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Abstract: In this paper, we propose a new generalized Gerber–Shiu discounted penalty function
for a compound Poisson risk model, which can be used to study the moments of the ruin time.
First, by taking derivatives with respect to the original Gerber–Shiu discounted penalty function,
we construct a relation between the original Gerber–Shiu discounted penalty function and our new
generalized Gerber–Shiu discounted penalty function. Next, we use Laplace transform to derive a
defective renewal equation for the generalized Gerber–Shiu discounted penalty function, and give a
recursive method for solving the equation. Finally, when the claim amounts obey the exponential
distribution, we give some explicit expressions for the generalized Gerber–Shiu discounted penalty
function. Numerical illustrations are also given to study the effect of the parameters on the generalized
Gerber–Shiu discounted penalty function.
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1. Introduction

The classical compound Poisson risk process {U(t)}t≥0 is defined by

U(t) = u + ct−
N(t)

∑
i=1

Xi, t ≥ 0, (1)

where u is the non-negative amount of initial reserves, and c > 0 denotes the constant premium rate
per unit time. The counting process {N(t)}t≥0, representing the total claim numbers up to time t , is a
homogeneous Poisson processes with intensity λ. {Xi}i≥1 is a sequence of independent and identically
distributed non-negative random variables, where Xi is the i-th claim amount. Let f (x) denote the

density function of X, and let E[X] and f̂ (s) =
∫ ∞

0
e−sx f (x)dx denote the expectation and Laplace

transform of X, respectively. To avoid ruin from being a certain event, we assume c > λE[X].
We say that ruin occurs whenever U(t) becomes negative. The time to ruin of the insurance

company is defined as

τ = inf{t : U(t) < 0}, (2)
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where τ = ∞ if for all t ≥ 0, U(t) ≥ 0. For the initial reserves U(0) = u, the probability of ruin is
defined as

ψ(u) = P(τ < ∞|U(0) = u), u ≥ 0. (3)

The probability of ruin is an important risk measure in the study of ruin in risk theory. It has been
widely studied in actuarial science. In 1998, famous actuarial scholars Hans Gerber and Elias Shiu
first proposed an expected discounted penalty function, which is also called Gerber–Shiu discounted
penalty function, to study ruin related problems. Recently, it has become a powerful risk measurement
tool in ruin theory. Given the initial surplus U(0) = u, we define the classical Gerber–Shiu discounted
penalty function as follows:

Φ(u, δ) = E[e−δτW(U(τ−), |U(τ)|)I(τ < ∞)|U(0) = u], u ≥ 0, (4)

where δ ≥ 0 is the force of interest, W(x, y) is a non-negative measurable penalty function, and I(·)
is the indicator function. It is clear that the Gerber–Shiu discounted penalty function becomes the
probability of ruin when δ = 0, W(x, y) = 1. For the recent literature on the Gerber–Shiu discounted
penalty function, we can refer to work by Lin et al. [1], Zhang et al. [2], Yu [3,4], Wang et al. [5],
Avram et al. [6], Zhang [7], Chi [8], Peng and Wang [9], Li et al. [10], Huang et al. [11], Preischl and
Thonhauser [12], Zeng et al. [13,14], Yu et al. [15], Dickson and Qazvini [16], Zhang and Su [17,18],
Li et al. [19], and Zhao and Yin [20], among others.

In recent years, Gerber–Shiu discounted penalty function has been extended by many actuarial
scholars, so that the new risk measures can be used to study more related quantities. For example,
Cai et al. [21] studied the ruin-related Gerber–Shiu discounted penalty risk measures by bringing in the
conception of path consumption. Cheung [22] extended the Gerber–Shiu discounted penalty function
by introducing the penultimate claim before ruin under a Sparre–Andersen renewal risk model.
Chueng [23], Cheung and Woo [24] proposed a new Gerber–Shiu type function by incorporating
the total claims up to ruin. Chueng and Feng [25] studied a new kind of generalized Gerber–Shiu
discounted penalty function under the Markov arrival process. Wang and Li [26] extended the discount
rate from constant to a random variable for the Gerber–Shiu discounted penalty function in the classical
risk model. Wang and Zhang [27] provided a smooth extension of the Gerber–Shiu discounted penalty
function by introducing an auxiliary function. As is known to all, the ruin time is also an important
random variable in the study of risk theory. We can study the Laplace transform of the ruin time by
the Gerber–Shiu discounted penalty function, while other mathematical characteristics associated with
the ruin time cannot be directly studied through Gerber–Shiu discounted penalty function. In recent
years, many actuarial scholars have paid attention to the moment of the ruin time. For instance,
Egidio dos Reis [28], Lin and Willmot [29] and Drekic and Willmot [30] studied the moment of the
ruin time under the compound Poisson risk model. Pitts and Politis [31] proposed an approximation
approach of the moment of ruin time. Yu et al. [32] studied the moment of ruin time under the Markov
arrival risk model. The moment of ruin time was introduced in the Gerber–Shiu discounted penalty
function by Lee and Willmot [33]; then, they studied this new Gerber–Shiu discounted penalty function
Sparre-Andersen risk model [34]. Schmidli [35] considered a new Gerber–Shiu discounted penalty
function, which is modified with an additional penalty for reaching a level above the initial capital.
Deng et al. [36] studied a generalized Gerber–Shiu discounted penalty function, in which the interest
rates follow a Markov chain with finite state space. Li and Lu [37] studied the generalized expected
discounted penalty function in a risk process with credit and debit interests.

In this paper, we introduce a new generalized Gerber–Shiu type function. For non-negative
integer n, define

Φn(u, δ) = E[τne−δτW(U(τ−), |U(τ)|)I(τ < ∞)|U(0) = u], u ≥ 0. (5)
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We call Φn(u, δ) a generalized Gerber–Shiu discounted penalty function. It is obvious that
Φ0(u, δ) = Φ(u, δ). When W(x, y) = 1, Φn(u, δ) is the discounted nth moment of ruin time, then we
can use it to study the expectation and variance of ruin time. Note that the generalized Gerber–Shiu
discounted penalty function defined by formula (5) is different from the function studied in Lee and
Willmot [34] since we bring in the surplus before ruin.

In this paper, we mainly discuss the calculation method of the generalized Gerber–Shiu discounted
penalty function Φn(u, δ). In Section 2, we propose a recursion method by Laplace transform to
calculate Φn(u, δ). In Section 3, we present an exact expression of Φn(u, δ) when claim amounts are
exponentially distributed. Numerical examples are also given to explain the effect of the related
parameters. Finally, conclusions are given in Section 4.

2. Recursion Calculation of Φn(u, δ)

First, we define the Laplace transform of Φn(u, δ) by

Φ̂n(u, δ) =
∫ ∞

0
e−suΦn(u, δ)du, Re(s) ≥ 0.

For convenience, we introduce the Dickson–Hipp operator Ts, which, for any integral function h
on (0,+∞), is defined as

Tsh(x) =
∫ ∞

x
e−s(y−x)h(y)dy =

∫ ∞

0
e−syh(x + y)dy, x ≥ 0.

It is easily seen that Tsh(0) =
∫ ∞

0
e−syh(y)dy = ĥ(s). The Dickson–Hipp operator has

interchangeability, that is to say, for s 6= r,

TsTrh(x) = TrTsh(x) =
Tsh(x)− Trh(x)

r− s
.

For for more properties of the Dickson–Hipp operator, we refer interested readers to Dickson and
Hipp [38] and Li and Garrido [39].

When n = 0, it follows from Gerber and Shiu [35] and Laplace transform that Φ̂0(s, δ) satisfies
the following equation:

{cs− λ(1− f̂ (s))− δ}Φ̂0(s, δ) = λ{ω̂(ρ(δ))− ω̂(s)}, (6)

where

ω(u) =
∫ ∞

u
W(u, x− u) f (x)dx,

ω̂(s) =
∫ ∞

0
e−suω(u)du,

and ρ(δ) is the positive root of the following equation

cs− λ(1− f̂ (s))− δ = 0. (7)

By Equation (6), we can obtain the renewal equation satisfied by Gerber–Shiu discounted penalty
function Φ0(u, δ), and we can further derive the analytic expression of Φ0(u, δ). Now, we consider the
case n ≥ 1. The derivative of Φn(u, δ) with respect to δ is given by

Φn(u, δ) = (−1)n dn

dδn Φ0(u, δ). (8)
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Applying Laplace transform on both sides of Equation (8) gives

Φ̂n(s, δ) = (−1)n dn

dδn Φ̂0(s, δ). (9)

Then, taking a derivative on both sides of Equation (6) with respect to δ yields

{cs− λ(1− f̂ (s))− δ} dn

dδn Φ̂0(s, δ)− n
dn−1

dδn−1 Φ̂0(s, δ) = λ
dn

dδn ω̂(ρ(δ)).

In addition, by Equation(9), we have

{cs− λ(1− f̂ (s))− δ}Φ̂n(s, δ) + nΦ̂n−1(s, δ) = (−1)nλ
dn

dδn ω̂(ρ(δ)). (10)

Setting s = ρ(δ) in Equation (10) yields

(−1)nλ
dn

dδn ω̂(ρ(δ)) = nΦ̂n−1(ρ(δ), δ).

Substituting the above result back into Equation (10) gives

{cs− λ(1− f̂ (s))− δ}Φ̂n(s, δ) = nΦ̂n−1(ρ(δ), δ)− nΦ̂n−1(s, δ). (11)

Since ρ(δ) is the root of Equation (7), we have

cs− λ(1− f̂ (s))− δ = cs− λ(1− f̂ (s))− δ− {cρ(δ)− λ[1− f̂ (ρ(δ))]− δ}
= c(s− ρ(δ)) + λ[ f̂ (s)− f̂ (ρ(δ))]

= (s− ρ(δ))

[
c + λ

f̂ (s)− f̂ (ρ(δ))
s− ρ(δ)

]
= (s− ρ(δ))[c− λTsTρ(δ) f (0)]. (12)

Plugging Equation (12) back into Equation (11) gives

(s− ρ(δ))[c− λTsTρ(δ) f (0)]Φ̂n(s, δ) = nΦ̂n−1(ρ(δ), δ)− nΦ̂n−1(s, δ).

We can rewrite the above equation to obtain[
1− λ

c
TsTρ(δ) f (0)

]
Φ̂n(s, δ) =

n
c

Φ̂n−1(ρ(δ), δ)− Φ̂n−1(s, δ)

s− ρ(δ)
=

n
c

TsTρ(δ)Φ̂n−1(0, δ). (13)

Applying Laplace transform on both sides of Equation (13) gives

Φn(u, δ) =
∫ ∞

0

λ

c
Tρ(δ) f (x)Φn(u− x, δ)dx +

n
c

Tρ(δ)Φn−1(u, δ), (14)

where g(x) =
λ

c
Tρ(δ) f (x), x ≥ 0. Since by Gerber and Shiu [40] we have

∫ ∞

0
g(x)dx < 1,

then Equation (14) is a defective renewal equation.
Define

H(u) =
∞

∑
n=1

g∗n(u), u ≥ 0,

where g∗n denotes the nth convolution of g. Then, we can express the solution of Equation (14)
as follows:
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Φn(u, δ) =
n
c

Tρ(δ)Φn−1(u, δ) +
n
c

∫ u

0
H(u− x)Tρ(δ)Φn−1(x, δ)dx. (15)

The above equation gives a recursion algorithm for computing Φn(u, δ), where the initial value is
given by Φ0(u, δ).

3. Explicit Expressions for Exponential Claim Distribution and Numerical Examples

In this section, we suppose that the claim amounts are exponentially distributed, and the density
function is given by

f (x) = αe−αx, α, x > 0.

To obtain some explicit results, we assume the penalty function W(x, y) = W1(y). Then, we have

ω(u) =
∫ ∞

u
W1(x− u)αe−αxdx = βe−αu, (16)

where β =
∫ ∞

0
W1(x)αe−αxdx. Solving Equation (7), we obtain

ρ(δ) =
λ + δ− cα +

√
(λ + δ− cα)2 + 4cαδ

2c
. (17)

We denote the other root of Equation (7) by −R(δ); then, it is easy to obtain

R(δ) = −λ + δ− cα−
√
(λ + δ− cα)2 + 4cαδ

2c
. (18)

Now, we derive an expression for Φn(u, δ) by Laplace inverse transform. First, by Equation (6),
we have

c
s + α

(s− ρ(δ))(s + R(δ))Φ̂0(s, δ) =
λβ

α + ρ(δ)
− λβ

α + s
.

Then, we obtain

Φ̂0(s, δ) =
λβ

c(α + ρ(δ))(s + R(δ))
.

Applying Laplace inverse transform in the above equation gives

Φ0(u, δ) =
λβ

c(α + ρ(δ))
e−R(δ)u, u ≥ 0. (19)

Next, we consider n ≥ 1. Combining the derivative of formula (19) w.r.t δ and Equation (8), we
find that Φn(u, δ) has the following expression:

Φn(u, δ) =
n

∑
k=0

An,k
uk

k!
e−R(δ)u, u ≥ 0. (20)

Finally, we discuss how to determine the coefficients An,k in formula (20).
When n = 0, comparing Equations (19) and (20), we obtain

A0,0 =
λβ

c[α + ρ(δ)]
. (21)

Taking the Laplace transform of formula (20) yields
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Φ̂n(s, δ) =
n

∑
k=0

An,k

[s + R(δ)]k+1 . (22)

By formulas (21) and (22), we have

Φ̂n(s, δ) =
n[Φ̂n−1(ρ(δ), δ)− Φ̂n−1(s, δ)]

cs− λ(1− f̂ (s))− δ

=
n(s + α)

c(s− ρ(δ))(s + R(δ))

n−1

∑
k=0

An−1,k ·
[

1
(ρ(δ) + R(δ))k+1 −

1
(s + R(δ))k+1

]
=

Ln(s)
[s + R(δ)]n+1 , (23)

where

Ln(s) =
n(s + α)

c(s− ρ(δ))

n−1

∑
k=0

An−1,k · [s + R(δ)]n−k−1 [s + R(δ)]k+1 − [ρ(δ) + R(δ)]k+1

[ρ(δ) + R(δ)]k+1 (24)

is an n-order polynomial.
By partial fraction expansion of formula (23), we obtain

An,k =
1

(n− k)!
dn−k

dsn−k Ln(s)|s=−R(δ), k = 0, 1, 2, ......, n. (25)

Noting that the polynomial Ln(s) only depends on An−1,k, we can calculate An,k recursively
from A0,k.

Without losing generality, we give the explicit expressions of Φn(u, δ) for n = 1, 2.
For n = 1, from formula (20), we have

Φ1(u, δ) = A1,0 · e−R(δ)u + A1,1 · ue−R(δ)u, u ≥ 0. (26)

From formula (24), we have

L1(s) =
A0,0 · (s + α)

c[ρ(δ) + R(δ)]
. (27)

By formulas (25) and (27), we have

A1,0 =
d
ds

L1(s)|s=−R(δ) =
A0,0

c[ρ(δ) + R(δ)]
,

A1,1 = L1(−R(δ)) =
A0,0 · (α− R(δ))
c[ρ(δ) + R(δ)]

.

Then, by formula (26), we get

Φ1(u, δ) =
A0,0

c[ρ(δ) + R(δ)]
e−R(δ)u +

A0,0 · (α− R(δ))
c[ρ(δ) + R(δ)]

e−R(δ)u, u ≥ 0. (28)

For n = 2, from formula (20), we have

Φ2(u, δ) = A2,0 · e−R(δ)u + A2,1 · ue−R(δ)u +
1
2

A2,2 · u2e−R(δ)u, u ≥ 0. (29)

From formula (24), we have
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L2(s) =
2A1,0

c[ρ(δ) + R(δ)]
(s + α)(s + R(δ)) +

2A1,1

c[ρ(δ) + R(δ)]2
(s + α)(s + ρ(δ) + R(δ)), (30)

L′2(s) =
2A1,0 · [2s + R(δ) + α]

c[ρ(δ) + R(δ)]
+

2A1,1 · [2s + 2R(δ) + α + ρ(δ)]

c[ρ(δ) + R(δ)]2
, (31)

L′′2 (s) =
4A1,0

c[ρ(δ) + R(δ)]
+

4A1,1

c[ρ(δ) + R(δ)]2
. (32)

By formulas (25) and (30)–(32), we have

A2,0 =
1
2

d2

ds2 L2(s)|s=−R(δ) =
2A1,0

c[ρ(δ) + R(δ)]
+

2A1,1

c[ρ(δ) + R(δ)]2
,

A2,1 =
d
ds

L2(s)|s=−R(δ) =
2A1,0 · [α− R(δ)]

c[ρ(δ) + R(δ)]
+

2A1,1 · [α + ρ(δ)]

c[ρ(δ) + R(δ)]2
,

A2,2 = L2(s)|s=−R(δ) =
2A1,1 · [α− R(δ)]

c[ρ(δ) + R(δ)]
.

Then, by formula (29), we get

Φ2(u, δ) = { 2A1,0

c[ρ(δ) + R(δ)]
+

2A1,1

c[ρ(δ) + R(δ)]2
}e−R(δ)u

+
2A1,0 · [α− R(δ)]

c[ρ(δ) + R(δ)]
+

2A1,1 · [α + ρ(δ)]

c[ρ(δ) + R(δ)]2
ue−R(δ)u

+
A1,1 · [α− R(δ)]
c[ρ(δ) + R(δ)]

u2e−R(δ)u, u ≥ 0. (33)

Next, we give the numerical simulation of Φ0(u, δ), Φ1(u, δ) and Φ2(u, δ) to illustrate the effect
of the related parameters on the generalized Gerber–Shiu discounted penalty function by Matlab
(Version: matlab2016a; Manufacturer: The MathWorks, Inc.; Natick, Massachusetts 01760 USA)

Example 1. Suppose W(x, y) = 1, then β = 1. We give the influence of the relevant parameters on the
function Φ0(u, δ), Φ1(u, δ) and Φ2(u, δ). See Figures 1–4.

It is easy to see that the images we get from Figures 1–4 are the opposite of the images some
scholars get from the traditional classical risk model. For example, in Figure 1, Φ0(u, δ) is the Laplace
transform of the ruin time. Φ0(u, δ) goes down as c increases. This means that the higher the premium
income rate c is, the smaller the function Φ0(u, δ) is. The reason is that e−δτ is a decreasing function
of τ. Increased premiums mean greater ruin time τ, which in turn leads to smaller functions e−δτ .
Similarly, τe−δτ and τ2e−δτ are also a subtractive function of τ when τ is large. Thus, Φ1(u, δ) and
Φ2(u, δ) go down as c increases. The same conclusion appears in Figures 2–4. We are not explain it one
more time in the following Figures 5–8.
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Figure 1. Set λ = 0.6, α = 0.8, δ = 0.05. (a) The influence of the parameter c on the function Φ0(u, δ).
(b) The influence of the parameter c on the function Φ1(u, δ). (c) The influence of the parameter c on
the function Φ2(u, δ).

0 5 10 15

u

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Φ
0
(u

,δ
)

λ=0.4
λ=0.5
λ=0.6

(a)

0 5 10 15

u

0

0.5

1

1.5

2

2.5

Φ
1
(u

,δ
)

λ=0.4
λ=0.5
λ=0.6

(b)

0 5 10 15

u

0

5

10

15

20

25

30

Φ
2
(u

,δ
)

λ=0.4
λ=0.5
λ=0.6

(c)

Figure 2. Set c = 1, α = 0.8, δ = 0.05. (a) The influence of the parameter λ on the function Φ0(u, δ).
(b) The influence of the parameter λ on the function Φ1(u, δ). (c) The influence of the parameter λ on
the function Φ2(u, δ).
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Figure 3. Set c = 1, λ = 0.6, δ = 0.05. (a) The influence of the parameter α on the function Φ0(u, δ).
(b) The influence of the parameter α on the function Φ1(u, δ). (c) The influence of the parameter α on
the function Φ2(u, δ).
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Figure 4. Set c = 1, λ = 0.6, α = 0.8. (a) The influence of the parameter δ on the function Φ0(u, δ). (b)
The influence of the parameter δ on the function Φ1(u, δ). (c) The influence of the parameter δ on the
function Φ2(u, δ).

Example 2. Suppose W(x, y) = y, then β =
1
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function Φ0(u, δ), Φ1(u, δ) and Φ2(u, δ). See Figures 5–8.
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Figure 5. Set λ = 0.6, α = 0.8, δ = 0.05. (a) The influence of the parameter c on the function Φ0(u, δ).
(b) The influence of the parameter c on the function Φ1(u, δ). (c) The influence of the parameter c on
the function Φ2(u, δ).
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Figure 6. Set c = 1, α = 0.8, δ = 0.05. (a) The influence of the parameter λ on the function Φ0(u, δ).
(b) The influence of the parameter λ on the function Φ1(u, δ). (c) The influence of the parameter λ on
the function Φ2(u, δ).
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Figure 7. Set c = 1, λ = 0.6, δ = 0.05. (a) The influence of the parameter α on the function Φ0(u, δ).
(b) The influence of the parameter α on the function Φ1(u, δ). (c) The influence of the parameter α on
the function Φ2(u, δ).
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Figure 8. Set c = 1, λ = 0.6, α = 0.8. (a) The influence of the parameter δ on the function Φ0(u, δ).
(b) The influence of the parameter δ on the function Φ1(u, δ). (c) The influence of the parameter δ on
the function Φ2(u, δ).

4. Conclusions

In this paper, we discuss a generalized Gerber–Shiu discounted penalty function, which relies
on the moment of the time to ruin under the compound Poisson risk model. We present a recursion
algorithm for calculating the generalized Gerber–Shiu discounted penalty function by Laplace
transform and renewal theory when the claim amounts are subject to an exponential distribution.
Furthermore, we derive some explicit expressions of the generalized Gerber–Shiu discounted penalty
function for n = 0, 1, 2. In addition, we also give numerical examples to explain the effects of
parameters c, λ, α and δ on the generalized Gerber–Shiu discounted penalty function Φ0(u, δ), Φ1(u, δ)

and Φ2(u, δ). It is very easy to see the effects of these parameters on the generalized Gerber–Shiu
discounted penalty function from Figures 1–8. The insurance company can bring the real claim data
into the model for numerical simulation and obtain relevant parameters, so that the ruin probability,
the Laplace transform of the ruin time and the discounted expected time to ruin can be calculated.
The acquisition of these actuarial quantities will effectively improve the operating level of the insurance
company.
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