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Abstract: The aim of this paper is to generalize the F -contractive condition in the framework of
α− ν-complete modular b-metric spaces. Some results in ordered modular b-metric spaces are also
presented. Moreover, an illustrative example and some related applications are presented to support
the obtained results.
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1. Introduction

The concept of a b-metric space has been introduced by Bakhtin [1] and Czerwik [2,3]. So far,
many interesting results about the existence of fixed points in b-metric spaces have been presented
(see, e.g., [4–18].)

Definition 1 ([2]). Let Ω be a nonempty set and s ≥ 1 be a given real number. A function B : Ω×Ω→ [0, ∞)

is a b-metric on Ω if, for all ρ, $, σ ∈ Ω, the following assertions hold:

(b1) B(ρ, $) = 0 iff ρ = $;
(b2) B(ρ, $) = B($, ρ);
(b3) B(ρ, σ) ≤ s[B(ρ, $) + B($, σ)].

The pair (Ω, B) is called a b-metric space.

Note that a b-metric is not continuous in its two variables. On the other hand, a modular metric
space is an applicable extension of classical modulars over linear spaces. The concept of a modular
metric space has been introduced in [19–22]. Here, we deal with modular metric spaces as the nonlinear
version of the classical one introduced by Nakano [23] on a vector space and a modular function space
presented by Musielak [24] and Orlicz [25].

Let Ω be a nonempty set and let ξ : (0, ∞)×Ω×Ω → [0, ∞] be a function. For simplicity, we
will write

ξλ(ρ, $) = ξ(λ, ρ, $),

for all λ > 0 and for all ρ, $ ∈ Ω.
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Definition 2 ([19,20]). A function ξ : (0, ∞)×Ω×Ω → [0, ∞] is called a modular metric on Ω if, for all
ρ, $, σ ∈ Ω and λ > 0, the following assertions hold:

(i) ρ = $ iff ξλ(ρ, $) = 0;
(ii) ξλ(ρ, $) = ξλ($, ρ);
(iii) ξλ+µ(ρ, $) ≤ ξλ(ρ, σ) + ξµ(z, $).

A modular metric ξ on Ω is called regular if the following weaker version of (i) holds:

ρ = $ iff ξλ(ρ, $) = 0 for some λ = ω > 0.

Ege and Alaca in [26] introduced the notion of modular b-metric spaces as follows.

Definition 3 ([26]). Let Ω be a nonempty set and s ≥ 1. A mapping ν : (0, ∞)×Ω×Ω→ [0, ∞] is called
a modular b-metric, if for all ρ, $, σ ∈ Ω and λ > 0, we have the following assertions:

(i) νλ(ρ, $) = 0 iff ρ = $;
(ii) νλ(ρ, $) = νλ($, ρ);
(iii) νλ+µ(ρ, $) ≤ s[νλ(ρ, σ) + νµ(z, $)] for all λ, µ > 0.

Then, we say that (Ω, ν) is a modular b-metric space.

Definition 4. Let (Ω, ν) be a modular b-metric space. Let M be a subset of Ω and {ρn}n∈N be a sequence in Ω.
Then, we have the following statements:

(i) {ρn}n∈N is called ν-convergent to ρ if there is λ > 0 (maybe it depends on {ρn} and ρ), such that
νλ(ρn, ρ)→ 0, as n→ ∞. ρ will be called the ν-limit of (ρn).

(ii) {ρn}n∈N is called ν-Cauchy if there is λ > 0 (maybe it depends on the sequence) such that νλ(ρm, ρn)→ 0,
as m, n→ ∞.

(iii) M is called ν-complete if any ν-Cauchy sequence in M is ν-convergent in M.
(iv) The function f : (Ω, ν)→ (Ω, ν) is called ν-continuous if νλ( f ρn, f ρ)→ 0, whenever νλ(ρn, ρ)→ 0.

Example 1. Let (Ω, ξ) be an MbMS and let p ≥ 1 be a real number. Take νλ(ρ, $) = (ξλ(ρ, $))p. Using the
convexity of f (t) = tp for t ≥ 0, by Jensen inequality, we have

(a + b)p ≤ 2p−1(ap + bp) (1)

for nonnegative real numbers a, b. Thus, (Ω, ν) is an MbMS with s = 2p−1.

Lemma 1. Let (Ω, ν) be an MbMS. Suppose that {ρn} and {$n} ν-converge to ρ and $, respectively. Then,

1
s2 νλ(ρ, $) ≤ lim sup

n−→∞
νλ

4
(ρn, $n)

and

lim sup
n−→∞

νλ(ρn, $n) ≤ s2νλ
4
(ρ, $).

In particular, if ρ = $, then lim
n−→∞

νλ(ρn, $n) = 0. Moreover, for each σ ∈ Ω, we have

1
s

νλ(ρ, σ) ≤ lim sup
n−→∞

νλ
2
(ρn, σ)
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and

lim sup
n−→∞

νλ(ρn, σ) ≤ sνλ
2
(ρ, σ).

Proof. (a) Using the triangular inequality, one writes

νλ(ρ, $) ≤ s(νλ
2
(ρ, ρn) + νλ

2
(ρn, $))

≤ s(νλ
2
(ρ, ρn) + s(νλ

4
(ρn, $n) + νλ

4
($n, $)))

and

νλ(ρn, $n) ≤ s(νλ
2
(ρn, ρ) + s(νλ

4
(ρ, $) + νλ

4
($, $n))).

As n→ ∞, we have

νλ(ρ, $) ≤ s2(lim sup
n−→∞

νλ
4
(ρn, $n)).

Taking the upper limit as n→ ∞ in the second inequality implies that

lim sup
n−→∞

νλ(ρn, $n) ≤ s2(νλ
4
(ρ, $)).

(b) Using the triangular inequality, one has

νλ(ρ, σ) ≤ s(νλ
2
(ρ, ρn) + νλ

2
(ρn, σ))

and

νλ(ρn, σ) ≤ s(νλ
2
(ρn, ρ) + νλ

2
(ρ, σ)).

We find that

νλ(ρ, σ) ≤ s(lim sup
n−→∞

νλ
2
(ρn, σ))

and

lim sup
n−→∞

νλ(ρn, σ) ≤ s(νλ
2
(ρ, σ)).

Definition 5 ([27]). Given α : Ω×Ω→ [0, ∞), where Ω is a nonempty set, the self-mapping T on Ω is said
to be α-admissible if

ρ, $ ∈ Ω, α(ρ, $) ≥ 1 =⇒ α(Tρ, T$) ≥ 1.

Definition 6 ([28]). Given α : Ω × Ω → [0, ∞), the mapping T : Ω → Ω is said to be triangular
α-admissible if

(i) ρ, $ ∈ Ω, α(ρ, $) ≥ 1 =⇒ α(Tρ, T$) ≥ 1;

(ii) ρ, $, σ ∈ Ω,

{
α(ρ, σ) ≥ 1
α(σ, $) ≥ 1

=⇒ α(ρ, $) ≥ 1.



Mathematics 2019, 7, 887 4 of 16

Lemma 2 ([28]). Let f be a triangular α-admissible mapping. Assume that there is ρ0 ∈ Ω such that
α(ρ0, f ρ0) ≥ 1. Define ρn = f nρ0. Then,

α(ρm, ρn) ≥ 1 for all m, n ∈ N with m < n.

Definition 7. Let (Ω, d) be a metric space and let α : Ω×Ω→ [0, ∞) be a function. The metric space Ω is
said to be α-complete if every Cauchy sequence {ρn} in Ω with α(ρn, ρn+1) ≥ 1 for all n ∈ N, converges in Ω.

Remark 1. If (Ω, d) is a complete metric space, then Ω is also an α-complete metric space. The converse is
not true.

Definition 8 ([29]). Let (Ω, d) be a metric space. Given α : Ω×Ω → [0, ∞), the mapping T : Ω → Ω is
said to be α-continuous on (Ω, d), if for given ρ ∈ Ω and sequence {ρn},

ρn → ρ as n→ ∞ and α(ρn, ρn+1) ≥ 1 for all n ∈ N,

we have Tρn → Tρ as n→ ∞.

We extend Definitions 7 and 8 to modular b-metric spaces.

Definition 9. Let (Ω, ν) be an MbMS and Υ be a self-mapping on Ω. Then, we have the following statements:

(i) (Ω, ν) is said to be α− ν-complete if every ν-Cauchy sequence {ρn} in Ω with α(ρn, ρn+1) ≥ 1 for all
n ∈ N is ν-convergent to some ρ in Ω.

(ii) Υ is said to be α− ν-continuous on (Ω, ν), if for a ν-convergent sequence {ρn} to some ρ ∈ Ω so that
α(ρn, ρn+1) ≥ 1 for all n ∈ N, we have {Υρn} is ν-convergent to Υρ.

Wardowski [30] presented a new type of contractions called F -contractions and proved a new
fixed point theorem as a generalization of the Banach contraction principle.

In this paper, we prove some fixed point results for generalized F -contractive mappings in the
setup of modular b-metric spaces. An example is presented to verify the effectiveness of our obtained
results. Some applications are also presented at the end.

2. Main Results

Motivated by Wardowski [30] (see also [31]), we denote by ∆ the set of all functionsF : (0, ∞)→ R
such that:

(F1) F is a continuous and strictly increasing mapping;
(F2) for each sequence {tn} ⊆ (0, ∞), lim

n→∞
tn = 0 iff lim

n→∞
F (tn) = −∞.

Example 2. Let t > 0. The following functions:

F (t) = ln(t);

F (t) = 1− 1
tp (with p > 0);

F (t) = 1− 1
et−1 ;

F (t) = 1
e−t−et

belong to ∆.
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The class ∆ is different from the class of functions introduced by Wardowski [30]. It suffices to
U (t) = − 1

t + t for t > 0. Note that limα→0+ αkU (α) = −∞ (0 < k < 1), that is, U ∈ ∆, but it is not
a Wardowski mapping.

Let Θ denote the set of all functions ϑ : R→ R satisfying:

(ϑ1) lim
n→∞

ϑn(t) = −∞ for all t > 0;

(ϑ2) ϑ(t) < t for all t ≥ 0;
(ϑ3) ϑ is an increasing continuous function.

Example 3. The following functions: ϑ(t) = t− δ (with δ > 0) and ϑ = 3
√

t− 1 are elements in Θ.

Definition 10. Let (Ω, ν) be an MbMS and Υ be a self-mapping on Ω. Given α : Ω×Ω→ [0, ∞). We say that
Υ is an α− ϑ-F -contraction if the following inequality:

F
(
s3 · νλ(Υρ, Υ$)

)
≤ ϑ

(
F (νλ(ρ, $)

)
, (2)

holds for all ρ, $ ∈ Ω with α(ρ, $) ≥ 1 and νλ(Υρ, Υ$) > 0, where F ∈ ∆ and ϑ ∈ Θ.

From now on, assume that (Ω, ν) is regular.

Theorem 1. Let α : Ω×Ω→ [0, ∞) be a function and let (Ω, ν) be an α-νλ-complete MbMS. Assume that
Υ : Ω→ Ω is such that

(i) Υ is triangular α-admissible;
(ii) Υ is an α-ϑ-F -contraction;
(iii) there is ρ0 ∈ Ω such that α(ρ0, Υρ0) ≥ 1;
(iv) Υ is α− ν-continuous.

Then, Υ has a fixed point. In addition, Υ has a unique fixed point, provided that α(ρ, $) ≥ 1 for all
ρ, $ ∈ Fix(Υ).

Proof. Let η0 ∈ Ω satisfy α(η0, Υη0) ≥ 1. Define a sequence {ηn} by ηn = Υnη0 = Υηn−1. Since Υ is
α-admissible, α(η1, η2) = α(Υη0, Υη1) ≥ 1. Continuing this process, we have

α(ηn−1, ηn) ≥ 1

for all n ∈ N. According to the triangular approach in assumption (i), one writes that

α(ηm, ηn) ≥ 1 for all m, n ∈ N, m 6= n. (3)

Suppose that there is n0 ∈ N so that ηn0 = ηn0+1. Then, ηn0 is a fixed point of Υ. Hence, suppose
that ηn 6= ηn+1, i.e., νλ(Υηn−1, Υηn) > 0 for all n ∈ N.

We will show that
lim

n→∞
νλ(ηn, ηn+1) = 0, (4)

for all λ > 0. Since Υ is an α-ϑ-F -contraction, we have

F
(
νλ(ηn, ηn+1)

)
= F

(
νλ(Υηn−1, Υηn)

)
≤ ϑ

(
F (νλ(ηn−1, ηn)

)
,

which implies that
F
(
νλ(ηn, ηn+1)

)
≤ ϑn(F (νλ(η0, η1)

)
< F (νλ(η0, η1). (5)
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Taking the limit as n→ ∞ in Label (5) and using (ϑ1), we have limn→∞ F
(
νλ(ηn, ηn+1)

)
= −∞.

In view of F ∈ ∆, we get
lim

n→∞
νλ(ηn, ηn+1) = 0.

Hence, Label (4) is proved for all λ > 0.
Next, we show that {ηn} is a ν-Cauchy sequence in Ω, that is, there is some λ > 0 so that

limn,m νλ(ηmi , ηni ) = 0.
Suppose there is ε > 0 for which for all λ > 0, we find {ηmi} and {ηni} of {ηn} so that ni is the

smallest index corresponding to

ni > mi > i and νλ(ηmi , ηni ) ≥ ε, (6)

for all λ > 0. This means that
νλ(ηmi , ηni−1) < ε. (7)

From Label (6) and using the modular inequality, we get

ε ≤ η4λ(ηmi , ηni ) ≤ sη2λ(ηmi , ηmi+1) + s[sνλ(ηmi+1, ηni+1) + sνλ(ηni+1, ηni )].

Letting i→ ∞ and using Label (4), we get

ε

s2 ≤ lim sup
i→∞

νλ(ηmi+1, ηni+1). (8)

We also have
νλ(ηmi , ηni ) ≤ sνλ

2
(ηmi , ηni−1) + sνλ

2
(ηni−1, ηni ).

Then, from (4) and (7), we get that

lim sup
i→∞

νλ(ηmi , ηni ) ≤ sε. (9)

Because of (3), we can apply (13) to conclude that

F (s3 · νλ(ηmi+1, ηni+1)) = F (s2 · νλ(Υηmi , Υηni ))

≤ ϑ(F (νλ(ηmi , ηni ))). (10)

Now, taking i→ ∞ in (10) and using (F1), (8) and (9), we have

F
(
sε
)
= F

(
s3 · ε

s2

)
≤ F (s3 · lim sup

i→∞
νλ(ηmi+1, ηni+1))

≤ ϑ(F (lim sup
i→∞

νλ(ηmi , ηni )))

≤ ϑ(F
(
sε
)
) < F

(
sε
)
,

which is a contradiction due to the property (ϑ2).
Thus, {ηn} is ν-Cauchy in the MbMS (Ω, νλ), that is, α− ν-complete, so since

α(ηn−1, ηn) ≥ 1

for all n ∈ N, the sequence {ηn} is ν-convergent to some z ∈ Ω. Thus, there is some λ > 0
(without loss of generality, we choose λ = ω

2 > 0, where ω was given to ensure the regularity
of (Ω, ν)), so that lim

n→∞
νλ(ηn, z) =: lim

n→∞
νω

2
(ηn, z) = 0.
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If z 6= Υz, then, using Lemma 1 and the α− ν-continuity of Υ, we have

νω(z, Υz) ≤ s[νω
2
(z, Υηn) + νω

2
(Υηn, Υz)].

Taking the limit as n→ ∞ and using again α− ν-continuity of Υ, we get that the the right-hand
side goes to 0, so νω(z, Υz) = 0. Using regularity of (Ω, ν), we obtain that z = Υz.

Let ρ, $ ∈ F ix(T) where ρ 6= $ and α(ρ, $) ≥ 1. We have

F
(
νλ(Υρ, Υ$)

)
≤ ϑ

(
F
(
νλ(ρ, $)

))
< F

(
νλ(ρ, $)

))
.

It is a contradiction. We deduce that ρ = $. Therefore, Υ has a unique fixed point.

An MbMS (Ω, ν) is said to have the α − ν-sequential limit comparison property if, for each
sequence {ηn} in Ω so that α(ηn, ηn+1) ≥ 1 and ν-converges to ρ ∈ Ω, one has α(ηn, ρ) ≥ 1 for all n ∈ N.

Theorem 2. Let α : Ω×Ω→ [0, ∞) be a function and let (Ω, ν) be an α− νλ-complete MbMS. Let Υ : Ω→
Ω satisfy the following conditions:

(i) Υ is triangular α-admissible;
(ii) Υ is an α− ϑ-F -contraction;
(iii) there is η0 ∈ Ω such that α(η0, Υη0) ≥ 1;
(iv) (Ω, ν) enjoys the α− ν-sequential limit comparison property.

Then, Υ has a fixed point. Furthermore, this fixed point is unique provided that α(ρ, $) ≥ 1 for all
ρ, $ ∈ Fix(Υ).

Proof. Let η0 ∈ Ω be so that α(η0, Υη0) ≥ 1. As in the proof of Theorem 1, one has

α(ηn, ηn+1) ≥ 1 and ηn → ρ∗ as n→ ∞,

where ηn+1 = Υηn. Thus,
α(ηn+1, ρ∗) ≥ 1

for all n ∈ N. For λ = ω > 0, recall that (Ω, ν) is regular. By (13), we find that

F
(
νω(Υηn, Υρ∗)

)
≤ ϑ

(
F
(
νω(ηn, ρ∗)

))
,

which implies
F
(
νω(Υηn, Υρ∗)

)
≤ F

(
νω(ηn, ρ∗)

)
.

Using (F1), we have
νω(ηn+1, Υρ∗) ≤ νω(ηn, ρ∗).

Suppose that ρ∗ 6= Υρ∗. By Lemma 1, we have

1
s

νω(ρ
∗, Υρ∗) ≤ lim sup

n→∞
νω(ηn+1, Υρ∗) ≤ lim sup

n→∞
νω(νn, ρ∗) = 0.

Thus, νω(ρ∗, Υρ∗) = 0. The regularity of (Ω, ν) implies that ρ∗ = Υρ∗. Thus, ρ∗ is a fixed point
of Υ. Its uniqueness comes as in Theorem 1.

Taking ϑ(t) = t− τ (τ > 0), an extension of Wardowski’s result (Theorem 2.1 [30]) to the class of
an MbMS is as follows.
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Corollary 1. Let (Ω, ν) be an α− ν-complete MbMS and Υ : Ω → Ω be a self-mapping. Suppose that the
following inequality:

τ +F
(
s3 · νλ(Υρ, Υ$)

)
≤ F

(
νλ(ρ, $)

)
holds for all ρ, $ ∈ Ω with νλ(Υρ, Υ$) > 0, where τ > 0. Then, Υ has a fixed point, if it satisfies the
following conditions:

(iii) Υ is α− ν-continuous, or
(iii′) (Ω, ν) enjoys the α− ν-sequential limit comparison property.

By considering various functions F ∈ ∆ given in [30] and ϑ ∈ Θ, other results could be derived.
We present an illustrative example.

Example 4. Let Ω = [0, ∞). Take the modular b-metric

νλ(ρ, $) =


(ρ2+$2)2

λ , if ρ 6= $,

0, if ρ = $,

for all ρ, $ ∈ Ω and λ > 0. Define Υ : Ω→ Ω, α : Ω×Ω→ [0, ∞), ϑ : R→ R and F : (0, ∞)→ R by

Υρ =



2ρ2 + 1, if ρ ∈ [0, 0.2),

1
4 ρ2, if ρ ∈ [0.2, 1],

3ρ− 1, if ρ ∈ (1, 2),

6ρ10 if ρ ∈ [2, ∞),

,

α(ρ, $) =


1, if ρ, $ ∈ [0.2, 1],

0, otherwise,

ϑ(ρ) =


ρ3 − 1, if ρ ∈ (−∞, 1],

ρ− 1, otherwise,

and F (t) = − 1
t + t, respectively.

Note that (Ω, ν) is a modular b-metric space with s = 2. Here, Υ is triangular α-admissible.
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Let {ηn} be in Ω so that α(ηn, ηn+1) ≥ 1 with ηn → ρ as n → ∞, then ηn ∈ [0.2, 1] for all n ∈ N.
Thus, ρ ∈ [0.2, 1]. This yields that α(ηn, ρ) ≥ 1 for all n ∈ N. In addition, α(1, Υ1) ≥ 1. Moreover,
− 1

8ρ
256

+ 8ρ
256 ≤ (− 1

ρ + ρ)3 − 1 for all ρ ≥ 0.2. Now, for all ρ, $ with α(ρ, $) ≥ 1, we have

F (s3νλ(Υρ, Υ$)) = − 1
s3νλ(Υρ, Υ$)

+ s3νλ(Υρ, Υ$)

= − 1

8 (Υρ2+Υ$2)2

λ

+ 8
(Υρ2 + Υ$2)2

λ

= − 1

8 (( 1
4 ρ2)2+( 1

4 $2)2)2

λ

+ 8
(( 1

4 ρ2)2 + ( 1
4 $2)2)2

λ

≤ − 1

8 (( 1
4 ρ)2+( 1

4 $)2)2

λ

+ 8
(( 1

4 ρ)2 + ( 1
4 $)2)2

λ

≤ − 1

8 (ρ2+$2)2
λ

256

+
8 (ρ2+$2)2

λ

256

≤ − 1
8νλ(ρ,$)

256

+
8νλ(ρ, $)

256

≤ [− 1
νλ(ρ, $)

+ νλ(ρ, $)]3 − 1

= ϑ(F (νλ(ρ, $))).

Thus, Υ is an α − ϑ-F contraction. All the hypotheses of Theorem 2 are verified, so Υ has a
fixed point.

A self-mapping Υ has the property P if Fix(Υn) = Fix(Υ) for all n ∈ N.

Theorem 3. Let (Ω, ν) be an MbMS and Υ : Ω → Ω be an α− ν-continuous self-mapping. Assume that
there are ϑ ∈ Θ and F ∈ ∆ such that

F
(
s3νλ(Υρ, Υ2ρ)

)
≤ ϑ(F

(
νλ(ρ, Υρ)

)
) (11)

for all ρ ∈ Ω with νλ(Υρ, Υ2ρ) > 0 . If Υ is α-admissible and there exists η0 ∈ Ω in order that α(η0, Υη0) ≥ 1,
then Υ has the property P.

Proof. Let n > 1. Assume contrarily that w ∈ Fix(Υn) and w /∈ Fix(Υ). Then, νλ0(w, Υw) > 0 for
some λ0 > 0. Now, we have

F (νλ0(w, Υw)) = F (νλ0(Υ(Υ
n−1w)), Υ2(Υn−1w)))

≤ ϑ(F (νλ0(Υ
n−1w), Υnw)))

≤ ϑ2(F (νλ0(Υ
n−2w), Υn−1w))) ≤ · · ·

≤ ϑn(νλ0(w, Υw)).

Taking the limit as n→ ∞ in the above inequality, we haveF (νλ0(w, Υw)) = −∞. Hence, by (F2),
we get νλ0(w, Υw) = 0, which is a contradiction. Therefore, Fix(Υn) = Fix(Υ) for all n ∈ N.

3. Results in Ordered Modular b-Metric Spaces

Let (Ω, ν,�) be a partially ordered MbMS and let Υ be a self-mapping on Ω.
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Definition 11. (i) (Ω, ν) is said to be � −ν-complete if every ν-Cauchy sequence {ρn} in Ω with ρn � ρn+1

for all n ∈ N, ν-converges in Ω.
(ii) Υ is said to be � −ν-continuous on (Ω, ν), if, for a ν-convergent sequence {ρn} to some ρ ∈ Ω so that
ρn � ρn+1 for all n ∈ N, we have {Υρn} is ν-convergent to Υρ.
(iii) (Ω, ν) is said to have the � −ν-sequential limit comparison property if, for each sequence {ηn} in Ω so
that ηn � ηn+1 and is ν-convergent to ρ ∈ Ω, one has ηn � ρ for all n ∈ N.

Now, we say that Υ is an �-ϑ-F -contraction if for all ρ, $ ∈ Ω with ρ � $ and νλ(Υρ, Υ$) > 0,
we have

F
(
s3 · νλ(Υρ, Υ$)

)
≤ ϑ

(
F (νλ(ρ, $)

)
, (12)

where F ∈ ∆ and ϑ ∈ Θ.
Using the above statements and applying Theorem 1, we have the following result.

Theorem 4. Let (Ω, ν,�) be an � −ν-complete partially ordered MbMS. Assume that

(i) Υ is a � −ϑ-F -contraction;
(ii) Υ is nondecreasing;
(iii) there is η0 ∈ Ω so that η0 � Υη0;
(iv) either Υ is � −ν-continuous, or (Ω, ν,�) possesses the � −ν-sequential limit comparison property.

Then, Υ has a fixed point.

Again, we apply Theorem 2 to state the following result.

Theorem 5. Let (Ω, ν,�) be an � −ν-complete partially ordered MbMS. Assume that

(i) the inequality (11) holds for all ρ ∈ Ω with νλ(Υρ, Υ2ρ) > 0.
(ii) Υ is nondecreasing;
(iii) there is η0 ∈ Ω such that η0 � Υη0;
(iv) either Υ is � −ν-continuous, or (Ω, ν,�) possesses the � −ν-sequential limit comparison property.

Then, Υ has the property P.

4. Applications

In [17], Hussain and Salimi presented the relationship between modular metrics and fuzzy metrics
and deduced certain fixed point results in triangular partially ordered fuzzy metric spaces.

Definition 12 ([32]). A binary operation ? :
[
0, 1
]
× [0, 1

]
→ [0, 1

]
is called a continuous t-norm if it satisfies

the following assertions:(
T1
)

? is commutative and associative;(
T2
)

? is continuous;(
T3
)

a ? 1 = a for all a ∈
[
0, 1
]
;(

T4
)

a ? b ≤ c ? d when a ≤ c and b ≤ d, with a, b, c, d ∈
[
0, 1
]
.

Definition 13. A 3-tuple
(
X, M, ∗

)
is said to be a fuzzy metric space if X is an arbitrary set, ∗ is a continuous

t-norm and M is a fuzzy set on X2 ×
(
0, ∞

)
satisfying the following conditions, for all x, y, z ∈ X and for all

t, s > 0,

(i) M
(

x, y, t
)
> 0;

(ii) M
(

x, y, t
)
= 1 for all t > 0 if and only if x = y;

(iii) M
(

x, y, t
)
= M

(
y, x, t

)
;
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(iv) M
(

x, y, t
)
∗M

(
y, z, s

)
≤ M

(
x, z, t + s

)
;

(v) M
(

x, y, .
)

:
(
0, ∞

)
→ [0, 1

]
is continuous.

The function M
(

x, y, t
)

denotes the degree of nearness between x and y with respect to t.

Definition 14 ([33]). A fuzzy b-metric space is an ordered triple
(
X, B, ?

)
such that X is a nonempty set,

? is a continuous t-norm and B is a fuzzy set on X × X ×
(
0, ∞

)
satisfying the following conditions,

for all x, y, z ∈ X and for all t, s > 0:(
F1
)

B
(

x, y, t
)
> 0;(

F2
)

B
(

x, y, t
)
= 1 if and only if x = y;(

F3
)

B
(

x, y, t
)
= B

(
y, x, t

)
;(

F4
)

B
(

x, y, t
)
? B
(
y, z, s

)
≤ B

(
x, z, b

(
t + s

))
where b ≥ 1;(

F5
)

B
(

x, y, ·
)

:
(
0, ∞

)
→
(
0, 1
]

is left-continuous.

Definition 15 ([33]). Let
(
X, B, ?

)
be a fuzzy b-metric space (in short, FbMS). Then,

(i) a sequence {xn} converges to x ∈ X, if and only if limn→∞ B
(
xn, x, t

)
= 1 for all t > 0;

(ii) a sequence {xn} in X is a Cauchy sequence if and only if, for all ε ∈
(
0, 1
)

and for all t > 0, there exists n0

such that B
(

xn, xm, t
)
> 1− ε for all m, n ≥ n0;

(iii) the fuzzy b-metric space is called complete if every Cauchy sequence converges to some x ∈ X.

Definition 16 ([33]). The fuzzy b-metric space
(
X, B, ∗

)
is called triangular whenever

1
B
(

x, y, t
) − 1 ≤ s

[ 1
B
(
x, z, t

) − 1 +
1

B
(
z, y, t

) − 1
]

for all x, y, z ∈ X and for all t > 0.

Motivated by Lemmas 33 and 34 of [34], we present the following.

Remark 2. Let
(
X, B, ∗

)
be a triangular fuzzy b-metric space. Define ν : X × X ×

(
0, ∞

)
→ [0, ∞

)
by

ν
(

x, y, t
)
= s[ 1

B
(

x,y,t
) − 1]. Then, ν is a modular b-metric.

In view of Remark 2 and applying the results established in Section 2, we can deduce the following
results in fuzzy b-metric spaces.

Definition 17. Let
(
Ω, B, ∗

)
be an FbMS and Υ be a self-mapping on Ω. We say that Υ is a fuzzy

α-ϑ-F -contraction if, for all ρ, $ ∈ Ω with α(ρ, $) ≥ 1 and B(Υρ, Υ$, t) < 1 (t > 0), we have

F
( s4

B
(
Υρ, Υ$, t

) − s4) ≤ ϑ
(
F ( s

B(ρ, $, t
− s)

)
, (13)

where F ∈ ∆ and ϑ ∈ Θ.

In addition, note that Definition 9 could be derived for FbMS.

Theorem 6. Let α : Ω×Ω→ [0, ∞) be a function and let
(
Ω, B, ∗

)
be an α-ν-complete FbMS. Assume that

Υ : Ω→ Ω is such that

(i) Υ is triangular α-admissible;
(ii) Υ is a fuzzy α-ϑ-F -contraction;
(iii) there is ρ0 ∈ Ω such that α(ρ0, Υρ0) ≥ 1;
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(iv) Υ is α− B-continuous.

Then, Υ has a fixed point. In addition, Υ has a unique fixed point, provided that α(ρ, $) ≥ 1 for all ρ, $ ∈ Fix(Υ).

Proof. It follows from Theorem 1.

Theorem 7. Let α : Ω×Ω→ [0, ∞) be a function and let
(
X, B, ∗

)
be an α-ν-complete FbMS. Let Υ : Ω→ Ω

satisfy the following conditions:

(i) Υ is triangular α-admissible;
(ii) Υ is a fuzzy α-ϑ-F -contraction;
(iii) there is η0 ∈ Ω such that α(η0, Υη0) ≥ 1;
(iv)

(
Ω, B, ∗

)
enjoys the α− B-sequential limit comparison property.

Then, Υ has a fixed point. Furthermore, this fixed point is unique provided that α(ρ, $) ≥ 1 for all
ρ, $ ∈Fix(Υ).

Proof. It follows from Theorem 2.

Theorem 8. Let
(
X, B, ∗

)
be an FbMS and Υ : Ω → Ω be an α− ν-continuous self-mapping. Assume that

there are ϑ ∈ Θ and F ∈ ∆ such that

F
( s4

B
(

Υρ,Υ2ρ,t
) − s4)

)
≤ ϑ

(
F
( s

B
(

ρ,Υρ,t
) − s

))
(14)

for all ρ ∈ Ω with B(Υρ, Υ2ρ, t) < 1 . If Υ is α-admissible and there exists η0 ∈ Ω in order that α(η0, Υη0) ≥ 1,
then Υ has the property P.

Proof. It follows from Theorem 3.

Remark 3. The analogue of Theorem 4 and Theorem 5 could be derived easily in the context of partially ordered
fuzzy b-metric spaces.

Now, we consider the following boundary value problem:{
y′′(x) = f (x, y(x)), x ∈ [0, 1],

y(0) = y(1) = 0,

where f : [0, 1]×R −→ R is a continuous function.
The above equation can be transformed to the following Fredholm integral equation:

y(x) = −
∫ 1

0
K(x, t) f (t, y(t))dt, (15)

where the kernel is given by

K(x, t) =


t(1− x), if t ∈ [0, x],

x(1− t), if t ∈ [x, 1].

See [35] for details.
Now, to give an existence theorem for a solution of (15) that belongs to X = C(I,R) (the set of

continuous real functions defined on I = [0, 1]), note that the space X endowed with the b-metric
given by

d(x, y) = max
t∈I
| x(t)− y(t) |2
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for all x, y ∈ X is a b-complete b-metric space (s = 22−1).
Take on X the partial order � given by

x � y⇐⇒ x(t) ≤ y(t),

for all x, y ∈ X and t ∈ I.
For ρ ∈ X, define

‖ρ‖∞ = sup
t∈I
|ρ(t)|.

Here, (X, ‖ · ‖∞) is a Banach space. The modular metric induced by this norm is

µλ(ρ, $) =
‖ρ− $‖∞

λ
= max

t∈I

|ρ(t)− $(t)|
λ

, λ > 0,

for all ρ, $ ∈ X. We consider the modular b-metric ν given by

νλ(ρ, $) =
‖ρ− $‖2

∞
λ2 = max

t∈I

|ρ(t)− $(t)2

λ2 .

Define Υ : X → X by

Υρ(x) = −
∫ 1

0
K(x, t) f (t, ρ(t))dt, ρ ∈ X, x ∈ I.

Clearly, a function u ∈ X is a solution of (15) if and only if it is a fixed point of Υ.
Consider the following assumptions:

(C1) For all u, v ∈ R with u � v and for all t ∈ I,

∣∣∣ f (t, u)− f (t, v)
∣∣∣2 ≤ ‖u− v‖2

∞
8

.

(C2) There is η0 : I → R so that

η0(x) ≤ −
∫ 1

0
K(x, t) f (t, η0(t))dt, x ∈ I.

(C3) f (t, .) : R −→ R is nonincreasing for all t ∈ [0, 1].

Theorem 9. Assume that above assumptions (C1)− (C3) hold. Then, Equation (15) has a solution in X.

Proof. First, by assumption (C2), we have η0 � Υη0. Clearly, Υ is � −ν-continuous
and nondecreasing.
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To show that all the assumptions of Theorem 4 are satisfied, it remains to prove that Υ is an �
−ϑ-F -contraction. Let ρ, $ ∈ X with ρ � $. For each x ∈ I, we have

∣∣Υρ(x)− Υ$(x)
∣∣2 =

∣∣ ∫ 1

0
K(x, t) f (t, ρ(t))dt−

∫ 1

0
K(x, t) f (t, $(t))dt

∣∣2
=
∫ 1

0
(K(x, t)| f (t, ρ(t))− f (t, $(t))|)2 dt

≤
[ ∫ 1

0
|K(x, t)|2dt

][ ∫ 1

0
| f (t, ρ(t))dt− f (t, $(t))|2dt

]
≤
[ ∫ 1

0
|K(x, t)|2dt

] ∫ 1

0

||ρ(t)− $(t)||2∞
8

dt

≤
[ ∫ 1

0
|K(x, t)|2dt

] ||ρ− $||2∞
8

.

Via a careful calculation, we get that

∫ 1

0
|K(x, t)|2dt =

(1− x)2x3 + x2(1− x)3

3
, x ∈ [0, 1].

We obtain that

∣∣Υρ(x)− Υ$(x)
∣∣2 ≤ [

(1− x)2x3

3
+

x2(1− x)3

3
]
||ρ− $||2∞

8
. (16)

Taking the supremum on x ∈ [0, 1], we deduce that

∣∣Υρ− Υ$
∣∣2
∞ ≤

21
1000

||ρ− $||2∞
8

.

Now, one writes

ln(
s3
∣∣Υρ− Υ$

∣∣2
∞

λ2 ) = ln(
8
∣∣Υρ− Υ$

∣∣2
∞

λ2 )

≤ ln(
21

1000
) + ln(

‖ρ− $‖2
∞

λ2 )

≤ ln(
21

1000
) + ln(νλ(ρ, $)).

That is,
F
(
s3 · η(Υρ, Υ$)

)
≤ ϑ

(
F (νλ(ρ, $)

)
, (17)

where F (t) = ln t and ϑ(t) = t− δ with δ = − ln( 21
1000 ) > 0 (Example 3). Thus, all the hypotheses of

Theorem 4 are fulfilled and we deduce the existence of u ∈ X such that u = Υu.

5. Conclusions

We presented some fixed point results for generalized F -contractions in the setting of modular
b-metric spaces. We also established some related results in fuzzy b-metric spaces. At the end,
we resolved a Fredholm type integral equation.
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