Article

Fixed Points for a Pair of F-Dominated Contractive Mappings in Rectangular b-Metric Spaces with Graph

Tahair Rasham ${ }^{1, * ©}$, Giuseppe Marino ${ }^{2}$ and Abdullah Shoaib ${ }^{3}$ (C)
1 Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad 44000, Pakistan
2 Dipartimento di Matematica e Informatica, Universita della Calabria, 87036 Arcavacata di Rende (CS), Italy; giuseppe.marino@unical.it
3 Department of Mathematics and Statistics, Riphah International University, Islamabad 44000, Pakistan; bdullahshoaib15@yahoo.com
* Correspondence: tahir_resham@yahoo.com

Received: 8 June 2019; Accepted: 15 July 2019; Published: 23 September 2019

Abstract

Recently, George et al. (in Georgea, R.; Radenovicb, S.; Reshmac, K.P.; Shuklad, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005-1013) furnished the notion of rectangular b-metric pace (RBMS) by taking the place of the binary sum of triangular inequality in the definition of a b-metric space ternary sum and proved some results for Banach and Kannan contractions in such space. In this paper, we achieved fixed-point results for a pair of F-dominated mappings fulfilling a generalized rational F-dominated contractive condition in the better framework of complete rectangular b-metric spaces complete rectangular b-metric spaces. Some new fixed-point results with graphic contractions for a pair of graph-dominated mappings on rectangular b-metric space have been obtained. Some examples are given to illustrate our conclusions. New results in ordered spaces, partial b-metric space, dislocated metric space, dislocated b-metric space, partial metric space, b-metric space, rectangular metric spaces, and metric space can be obtained as corollaries of our results.

Keywords: fixed point; generalized F-contraction; α_{*}-dominated mapping; graphic contractions
MSC: 46Txx; 47H10; 54H25

1. Introduction and Preliminaries

Fixed-point theory is a basic tool in functional analysis. Banach [1] has shown significant result for contraction mappings. Due to its significance, a large number of authors have proved newsworthy of this result (see [1-28]). In the sequel George et al. [2] furnished the notion of rectangular b-metric space (RBMS) by taking the place of the binary sum of triangular inequality in the definition of a b-metric space ternary sum and proved some results for Banach and Kannan contractions in such space. Further recent results on rectangular b-metric spaces can be seen in [10,11]. In this paper, we achieved fixed-point results for a pair of α-dominated mappings fulfilling a generalized rational F-dominated contractive condition in complete rectangular b-metric spaces. Therefore, here, we investigate our results in a better framework of rectangular b-metric space. Some new fixed-point results with graphic contractions for a pair of graph-dominated mappings on rectangular b-metric space have been obtained. New results in ordered spaces, partial b-metric space, dislocated metric space, dislocated b-metric space, partial metric space, b-metric space, rectangular metric spaces, and metric space can be obtained as corollaries of our results. First, we give the precise definitions that we will use.

Definition 1 ([2]). Let Z be a nonempty set and let $d_{l}: Z \times Z \rightarrow[0, \infty)$ be a function, called a rectangular b-metric (or simply d_{l}-metric), if there exists $b \geq 1$ such that the following conditions hold:
(i) $d_{l}(g, p)=0$, if and only if $g=p$;
(ii) $d_{l}(g, p)=d_{l}(p, g)$;
(iii) $d_{l}(g, p) \leq b\left[d_{l}(g, q)+d_{l}(q, h)+d_{l}(h, p)\right]$ for all $g, p \in Z$ and all distinct points $q, h \in Z \backslash\{g, p\}$.

The pair $\left(Z, d_{l}\right)$ is said a rectangular b-metric space (in short R.B.M.S) with coefficient b.
Definition 2 ([2]). Let $\left(Z, d_{l}\right)$ be a R.B.M.S.
(i) A sequence $\left\{g_{n}\right\}$ in $\left(Z, d_{l}\right)$ said to be Cauchy sequence if for each $\varepsilon>0$, there corresponds $n_{0} \in N$ such that for all $n, m \geq n_{0}$ we have $d_{l}\left(g_{m}, g_{n}\right)<\varepsilon$ or $\lim _{n, m \rightarrow \infty} d_{l}\left(g_{n}, g_{m}\right)=0$.
(ii) A sequence $\left\{g_{n}\right\}$ rectangular b-converges (for short d_{l}-converges) to g if $\lim _{n \rightarrow \infty} d_{l}\left(g_{n}, g\right)=0$. In this case, g is called a d_{l}-limit of $\left\{g_{n}\right\}$.
(iii) $\left(Z, d_{l}\right)$ is complete if every Cauchy sequence in Z converges to a point $g \in Z$ for which $d_{l}(g, g)=0$.

Example 1 ([2]). Let $Z=N$ define $d: Z \times Z \rightarrow Z$ such that $d(u, v)=d(v, u)$ for all $u, v \in Z$ and

$$
d(u, v)=\left\{\begin{array}{c}
0, \text { if } u=v \\
10 \alpha, \text { if } u=1, v=2 \\
\alpha, \text { if } u \in\{1,2\} \text { and } v \in\{3\} ; \\
2 \alpha, \text { if } u \in\{1,2,3\} \text { and } v \in\{4\} \\
3 \alpha, \text { if } u \text { or } v \notin\{1,2,3,4\} \text { and } u \neq v
\end{array}\right.
$$

where $\alpha>0$ is a constant. Then (Z, d) is a R.B.M.S with coefficient $b=2>1$, but (Z, d) does not be a rectangular metric, since

$$
d(1,2)=10 \alpha>5 \alpha=d(1,3)+d(3,4)+d(4,2)
$$

Definition 3 ([26]). Let $\left(Z, d_{l}\right)$ be a metric space, $S: Z \rightarrow P(Z)$ be a multivalued mapping and $\alpha: Z \times Z \rightarrow$ $[0,+\infty)$. Let $A \subseteq Z$, the mapping S is said semi α_{*}-admissible on A, if $\alpha(x, y) \geq 1$ implies $\alpha_{\star}(S x, S y) \geq 1$, for all $x \in A$, where $\alpha_{*}(S x, S y)=\inf \{\alpha(a, b): a \in S x, b \in S y\}$. When $A=Z$, we say that the S is α_{*}-admissible on Z. In the case in which S is a single valued mapping, the previous definition becomes.

Definition 4. Let $\left(Z, d_{l}\right)$ be a R.B.M.S. Let $S: Z \rightarrow Z$ be a mapping and $\alpha: Z \times Z \rightarrow[0,+\infty)$. If $A \subseteq Z$, we say that the S is α-dominated on A, whenever $\alpha(i, S i) \geq 1$ for all $i \in A$. If $A=Z$, we say that S is α-dominated.

Definition 5 ([28]). Let (Z, d) be a metric space. A mapping $H: Z \rightarrow Z$ is said to be an A-contraction if there exists $\tau>0$ such that

$$
\forall j, k \in Z, d(H j, H k)>0 \Rightarrow \tau+A(d(H j, H k)) \leq A(d(j, k))
$$

with $A: \mathbb{R}_{+} \rightarrow \mathbb{R}$ real function which satisfies three assumptions:
(F1) A is strictly increasing
(F2) For any sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ of positive real numbers, $\lim _{n \rightarrow \infty} \alpha_{n}=0$ is equivalent to $\lim _{n \rightarrow \infty} A\left(\alpha_{n}\right)=$ $-\infty$;
(F3) There is $k \in(0,1)$ for which $\lim \alpha \rightarrow 0^{+} \alpha^{k} A(\alpha)=0$.
Example 2 ([19]). Let $Z=\mathbb{R}$. Define the mapping $\alpha: Z \times Z \rightarrow[0, \infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{c}
1 \text { if } x>y \\
\frac{1}{2} \text { otherwise }
\end{array}\right\}
$$

Define the self-mappings $S, T: Z \rightarrow Z$ by $S x=\frac{x}{4}$, and $T y=\frac{y}{2}$, where $x, y \in Z$. Suppose $x=3$ and $y=2$. As $3>2$, then $\alpha(3,2) \geq 1$. Now, $\alpha(S 3, T 2)=\frac{1}{2} \nsupseteq 1$, this means the pair (S, T) is not α-admissible. Also,
$\alpha(S 3, S 2) \nsupseteq 1$ and $\alpha(T 3, T 2) \nsupseteq 1$. This implies S and T are not α-admissible individually. Now, $\alpha(x, S x) \geq 1$, for all $x \in Z$. Hence S is α-dominated mapping. Similarly it is clear that $\alpha(y, T y) \geq 1$ for all $x \in Z$. Hence it is clear that S and T are α-dominated but not α-admissible.

2. Main Result

Theorem 1. Let $\left(Z, d_{l}\right)$ be a complete R.B.M.S with coefficient $b \geq 1$. Let $\alpha: Z \times Z \rightarrow[0, \infty)$ be a function and $S, T: Z \rightarrow Z$ be the α-dominated mappings on Z. Suppose that the following condition is satisfied:

There exist $\tau, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}>0$ satisfying $b \eta_{1}+b \eta_{2}+(1+b) b \eta_{3}+\eta_{4}<1$ and a continuous and strictly increasing real function F such that

$$
\begin{equation*}
\tau+F\left(d_{l}(S e, T y)\right) \leq F\binom{\eta_{1} d_{l}(e, y)+\eta_{2} d_{l}(e, S e)}{+\eta_{3} d_{l}(e, T y)+\eta_{4} \frac{d_{l}^{2}(e, S e) \cdot d_{l}(y, T y)}{1+d_{l}^{2}(e, y)}} \tag{1}
\end{equation*}
$$

whenever $e, y \in\left\{g_{n}\right\}, \alpha(e, y) \geq 1$ and $d_{l}(S e, T y)>0$ "where the sequence g_{n} is defined by g_{0} arbitrary in Z, $g_{2 n+1}=S(T S)^{n} g_{0}$ and $g_{2 n}=(T S)^{n+1} g_{0}{ }^{\prime \prime}$. Then $\alpha\left(g_{n}, g_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\left\{g_{n}\right\} \rightarrow u \in Z$. Also, if the inequality (1) holds for u and either $\alpha\left(g_{n}, u\right) \geq 1$ or $\alpha\left(u, g_{n}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then S and T have a common fixed point u in Z.

Proof. Chose a point g_{0} in Z such that $g_{1}=S g_{0}$ and $g_{2}=T g_{1}$. Continuing this process we construct a sequence $\left\{g_{n}\right\}$ of points in Z such that $g_{2 n+1}=S g_{2 n}$ and $g_{2 n+2}=T g_{2 n+1}$ for all for all $n \in \mathbb{N} \cup\{0\}$. Let $g_{1}, \cdots, g_{j} \in Z$ for some $j \in \mathbb{N}$. If j is odd, then $j=2 \grave{\imath}+1$ for some $\grave{i} \in \mathbb{N}$. Since $S, T: Z \rightarrow Z$ be the α-dominated mappings on Z, so $\alpha\left(g_{2 i}, S g_{2 i}\right) \geq 1$ and $\alpha\left(g_{2 i}+1, T g_{2 i}+1\right) \geq 1$. As $\alpha\left(g_{2 i}, S g_{2 i}\right) \geq 1$, this implies $\alpha\left(g_{2 i}, S g_{2 i}\right)=\alpha\left(g_{2 i}, g_{2 i+1}\right) \geq 1$ where $g_{2 i+1}=S g_{2 i}$. Now, by using inequality (1),

$$
\begin{aligned}
\tau+F\left(d_{l}\left(g_{2 i}+1, g_{2 i}+2\right)\right) & \leq \tau+F\left(d_{l}\left(S g_{2 i}, T g_{2 i}+1\right)\right) \\
& \leq F\left[\begin{array}{c}
\eta_{1} d_{l}\left(g_{2 i}, g_{2 i}+1\right)+\eta_{2} d_{l}\left(g_{2 i}, S g_{2 i}\right)+\eta_{3} d_{l}\left(g_{2 i}, T g_{2 i}+1\right) \\
\left.+\eta_{4} \frac{d_{l}^{2}\left(g_{2 i}, S g_{2 i}\right) \cdot d_{l}\left(g_{2 i+1}, T g_{2 i}\right)}{1+d_{l}^{2}\left(g_{2 i}, g 2 i+1\right.}\right)
\end{array}\right] \\
& \leq F\left[\begin{array}{c}
\eta_{1} d_{l}\left(g_{2 i}, g_{2 i}+1\right)+\eta_{2} d_{l}\left(g_{2 i}, g_{2 i}\right)+b \eta_{3} d_{l}\left(g_{2 i}, g_{2 i+1}\right) \\
+b \eta_{3} d_{l}\left(g_{2 i}+1, g_{2 i}+2\right)+\eta_{4} \frac{d_{l}^{2}\left(g_{2 i}, g_{2 i+1}\right) \cdot d_{l}\left(g_{2 i+1}, g_{2 i+2}\right)}{1+d_{l}^{2}\left(g_{2 i}, g 2 i+1\right)}
\end{array}\right] \\
& \leq F\left[\left(\eta_{1}+\eta_{2}+b \eta_{3}\right) d_{l}\left(g_{2 i}, g_{2 i}+1\right)+\left(b \eta_{3}+\eta_{4}\right) d_{l}\left(g_{2 i}+1, g_{2 i}+2\right)\right] .
\end{aligned}
$$

This implies

$$
F\left(d_{l}\left(g_{2 \grave{i}+1}, g_{2 i+2}\right)\right)<F\left[\begin{array}{c}
\left(\eta_{1}+\eta_{2}+b \eta_{3}\right) d_{l}\left(g_{2 i}, g_{2 i}+1\right. \\
+\left(b \eta_{3}+\eta_{4}\right) d_{l}\left(g_{2 \grave{i}+1}, g_{2 \grave{i}+2}\right)
\end{array}\right]
$$

As F is strictly increasing. Therefore, we have

$$
d_{l}\left(g_{2 \grave{i}+1}, g_{2 \grave{i}+2}\right)<\left[\begin{array}{l}
\left(\eta_{1}+\eta_{2}+b \eta_{3}\right) d_{l}\left(g_{2 \grave{\imath}}, g_{2 \grave{i}+1}\right) \\
+\left(b \eta_{3}+\eta_{4}\right) d_{l}\left(g_{2 \grave{i}+1}, g_{2 \grave{i}+2}\right) .
\end{array}\right]
$$

Which implies

$$
\begin{aligned}
\left(1-b \eta_{3}-\eta_{4}\right) d_{l}\left(g_{2 \grave{i}+1}, g_{2 \grave{i}+2}\right) & <\left(\eta_{1}+\eta_{2}+b \eta_{3}\right) d_{l}\left(g_{2 \grave{\imath}}, g_{2 \grave{\imath}+1}\right) \\
d_{l}\left(g_{2 \grave{i}+1}, g_{2 \grave{i}+2}\right) & <\left(\frac{\eta_{1}+\eta_{2}+b \eta_{3}}{1-b \eta_{3}-\eta_{4}}\right) d_{l}\left(g_{2 \grave{\imath}}, g_{2 \grave{i}+1}\right)
\end{aligned}
$$

Now, we note that by assumption of inequality (1) it immediately follows $\lambda=\frac{\eta_{1}+\eta_{2}+b \eta_{3}}{1-b \eta_{3}-\eta_{4}}<1$. Hence

$$
d_{l}\left(g_{2 i+1}, g_{2 i}+2\right)<\lambda d_{l}\left(g_{2 i}, g_{2 i}+1\right)<\lambda^{2} d_{l}\left(g_{2 i-1}, g_{2 i}\right)<\cdots<\lambda^{2 i+1} d_{l}\left(g_{0}, g_{1}\right)
$$

Similarly, if j is even, we have

$$
\begin{equation*}
d_{l}\left(g_{2 \grave{i}+2}, g_{2 \grave{i}+3}\right)<\lambda^{2 i+2} d_{l}\left(g_{0}, g_{1}\right) \tag{2}
\end{equation*}
$$

Now, we have

$$
\begin{equation*}
d_{l}\left(g_{j}, g_{j+1}\right)<\lambda^{j} d_{l}\left(g_{0}, g_{1}\right) \text { for } j \in \mathbb{N} \tag{3}
\end{equation*}
$$

Also $\alpha\left(g_{n}, g_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$. Now,

$$
\begin{equation*}
d_{l}\left(g_{n}, g_{n+1}\right)<\lambda^{n} d_{l}\left(g_{0}, g_{1}\right) \text { for all } n \in \mathbb{N} . \tag{4}
\end{equation*}
$$

Now, for any positive integers $m, n(m>n)$, we have

$$
\begin{aligned}
d_{l}\left(g_{n}, g_{m}\right) \leq & b\left[d_{l}\left(g_{n}, g_{n+1}\right)+d_{l}\left(g_{n+1}, g_{n+2}\right)+d_{l}\left(g_{n+2}, g_{m}\right)\right] \\
\leq & b\left[d_{l}\left(g_{n}, g_{n+1}\right)+d_{l}\left(g_{n+1}, g_{n+2}\right)\right]+b^{2}\left[d_{l}\left(g_{n+2}, g_{n+3}\right)\right. \\
& \left.+d_{l}\left(g_{n+3}, g_{n+4}\right)+d_{l}\left(g_{n+4}, g_{m}\right)\right] \\
\leq & b\left[\lambda^{n}+\lambda^{n+1}\right] d_{l}\left(g_{0}, g_{1}\right)+b^{2}\left[\lambda^{n+2}+\lambda^{n+3}\right] d_{l}\left(g_{0}, g_{1}\right) \\
& +b^{3}\left[\left[\lambda^{n+4}+\lambda^{n+5}\right] d_{l}\left(g_{0}, g_{1}\right)+\cdots\right. \\
& +b^{2 m-1} \lambda^{m-n} d_{l}\left(g_{0}, g_{1}\right), \quad(\text { by }(2.4)) \\
\leq & b \lambda^{n}\left[1+b \lambda^{2}+b^{2} \lambda^{4}+\cdots\right] d_{l}\left(g_{0}, g_{1}\right) \\
& +b \lambda^{n+1}\left[1+b \lambda^{2}+b^{2} \lambda^{4}+\cdots\right] d_{l}\left(g_{0}, g_{1}\right) \\
\leq & \frac{1+\lambda}{1-b \lambda^{2}} b \lambda^{n} d_{l}\left(g_{0}, g_{1}\right)
\end{aligned}
$$

As $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}>0, b \geq 1$ and $b \eta_{1}+b \eta_{2}+(1+b) b \eta_{3}+\eta_{4}<1$, so $\left|b \lambda^{2}\right|<1$. Then, we have

$$
d_{l}\left(g_{n}, g_{m}\right)<\frac{1+\lambda}{1-b \lambda^{2}} b \lambda^{n} d_{l}\left(g_{0}, g_{1}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence $\left\{g_{n}\right\}$ is a Cauchy sequence in Z. Since $\left(Z, d_{l}\right)$ is a complete metric space, so there exist $u \in Z$ such that $\left\{g_{n}\right\} \rightarrow u$ as $n \rightarrow \infty$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{l}\left(g_{n}, u\right)=0 \tag{5}
\end{equation*}
$$

By assumption, $\alpha\left(u, g_{n}\right) \geq 1$. Suppose that $d_{l}(u, S u)>0$, then there exists positive integer k such that $d_{l}\left(T g_{2 n+1}, S u\right)>0$ for all $n \geq k$. For $n \geq k$, we have

$$
\begin{aligned}
d_{l}(u, S u) & \leq b\left[d_{l}\left(u, g_{n}\right)+d_{l}\left(g_{n}, g_{2 n+2}\right)+d_{l}\left(g_{2 n+2}, S u\right)\right] \\
& \leq b\left[d_{l}\left(u, g_{n}\right)+d_{l}\left(g_{n}, g_{2 n+1}\right)+d_{l}\left(T g_{2 n+1}, S u\right)\right] \\
& \leq b\left[d_{l}\left(u, g_{n}\right)+d_{l}\left(g_{n}, g_{2 n+1}\right)+d_{l}\left(S u, T g_{2 n+1}\right)\right] \\
& <b\left[\begin{array}{c}
d_{l}\left(u, g_{n}\right)+d_{l}\left(g_{n}, g_{2 n+1}\right)+\eta_{1} d_{l}\left(u, g_{2 n+1}\right) \\
+\eta_{2} d_{l}(u, S u)+\eta_{3} d_{l}\left(g_{2 n+1}, T g_{2 n+1}\right) \\
+\eta_{4} \frac{d_{l}(u, S u) \cdot d_{l}^{2}\left(g_{2 n+1}, T g_{2 n+1}\right)}{1+d_{l}^{2}\left(g_{2 n+1, u)}\right.} .
\end{array}\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$, and by using the inequalities (4) and (5) we get

$$
d_{l}(u, S u)<\eta_{3} d_{l}(u, S u)<d_{l}(u, S u),
$$

which is a contradiction. So, our supposition is wrong. Hence $d_{l}(u, S u)=0$. Similarly, by using the above inequlity

$$
\begin{aligned}
d_{l}(u, T u) & \leq b\left[d_{l}\left(u, g_{n}\right)+d_{l}\left(g_{n}, g_{2 n+1}\right)+d_{l}\left(g_{2 n+1}, T u\right)\right] \\
d_{l}(u, T u) & \leq b\left[d_{l}\left(u, g_{n}\right)+d_{l}\left(g_{n}, g_{2 n+1}\right)+d_{l}\left(S g_{2 n}, T u\right)\right]
\end{aligned}
$$

we can get $d_{l}(u, T u)=0$. This shows that u is a common fixed point of S and T.
Example 3. Let $Z=A \cup B$, where $A=\left\{\frac{1}{n}: n \in\{2,3,4,5\}\right\}$ and $B=[1,2]$. Define $d_{l}: Z \times Z \rightarrow[0, \infty)$ such that defined by $d_{l}(x, y)=d_{l}(y, x)$ for $x, y \in Z$ and

$$
\left\{\begin{array}{c}
d_{l}\left(\frac{1}{2}, \frac{1}{3}\right)=d_{l}\left(\frac{1}{4}, \frac{1}{5}\right)=0.03 \\
d_{l}\left(\frac{1}{2}, \frac{1}{5}\right)=d_{l}\left(\frac{1}{3}, \frac{1}{4}\right)=0.02 \\
d_{l}\left(\frac{1}{2}, \frac{1}{4}\right)=d_{l}\left(\frac{1}{5}, \frac{1}{3}\right)=0.6 \\
d_{l}(x, y)=|x-y|^{2} \quad \text { otherwise. }
\end{array}\right.
$$

be the complete R.B.M.S with coefficient $b=4>1$ but $\left(Z, d_{l}\right)$ is neither a metric space nor a rectangular metric space. Take $\eta_{1}=\frac{1}{10}, \eta_{2}=\frac{1}{20}, \eta_{3}=\frac{1}{60}, \eta_{4}=\frac{1}{30}, \tau \in\left(0, \frac{12}{95}\right]$ then $b \eta_{1}+b \eta_{2}+(1+b) b \eta_{3}+\eta_{4}<1$, $\lambda=\frac{11}{56}$ and $F(x)=\ln x$. Consider the mapping $\alpha: Z \times Z \rightarrow[0, \infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{cr}
1 & \text { if } x>y \\
\frac{1}{2} \text { otherwise }
\end{array}\right\}
$$

Let $S, T: Z \rightarrow Z$ be defined as

$$
S x=\left\{\begin{array}{l}
\frac{1}{2} \text { if } x \in A \\
\frac{x}{4} \text { if } x \in B .
\end{array} \quad T x=\left\{\begin{array}{l}
\frac{1}{3} \text { if } x \in A \\
\frac{x}{4} \text { if } x \in B .
\end{array}\right.\right.
$$

As $\frac{1}{2}, \frac{1}{3} \in Z, \alpha\left(\frac{1}{2}, \frac{1}{3}\right)>1$ taking $F(x)=\ln x$, for any $\tau \in\left(0, \frac{12}{95}\right]$. Then S and T satisfy the condition of Theorem 1.

If, we take $S=T$ in Theorem 1, then we are left with result.
Corollary 1. Let $\left(Z, d_{l}\right)$ be a complete R.B.M.S with coefficient $b \geq 1$. Let $\alpha: Z \times Z \rightarrow[0, \infty)$ be a function and $S: Z \rightarrow Z$ be the α-dominated mapping on Z. Suppose that the following condition is satisfied:

There exist $\tau, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}>0$ satisfying $b \eta_{1}+b \eta_{2}+(1+b) b \eta_{3}+\eta_{4}<1$ and a continuous and strictly increasing real function F such that

$$
\begin{equation*}
\tau+F\left(d_{l}(S e, S y)\right) \leq F\binom{\eta_{1} d_{l}(e, y)+\eta_{2} d_{l}(e, S e)}{+\eta_{3} d_{l}(e, S y)+\eta_{4} \frac{d_{l}^{2}(e, S e) . d_{l}(y, S y)}{1+d_{l}^{2}(e, y)}} \tag{6}
\end{equation*}
$$

whenever $e, y \in\left\{g_{n}\right\}, \alpha(e, y) \geq 1$ and $d_{l}(S e, S y)>0$ "where the sequence g_{n} is defined by g_{0} arbitrary in Z, $g_{2 n+1}=S^{2 n} g_{0}{ }^{\prime \prime}$. Then $\alpha\left(g_{n}, g_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\left\{g_{n}\right\} \rightarrow u \in Z$. Also, if the inequality (6) holds for u and either $\alpha\left(g_{n}, u\right) \geq 1$ or $\alpha\left(u, g_{n}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then S and T have a common fixed point u in Z.

If, we take $\eta_{2}=0$ in Theorem 1, then we are left with the result.
Corollary 2. Let $\left(Z, d_{l}\right)$ be a complete R.B.M.S with constant $b \geq 1$. Let $\alpha: Z \times Z \rightarrow[0, \infty)$ be a function and $S, T: Z \rightarrow Z$ be the α-dominated mappings on Z. Suppose that the following condition is satisfied:

There exist $\tau, \eta_{1}, \eta_{3}, \eta_{4}>0$ satisfying $b \eta_{1}+(1+b) b \eta_{3}+\eta_{4}<1$ and a continuous and strictly increasing real function F such that

$$
\begin{equation*}
\tau+F\left(d_{l}(S e, T y)\right) \leq F\binom{\eta_{1} d_{l}(e, y)+\eta_{3} d_{l}(e, T y)}{+\eta_{4} \frac{d_{l}^{2}(e, S e) \cdot d_{l}(y, T y)}{1+d_{l}^{2}(e, y)}}, \tag{7}
\end{equation*}
$$

whenever $e, y \in\left\{g_{n}\right\}, \alpha(e, y) \geq 1$ and $d_{l}(S e, T y)>0$ "where the sequence g_{n} is defined by g_{0} arbitrary in Z, $g_{2 n+1}=S(T S)^{n} g_{0}$ and $g_{2 n}=(T S)^{n+1} g_{0}{ }^{\prime \prime}$. Then $\alpha\left(g_{n}, g_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\left\{g_{n}\right\} \rightarrow u \in Z$. Also, if the inequality (7) holds for u and either $\alpha\left(g_{n}, u\right) \geq 1$ or $\alpha\left(u, g_{n}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then S and T have common fixed point u in Z .

If, we take $\eta_{3}=0$ in Theorem 1, then we are left with the result.
Corollary 3. Let $\left(Z, d_{l}\right)$ be a complete R.B.M.S with constant $b \geq 1$. Let $\alpha: Z \times Z \rightarrow[0, \infty)$ be a function and $S, T: Z \rightarrow Z$ be the α-dominated mappings on Z. Suppose that the following condition is satisfied: There exist $\tau, \eta_{1}, \eta_{2}, \eta_{4}>0$ satisfying $b \eta_{1}+b \eta_{2}+\eta_{4}<1$ and a continuous and strictly increasing real function F such that

$$
\begin{equation*}
\tau+F\left(d_{l}(S e, T y)\right) \leq F\binom{\eta_{1} d_{l}(e, y)+\eta_{2} d_{l}(e, S e)}{+\eta_{4} \frac{d_{l}^{2}(e, S e) \cdot d_{l}(e, T y)}{1+d_{l}^{2}(e, y)}}, \tag{8}
\end{equation*}
$$

whenever $e, y \in\left\{g_{n}\right\}, \alpha(e, y) \geq 1$ and $d_{l}(S e, T y)>0$ "where the sequence g_{n} is defined by g_{0} arbitrary in Z, $g_{2 n+1}=S(T S)^{n} g_{0}$ and $g_{2 n}=(T S)^{n+1} g_{0}{ }^{\prime \prime}$. Then $\alpha\left(g_{n}, g_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\left\{g_{n}\right\} \rightarrow u \in Z$. Also, if the inequality (8) holds for u and either $\alpha\left(g_{n}, u\right) \geq 1$ or $\alpha\left(u, g_{n}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then S and T have common fixed point u in Z.

If, we take $\eta_{4}=0$ in Theorem 1, then we are left with the result.
Corollary 4. Let $\left(Z, d_{l}\right)$ be a complete R.B.M.S with coefficient $b \geq 1$. Let $\alpha: Z \times Z \rightarrow[0, \infty)$ be a function and $S, T: Z \rightarrow Z$ be the α-dominated mappings on Z. Suppose that the following condition is satisfied:

There exist $\tau, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}>0$ satisfying $b \eta_{1}+b \eta_{2}+(1+b) b \eta_{3}+\eta_{4}<1$ and a continuous and strictly increasing real function F such that

$$
\begin{equation*}
\tau+F\left(d_{l}(S e, T y)\right) \leq F\binom{\eta_{1} d_{l}(e, y)+\eta_{2} d_{l}(e, S e)}{+\eta_{3} d_{l}(e, T y)} \tag{9}
\end{equation*}
$$

whenever $e, y \in\left\{g_{n}\right\}, \alpha(e, y) \geq 1$ and $d_{l}(S e, T y)>0$ "where the sequence g_{n} is defined by g_{0} arbitrary in Z, $g_{2 n+1}=S(T S)^{n} g_{0}$ and $g_{2 n}=(T S)^{n+1} g_{0}{ }^{\prime \prime}$, Then $\alpha\left(g_{n}, g_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\left\{g_{n}\right\} \rightarrow u \in Z$. Also, if the inequality (9) holds for u and either $\alpha\left(g_{n}, u\right) \geq 1$ or $\alpha\left(u, g_{n}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, then S and T have a common fixed point u in Z.

3. Fixed Points for Graphic Contractions

Lastly, we give a realization of Theorem 1 in graph theory. Jachymski, [14], shown the particular case for contraction mappings on metric space with a graph. Hussain et al. [12], introduced the concept of graphic contractions and obtained a point fixed result. Further results on graphic contraction can be seen in [8,21,27]. Shang [25], discussed briefly basic notions of graph limit theory and fix some necessary notations and presented many interesting applications.

Definition 6. Let Z be a nonempty set and $Q=(V(Q), W(Q))$ be a graph such that $V(Q)=Z, A \subseteq Z$. A mapping $S: Z \rightarrow Z$ is said to be a graph dominated on A if $(p, q) \in W(Q)$, for all $q \in S p$ and $q \in A$.

Theorem 2. Let $\left(Z, d_{l}\right)$ be a complete R.B.M.S endowed with a graph Q with coefficient $b \geq 1$. Let S, T : $Z \rightarrow Z$ be two self mappings. Suppose that the following satisfy:
(i) S and T are graph dominated on Z.
(ii) There exist $\tau, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}>0$ satisfying $b \eta_{1}+b \eta_{2}+(1+b) b \eta_{3}+\eta_{4}<1$ and a continuous and strictly increasing real function F such that

$$
\begin{equation*}
\tau+F\left(H_{d_{l}}(S p, T q)\right) \leq F\binom{\eta_{1} d_{l}(p, q)+\eta_{2} d_{l}(p, S p)}{+\eta_{3} d_{l}(p, T q)+\eta_{4} \frac{d_{l}^{2}(p, S p) \cdot d_{l}(q, T q)}{1+d_{l}^{2}(p, q)}} \tag{10}
\end{equation*}
$$

whenever $p, q \in\left\{g_{n}\right\},(p, q) \in W(Q)$ and $d_{l}(S p, T q)>0$ "where the sequence g_{n} is defined by g_{0} arbitrary in $Z, g_{2 n+1}=S(T S)^{n} g_{0}$ and $g_{2 n}=(T S)^{n+1} g_{0}$ ". Then $\left(g_{n}, g_{n+1}\right) \in W(Q)$ and $\left\{g_{n}\right\} \rightarrow m^{*}$. Also, if the inequality (10) holds for m^{*} and $\left(g_{n}, m^{*}\right) \in W(Q)$ or $\left(m^{*}, g_{n}\right) \in W(Q)$ for all $n \in \mathbb{N} \cup\{0\}$, then S and T have common fixed point m^{*} in Z .

Proof. Define, $\alpha: Z \times Z \rightarrow[0, \infty)$ by

$$
\alpha(p, q)=\left\{\begin{array}{rr}
1, & \text { if } p \in Z,(p, q) \in W(Q) \\
0, & \text { otherwise }
\end{array}\right.
$$

As S and T are graph dominated on Z, then for $p \in Z,(p, q) \in W(Q)$ for all $q \in S p$ and $(p, q) \in W(Q)$ for all $q \in T p$. Therefore, $\alpha(p, q)=1$ for all $q \in S p$ and $\alpha(p, q)=1$ for all $q \in T p$. Hence $\alpha_{*}(p, S p)=1, \alpha_{*}(p, T p)=1$ for all $p \in Z$. Therefore, $S, T: Z \rightarrow Z$ are the α-dominated mappings on Z. Moreover, inequality (10) can be written as

$$
\tau+F\left(H_{d_{l}}(S p, T q)\right) \leq F\binom{\eta_{1} d_{l}(p, q)+\eta_{2} d_{l}(p, S p)}{+\eta_{3} d_{l}(p, T q)+\eta_{4} \frac{d_{l}^{2}(p, S p) \cdot d_{l}(q, T q)}{1+d_{l}^{2}(p, q)}}
$$

whenever $p, q \in\left\{g_{n}\right\}, \alpha(p, q) \geq 1$ and $d_{l}(S p, T q)>0$. Also, (ii) holds. Then, by Theorem 1, we have $\left\{g_{n}\right\} \rightarrow s^{*} \in Z$. Now, $g_{n}, s^{*} \in Z$ and either $\left(g_{n}, s^{*}\right) \in W(Q)$ or $\left(s^{*}, g_{n}\right) \in W(Q)$ implies that either $\alpha\left(g_{n}, s^{*}\right) \geq 1$ or $\alpha\left(s^{*}, g_{n}\right) \geq 1$. Therefore, all the conditions of Theorem 1 are satisfied. Hence, by Theorem $1, S$ and T have a common fixed point s^{*} in Z and $d_{l}\left(s^{*}, s^{*}\right)=0$.

4. Conclusions

In the present work, we have achieved fixed-point results for new generalized F-contraction for a more general class of α-dominated mappings rather than α_{*}-admissible mappings and for a weaker class of strictly increasing mapping F rather than class of mappings F used by Wordowski [28]. We introduced the concept of a pair of graph-dominated mappings and given a fixed-point existence result of a fixed point for graphic contractions. Our results generalized and extended many recent fixed-point results of Rasham et al. [16,20], Wordowski's result [28], Ameer et al. [6] and many classical results in the current literature (see [4,7,9,13,17,18,23,24]).

Author Contributions: Each author equally contributed to this paper, read and approved the final manuscript.
Funding: This paper is funded by Ministero dell'Istruzione, Universita e Ricerca (MIUR) and Gruppo Nazionale di Analisi Matemarica e Probabilita e Applicazioni (GNAMPA).
Acknowledgments: The authors are very grateful to the reviewers that with their suggestions have significantly improved the presentation of the paper.
Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fund. Math. 1922, 3, 133-181. [CrossRef]
2. Georgea, R.; Radenovicb, S.; Reshmac, K.P.; Shuklad, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005-1013. [CrossRef]
3. Abbas, M.; Ali, B.; Romaguera, S. Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory Appl. 2013, 2013, 243. [CrossRef]
4. Acar, Ö.; Durmaz, G.; Minak, G. Generalized multivalued F-contractions on complete metric spaces. Bull. Iran. Math. Soc. 2014, 40, 1469-1478.
5. Ali, M.U.; Kamranb, T.; Postolache, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Model. Control 2017, 22, 17-30. [CrossRef]
6. Ameer, E.; Arshad, M. Two new generalization for F-contraction on closed ball and fixed point theorem with application. J. Math. Exten. 2017, 11, 1-24.
7. Arshad, M.; Khan, S.U.; Ahmad, J. Fixed point results for F-contractions involving some new rational expressions. J. Fixed Point Theory Appl. 2016, 11, 79-97. [CrossRef]
8. Bojor, F. Fixed point theorems for Reich type contraction on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895-3901. [CrossRef]
9. Chen, C.; Wen, L.; Dong, J.; Gu, Y. Fixed point theorems for generalized F-contractions in b-metric-like spaces. J. Nonlinear Sci. Appl. 2016, 9, 2161-2174. [CrossRef]
10. Ding, H.S.; Imdad, M.; Radenović, S.; Vujaković, J. On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab. J. Math. Sci. 2016, 22, 151-164.
11. Dung, N.V. The metrization of rectangular b-metric spaces. Topol. Appl. 2019, 261, 22-28. [CrossRef]
12. Hussain, N.; Al-Mezel, S.; Salimi, P. Fixed points for ψ-graphic contractions with application to integral equations. Abstr. Appl. Anal. 2013, 2013, 575869. [CrossRef]
13. Hussain, A.; Arshad, M.; Nazim, M. Connection of Ciric type F-contraction involving fixed point on closed ball. Ghazi Univ. J. Sci. 2017, 30, 283-291.
14. Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 1, 1359-1373. [CrossRef]
15. Kamran, T.; Postolache, M.; Ali, M.U.; Kiran, Q. Feng and Liu type F-contraction in b-metric spaces with application to integral equations. J. Math. Anal. 2016, 7, 18-27.
16. Mahmood, Q.; Shoaib, A.; Rasham, T.; Arshad, M. Fixed Point Results for the Family of Multivalued F-Contractive Mappings on Closed Ball in Complete Dislocated b-Metric Spaces. Mathematics 2019, 7, 56. [CrossRef]
17. Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [CrossRef]
18. Piri, H.; Rahrovi, S.; Morasi, H.; Kumam, P. Fixed point theorem for F-Khan-contractions on complete metric spaces and application to the integral equations. J. Nonlinear Sci. Appl. 2017, 10, 4564-4573. [CrossRef]
19. Rasham, T.; Shoaib, A.; Alamri, B.A.S.; Arshad, M. Multivalued Fixed Point Results for New Generalized F-Dominated Contractive Mappings on Dislocated Metric Space with Application. J. Funct. Spaces 2018, 2018, 4808764. [CrossRef]
20. Rasham, T.; Shoaib, A.; Hussain, N.; Arshad, M.; Khan, S.U. Common fixed point results for new Ciric-type rational multivalued F-contraction with an application. J. Fixed Point Theory. Appl. 2018, 20, 45. [CrossRef]
21. Rasham, T.; Shoaib, A.; Alamri, B.A.S.; Asif, A.; Arshad, M. Fixed Point Results for $\alpha_{*}-\psi$-Dominated Multivalued Contractive Mappings Endowed with Graphic Structure. Mathematics 2019, 7, 307. [CrossRef]
22. Rasham, T.; Shoaib, A.; Hussain, N.; Alamri, B.A.S.; Arshad, M. Multivalued Fixed Point Results in Dislocated b-Metric Spaces with Application to the System of Nonlinear Integral Equations. Symmetry 2019, 11, 40. [CrossRef]
23. Secelean, N.A. Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013, 2013, 277. [CrossRef]
24. Sgroi, M.; Vetro, C. Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat 2013, 27, 1259-1268. [CrossRef]
25. Shang, Y. Limit of a nonpreferential attachment multitype network model. Int. J. Mod. Phys. B 2017, 31, 1750026. [CrossRef]
26. Shoaib, A.; Hussain, A.; Arshad, M.; Azam, A. Fixed point results for $\alpha_{*}-\psi$-Ciric type multivalued mappings on an intersection of a closed ball and a sequence with graph. J. Math. Anal. 2016, 7, 41-50.
27. Tiammee, J.; Suantai, S. Coincidence point theorems for graph-preserving multi-valued mappings. Fixed Point Theory Appl. 2014, 2014, 70. [CrossRef]
28. Wardowski, D. Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
