 0⇒ ∀aij, Γ∗(aij) = 0̄⇒ Γ̄∗(Mn(aij)) = Γ̄∗(0).
Therefore, Γ̄∗(Mn(aij)) = 0̄⇔ Mn(Γ∗(aij)) = 0.
Thus, Mn(R)/Γ̄∗ ∼= Mn(R/Γ∗).

Theorem 15. Let R be a hyperring. Then, the following are satisfied:

(i) Γ∗ = Γ.
(ii) Let R be a hyperring and Γ∗ be its fundamental relation. If there exists a unit element u ∈ x− x for some

x ∈ R, then R/Γ∗ ∼= 0.

Proof.

(i) It is obvious since multiplication is single valued and (R,⊕) is a hypergroup.
(ii) Since u ∈ x − x is a unit, then 1 ∈ u−1x − u−1x. Thus, for every element y ∈ R, one has
{0, y} ⊆ yu−1x− yu−1x. Therefore, Γ∗(0) = R and R/Γ∗ = 0.

Corollary 1.

1. Let F be a non-trivial hyperfield. Then, F/Γ ∼= 0.
2. Let R be a hyperring extension of K or S. Then, R/Γ∗ ∼= 0.

Corollary 2. Let F be a non-trivial hyperfield. Then, F[x]/Γ̄∗ ∼= 0.

Proof. It is an immediate consequence of Theorem 13 and Corollary 1, item 2.

4. Conclusions

We proved that the polynomials over a Krasner hyperring constitute a superring, which is not
an additive-multiplicative hyperring. In addition, hyperideals of a superring of polynomials, such
as prime and maximal hyperideals, were studied and it was proved that every principal hyperideal
generated by an irreducible polynomial is maximal, and Hilbert’s Basis theorem holds for polynomials
over a Krasner.
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