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Abstract: Complex fuzzy sets are characterized by complex-valued membership functions, whose
range is extended from the traditional fuzzy range of [0,1] to the unit circle in the complex plane.
In this paper, we define two kinds of entropy measures for complex fuzzy sets, called type-A and
type-B entropy measures, and analyze their rotational invariance properties. Among them, two
formulas of type-A entropy measures possess the attribute of rotational invariance, whereas the other
two formulas of type-B entropy measures lack this characteristic.
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1. Introduction

A complex fuzzy set [1] (CFS) is an extension of the standard (i.e., type-1) fuzzy sets (FS) in which
the range of the membership function was the unit disc of the complex plane. In the standard fuzzy
sets and many other extensions of fuzzy sets, entropy measures are of high importance. Entropy
measures of fuzzy sets [2–6], type-2 fuzzy sets [7,8], interval-valued fuzzy sets [9,10], Atanassovs’s
intuitionistic fuzzy sets [11–13], hesitant fuzzy sets [14,15] and Pythagorean fuzzy sets [16] have been
investigated and successfully used in various fields.

In considering the applications of CFSs, some measures and concepts have been introduced for
CFSs, such as distance measures [17,18], linguistic variables [19], rotational invariance [20], parallelity
and orthogonality relations [21–23]. However, for the entropy measures of complex fuzzy sets, as far
as we know, no related research papers have been published yet. Generally speaking, complex fuzzy
sets can be characterized by complex-valued membership functions containing an amplitude term and
a phase term. While the amplitude term retains the traditional notion of “fuzziness”, the phase term
is a completely novel parameter of membership function, that can essentially distinguish traditional
fuzzy sets from complex fuzzy sets [24]. In this paper, we present two kinds of entropy measures
of complex fuzzy sets, one of which depends on the amplitude of the complex-valued membership
functions, which is closely related to entropy of traditional fuzzy sets while ignoring the phase term,
while the other depends on both the amplitude and phase terms.

The rest of this paper is organized as follows. In Section 2, we first review some basic concepts of
complex fuzzy sets. Sections 3 and 4 define two classes of entropy measures of complex fuzzy sets,
called type-A and type-B entropy measures, respectively. Conclusions are presented in Section 5.
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2. Preliminaries

Let X = {x1, x2, ..., xn} be a universe of discourse, a complex fuzzy set A on X may be represented
as the set of ordered pairs

A =
{
(x, µA(x))

∣∣x ∈ X
}

where membership function µA(x) is of the form rA(x) · ejθA(x), j =
√
−1, the amplitude term rA(x)

and the phase term θA(x) are both real-valued, and rA(x) ∈ [0, 1]. Because ejθA(x) is a periodic function
whose periodicity law is 2π, we only consider θA(x) ∈ [0, 2π) in this paper.

Several complex fuzzy complements of A are specified by functions

µ¬1 A(x) = c
(
rA(x)

)
· ej
(
−θA(x)

)
µ¬2 A(x) = c

(
rA(x)

)
· ej
(

θA(x)
)

µ¬3 A(x) = c
(
rA(x)

)
· ej
(

θA(x)+π
)

where c
(
rA(x)

)
= 1− rA(x). In this paper, the phase term is confined to the interval [0, 2π), so the

phase terms of above ¬1 and ¬3 are functions with modulo 2π.

3. Type-A Entropy Measures of Complex Fuzzy Sets

(1) A review of entropy of traditional fuzzy sets: The following axiomatic-based definition for the
entropy of a traditional fuzzy set can be found in De Luca and Termini [2], and is supported by many
others (e.g., Refs. [5,9–11,15]).

Definition 1. (De Luca and Termini [2]) Let A and B be two FSs. A mapping e: FS(X)→ [0, 1] is called an
entropy on FS(X) if e satisfies the following axioms:

(a1) e(A) = 0 if and only if A is a crisp set;
(a2) e(A) = 1 if µA(x) = 0.5 for all x ∈ X;
(a3) e(A) ≤ e(B) if A is less fuzzy than B, i.e., if µA(x) ≤ µB(x) when µB(x) ≤ 0.5 and µA(x) ≥ µB(x)

when µB(x) ≥ 0.5;
(a4) e(A) = e(¬A), ¬A is the complement of A.

As mentioned in Section 1, there are already many different real equations satisfying the axiomatic
requirements of Definition 1. In this work, we takes the following two specific functions for discussion
and comparison [2,5].

eLT(A) = − 1
n

Σn
1
[
µA(xi) log µA(xi)

+(1− µA(xi)) log(1− µA(xi))
]

(1)

ePB(A) =
4
n

Σn
1
(
µA(xi)(1− µA(xi)

)
(2)

(2) Type-A entropy of complex fuzzy sets: Since the amplitude term retains the traditional notion of
“fuzziness” [24], the simpler method of defining the complex fuzzy sets entropy measure based on the
amplitude term can be used to calculate the "fuzziness".

Definition 2. Let A and B be two CFSs. A mapping e: CFS(X)→ [0, 1] is called a type-A entropy on CFS(X)

if e satisfies the following axioms:

(a1’) e(A) = 0 if and only if
∣∣µA(x)

∣∣ = 0 or
∣∣µA(x)

∣∣ = 1 for all x ∈ X;
(a2’) e(A) = 1 if

∣∣µA(x)
∣∣ = 0.5 for all x ∈ X;
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(a3’) e(A) ≤ e(B) if
∣∣µA(x)

∣∣ ≤ ∣∣µB(x)
∣∣ when

∣∣µB(x)
∣∣ ≤ 0.5 and

∣∣µA(x)
∣∣ ≥ ∣∣µB(x)

∣∣ when
∣∣µB(x)

∣∣ ≥ 0.5;
(a4’) e(A) = e(¬A), ¬A is a complex fuzzy complement of A.

Specifically, this definition of entropy complex fuzzy sets reduces to its traditional counterpart
(Definition 1) when a real-valued membership function, i.e., one with θA(x) = 0 for all x, is used.

Two type-A entropy formulas respectively corresponding to (1), (2) are proposed as follows:

e1(A) = − 1
n

Σn
1

[∣∣µA(xi)
∣∣ log

∣∣µA(xi)
∣∣

+
(
1− |µA(xi)|

)
log
(
1− |µA(xi)|

)]
,

(3)

e2(A) =
4
n

Σn
1
∣∣µA(xi)

∣∣ · ∣∣1− µA(xi)
∣∣. (4)

When θA(x) = 0 for all x, then we have e1(A) = eLT(A) and e2(A) = ePB(A).

Theorem 1. The mappings e1 and e2, defined by formulas (3) and (4) respectively, are type-A entropy measures
for CFSs.

Proof. In order for (3) to be qualified as an entropy measure for CFSs, it must satisfy the conditions
(a1’)–(a4’) in Definition 2.

From 0 ≤
∣∣µA(xi)

∣∣ ≤ 1, then 0 ≤
∣∣µA(xi)

∣∣ log
∣∣µA(xi)

∣∣+ (1− |µA(xi)|
)

log
(
1− |µA(xi)|

)
≤ 1,

so we have 0 ≤ e1 ≤ 1.
(a1’) Suppose e1(A) = 0, it follows that

∣∣µA(xi)
∣∣ log

∣∣µA(xi)
∣∣ + (

1 − |µA(xi)|
)

log
(
1 −

|µA(xi)|
)
= 0 for all xi ∈ X. Thus

∣∣µA(xi)
∣∣ = 0 or

∣∣µA(xi)
∣∣ = 1 for all xi ∈ X. On the other hand,

let
∣∣µA(xi)

∣∣ = 0 or
∣∣µA(xi)

∣∣ = 1 for all xi ∈ X. Then
∣∣µA(xi)

∣∣ log
∣∣µA(xi)

∣∣+ (1− |µA(xi)|
)

log
(
1−

|µA(xi)|
)
= 0 for all xi ∈ X. Thus e1(A) = 0.

(a2’) Suppose e1(A) = 1, it follows that
∣∣µA(xi)

∣∣ log
∣∣µA(xi)

∣∣ + (
1 − |µA(xi)|

)
log
(
1 −

|µA(xi)|
)
= 1 for all xi ∈ X. Thus

∣∣µA(xi)
∣∣ = 1/2 for all xi ∈ X. On the other hand, let

∣∣µA(xi)
∣∣ = 1/2

for all xi ∈ X. Then
∣∣µA(xi)

∣∣ log
∣∣µA(xi)

∣∣+ (1− |µA(xi)|
)

log
(
1− |µA(xi)|

)
= 1 for all xi ∈ X. Thus

e1(A) = 1.
(a3’) Suppose that

∣∣µA(xi)
∣∣ ≤ ∣∣µB(xi)

∣∣ when
∣∣µB(xi)

∣∣ ≤ 0.5 and
∣∣µA(xi)

∣∣ ≥ ∣∣µB(xi)
∣∣ when∣∣µB(xi)

∣∣ ≥ 0.5, then
∣∣µA(xi)

∣∣ log
∣∣µA(xi)

∣∣+ (1− |µA(xi)|
)

log
(
1− |µA(xi)|

)
≤
∣∣µB(xi)

∣∣ log
∣∣µB(xi)

∣∣+(
1− |µB(xi)|

)
log
(
1− |µB(xi)|

)
for all xi ∈ X. Therefore, e1(A) ≤ e1(B).

(a4’) For each ¬k, k = 1, 2, 3, we can easily obtain that e1(A) = e1(¬k A).
For the mapping e2, the proof is similar to that of e1.

For convenience, we consider the case of e2(A), where A is a complex fuzzy set on X = {x}.
The contour plot of e2(A) is depicted as in Figure 1. The points whose moduli are 0.5 have the degree
of fuzziness 100%. The points whose moduli are 0 or 1 have the degree of fuzziness 0%, as shown in
Figure 2.
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Figure 1. Contour plot of the type-A entropy calculated from Equation (4).
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Figure 2. Vertical section of Figure 1.

The degree of fuzziness only relies on the modulus of a complex number, not its phase, as shown
in Figure 3. This property is called rotational invariance, which can be formally expressed as follows.
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Figure 3. The relations between the phase term and type-A entropy measure of e2.

Rotational invariance, developed from Ref. [20], is an intuitively appealing property of function
application. After a simple rotation, if the entropy measure of a CFS is invariant, it will makes a great
deal of sense.

Let A ∈ CFS(X) with membership function µA(x) = νA(x) · ejωA(x). The rotation of A by θ

radians [24], denoted Rotθ(A), is defined as Rotθ(µA(x)) = νA(x) · ej(ωA(x)+θ). The following is a
definition of rotational invariance for entropy measures of complex fuzzy sets.

Definition 3. The entropy measure of CFSs e : CFS(X)→ [0, 1] is rotationally invariant,if and only if

e
(

Rotθ(A)
)
= e(A),

for any θ and CFS A ∈ CFS(X).

Theorem 2. The mappings e1 and e2 are rotationally invariant.

Proof. Since
∣∣µA(xi)

∣∣ =
∣∣µA(xi) · ejθ

∣∣, we can easily obtain that e1
(

Rotθ(A)
)

= e1(A) and
e2
(

Rotθ(A)
)
= e2(A).

Example 1. Assume a complex fuzzy sets A is given by

A = 0.1ej1.02π/x1 + 0.2ej0.95π/x2 + 0.3ej1.32π/x3 + 0.3ej0.75π/x4 + 0.1ej1.12π/x5

Then we have

¬1 A = 0.9ej0.98π/x1 + 0.8ej1.05π/x2 + 0.7ej0.68π/x3 + 0.7ej1.25π/x4 + 0.9ej0.88π/x5

¬2 A = 0.9ej1.02π/x1 + 0.8ej0.95π/x2 + 0.7ej1.32π/x3 + 0.7ej0.75π/x4 + 0.9ej1.12π/x5

¬3 A = 0.9ej0.02π/x1 + 0.8ej1.95π/x2 + 0.7ej0.32π/x3 + 0.7ej1.75π/x4 + 0.9ej0.12π/x5
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It is easy to verify

e1(A) = e1(¬i A) ≈ 0.25, i = 1, 2, 3

e2(A) = e2(¬i A) = 0.608, i = 1, 2, 3.

4. Type-B Entropy Measures of Complex Fuzzy Sets

We notice that that type-A entropy measures of a CFS ignored the phase term of this CFS.
The phase term distinguishes between traditional and complex fuzzy sets [24]. Our new method is to
define the entropy measures of complex fuzzy sets by combining the amplitude and phase terms.

Definition 4. Let A and B be two CFSs. A mapping e: CFS(X)→ [0, 1] is called a type-B entropy on CFS(X)

if e satisfies the following axioms:

(b1) e(A) = 0 if and only if rA(x) = 0 or rA(x) = 1, and θA(x) = 0 for all x ∈ X ;
(b2) e(A) = 1 if rA(x) = 0.5 and θA(x) = π for all x ∈ X;
(b3) e(A) ≤ e(B) if rA(x) ≤ rB(x) and θA(x) ≥ θB(x) for rB(x) ≤ θB(x)/2π or rA(x) ≥ rB(x) and

θA(x) ≤ θB(x) for rB(x) ≥ θB(x)/2π;
(b4) e(A) = e(¬A), ¬A is a complex fuzzy complement of A.

Unfortunately, this definition of entropy complex fuzzy sets does not reduce to Definition 1 when
θA(x) = 0 for all x.

Two type-B entropy formulas respectively corresponding to (1), (2) are proposed as follows:

e3(A) =− 1
2n

Σn
1

[
rA(xi) log rA(xi)

+
(
1− rA(xi)

)
log
(
1− rA(xi)

)
+

θA(xi)

2π
log

θA(xi)

2π

+
(
1− θA(xi)

2π

)
log
(
1− θA(xi)

2π

)]
.

(5)

e4(A) =
2
n

Σn
1

[(
rA(xi)(1− rA(xi)

)
+
( θA(xi)

2π

)(
1− θA(xi)

2π

)]
.

(6)

Theorem 3. The mappings e3 and e4, defined by formulas (5) and (6) respectively, are type-B entropy measures
for CFSs.

Proof. Similar to Theorem 1.

Remark 1. In the above Theorem 3, the condition (b4) is hold with respect to ¬1 and ¬2, i.e., e3(A) = e3(¬i A)

and e4(A) = e4(¬i A), i = 1, 2. It does not hold with respect to ¬3.

For convenience, we consider the case of e4(A), where A is a complex fuzzy set on X = {x}.
The contour plot of e4(A) is depicted as in Figure 4. The point whose modulus is 0.5 and phase is
π has the degree of fuzziness 100%. The points whose modulus are 0 or whose phase is 0 have the
degree of fuzziness 0%, as shown in Figure 5. When we fix the modulus of a complex number, several
relations between the phase term and the degree of fuzziness are given in Figure 6.

The following results are obvious from Figure 6.

Theorem 4. The mappings e3 and e4 are not rotationally invariant.
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Figure 4. Contour plot of the entropy calculated from Equation (6).
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Example 2. Let A be a complex fuzzy set,

A = 0.1ej1.5π/x1 + 0.2ej0.4π/x2 + 0.3ej1.3π/x3 + 0.3ej0.7π/x4 + 0.1ej1.1π/x5

then we have

¬1 A = 0.9ej0.5π/x1 + 0.8ej1.6π/x2 + 0.7ej0.7π/x3 + 0.7ej1.3π/x4 + 0.9ej0.9π/x5

¬2 A = 0.9ej1.5π/x1 + 0.8ej0.4π/x2 + 0.7ej1.3π/x3 + 0.7ej0.7π/x4 + 0.9ej1.1π/x5

¬3 A = 0.9ej0.5π/x1 + 0.8ej1.4π/x2 + 0.7ej0.3π/x3 + 0.7ej1.7π/x4 + 0.9ej0.1π/x5

It is easy to verify

e3(A) = e3(¬i A) ≈ 0.35, i = 1, 2

e4(A) = e4(¬i A) = 0.724, i = 1, 2.

But

e3(¬3 A) ≈ 0.204,

e4(¬3 A) ≈ 0.584.

Several differences of the above four entropy measures can be summarized as in Table 1.
The symbol “×” means “dissatisfy the corresponding property”, “

√
” means “satisfy the corresponding

property”. Here, e(A) = e(Rotθ(A)) means the property of rotational invariance.

Table 1. Comparison of these entropy measures.

e(A) = e(¬1 A) e(A) = e(¬2 A) e(A) = e(¬3 A) e(A) = e(Rotθ(A))

e1
√ √ √ √

e2
√ √ √ √

e3
√ √

× ×
e4

√ √
× ×

Example 3. We consider a selection problem in complex fuzzy environment. Assume that there are five complex
fuzzy values as follows(

0.94 · ej1.5π , 0.95 · ej1.4π , 0.89 · ej1.5π , 0.91 · ej1.2π , 0.89 · ej0.9π
)
.

Then we have the following order∣∣0.89 · ej1.5π
∣∣ = ∣∣0.89 · ej0.9π

∣∣ < ∣∣0.91 · ej1.2π
∣∣ < ∣∣0.94 · ej1.5π

∣∣ < ∣∣0.95 · ej1.4π
∣∣.

Thus we can choose 0.89 · ej1.5π or 0.89 · ej0.9π based on the modulus of complex numbers. However, as we can
see, depending on the modulus of complex numbers used, the ordering of these two complex fuzzy values is the
same. Moreover, we have ei(0.89 · ej1.5π) = ei(0.89 · ej0.9π), (i = 1, 2) based on two formulas of type-A entropy
measures. So we can use the formulas of type-B entropy measures and get ei(0.89 · ej1.5π) < ei(0.89 · ej0.9π),
(i = 3, 4). Then we can choose 0.89 · ej1.5π based on minimum entropy criteria. Our definition of entropy
measure gives a new index for the selection of complex fuzzy values.

5. Conclusions

In this paper, we propose two definitions of entropy measures for complex fuzzy sets: type-A and
type-B. Among then, type-A depends on the amplitude of membership functions, and can reduce to
its traditional counterpart, while type-B depends on both the amplitude and the phase of membership
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function. Their differences can refer to Figures 1, 4 and Table 1. In addition, the idea of rotational
invariance for entropy measures of complex fuzzy sets was analyzed. It was proved that the two
formulas of type-A entropy measures satisfy the property of rotational invariance.

In this paper, we only presented entropy measures of complex fuzzy sets and their properties.
Naturally, a discussion of their practical applications in signal processing, decision making and image
processing will be both necessary and interesting.

We should note that the entropy measures presented in this paper are conservative in a certain
sense. Membership grades usually represent truth degrees in a “direct” way. However, in complex
fuzzy sets, how to understand the membership degree of an object to a set is interpreted by a complex
number. There are different understandings of complex fuzzy grade from different viewpoints. In the
future, we will further study entropy measures for complex fuzzy sets with other interpretations of
complex fuzzy sets. This will be useful for applying complex fuzzy sets.
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