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Abstract: Chaotic systems with hidden attractors, infinite number of equilibrium points and different
closed curve equilibrium have received much attention in the past six years. In this work, we introduce
a new family of chaotic systems with different closed curve equilibrium. Using the methods
of equilibrium points, phase portraits, maximal Lyapunov exponents, Kaplan–Yorke dimension,
and eigenvalues, we analyze the dynamical properties of the proposed systems and extend the
general knowledge of such systems.
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1. Introduction

Over the past fifty years, investigating chaotic systems has attracted many researchers’ attention.
Generating chaotic attractors may help one to understand the dynamics of the real system. Recently,
new chaotic systems with hidden attractors have been introduced [1,2]. An attractor is called self-excited
if its basin of attraction intersects any open neighborhood of a stationary state (an equilibrium),
otherwise it is called a hidden attractor. It is generally accepted that there are three main families of
hidden attractors [1,3,4]: hidden attractors with stable equilibria, hidden attractors without equilibrium
and hidden attractors with infinite number of equilibrium points. Some developments include chaotic
systems without any equilibrium points [5–10], with a single stable equilibrium [11,12], and with
uncountable equilibria [13–15]. However, there is little discussion on systems with different families
of hidden attractors [4,16]. Undoubtedly, many undiscovered systems surely exist. In this study,
the authors present a family of chaotic systems with different closed curve equilibriums, being the
promotion of published papers, which may extend the general knowledge of such systems.

Gotthans and Petržela [14] have introduced a general three-dimensional model generating hidden
attractors with infinite equilibria. The model is given as:

ẋ = z,

ẏ = zg1(x, y, z),

ż = g2(x, y, z),

(1)

where x, y and z are state variables, while g1(x, y, z) and g2(x, y, z) are two nonlinear functions.
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Motivated by the works mentioned above, in this paper, we introduce and investigate a new family
of chaotic systems with different closed curve equilibriums. Replacing g1(x, y, z) with ay + by2 + xz,
and g2(x, y, z) with |x|k + |y|k − 1 in (1), i.e.,

g1(x, y, z) = ay + by2 + xz,

g2(x, y, z) = |x|k + |y|k − 1,
(2)

the proposed novel system is obtained as

ẋ = z,

ẏ = −z(ay + by2 + xz),

ż = |x|k + |y|k − 1,

(3)

where a and b are both positive parameters, while k is a positive integer. In fact, the new model (3)
contains several known systems as special cases.

(Example A)

For the case of k = 2, system (3) corresponds to the following system:

ẋ = z,

ẏ = −z(ay + by2 + xz),

ż = x2 + y2 − 1.

(4)

Actually, model (4) was studied by Gotthans and Petržela in [15] and has shown that there exists
some chaotic system with a circle of equilibrium points as

{
(x, y, 0) : x2 + y2 = 1

}
.

(Example B)

For the case of k = 4, system (3) corresponds to the following system:

ẋ = z,

ẏ = −z(ay + by2 + xz),

ż = x4 + y4 − 1.

(5)

Model (5) is exactly the system studied by Pham et al. in [4] and have been shown that there
exists a chaotic system with a rounded square equilibrium as

{
(x, y, 0) : x4 + y4 = 1

}
.

Above all, the aim of this study is to introduce a new family of chaotic systems generating hidden
attractors with differently shaped equilibrium points, containing systems (4) and (5) as two particular
cases, being the generalization of the existing results, and to broaden the views on the hidden attractors.

For any integer k, by solving the following system
z = 0,
−z(ay + by2 + xz) = 0,
|x|k + |y|k − 1 = 0,

(6)

we obtain the equilibrium points of system (3). It is easy to see that the proposed system (3) has a family
of different curve equilibriums of

{
(x, y, 0) : |x|k + |y|k = 1

}
, as illustrated in Figure 1. With the

increasing values of k, the area covered by the different closed curves |x|k + |y|k = 1 is getting larger.
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Figure 1. Different shapes of equilibrium points of system (3), k = 1, 2, 3, 4, 5, from the interior to the
outside, respectively.

2. Chaotic Behavior of the Proposed System

Consider a general n-dimensional autonomous vector field

ẋ = f (x), x ∈ Rn. (7)

An equilibrium solution of (7) is a point x∗ ∈ Rn such that f (x∗) = 0, i.e., a solution which does
not change in time. Other terms substituted for the term equilibrium solution are fixed point or critical
point. In order to determine the stability of x∗, we must understand the nature of solution near x∗.
We do this by linearzing (7) at x∗, that is, by studying the following linear system

ξ̇ = D f (x∗)ξ, ξ ∈ Rn, (8)

where D f = [∂ fi/∂xj] is the Jacobian matrix of first partial derivatives of the function f =

( f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fn(x1, . . . , xn))T (T denotes transpose), and x = x∗ + ξ.
An equilibrium is called hyperbolic if there are no eigenvalues of D f (x) on the imaginary axis.

The following well-known theorem for hyperbolic equilibrium is very crucial in this paper.

Theorem 1. [17] Suppose that all of the eigenvalues of D f (x∗) have negative real parts. Then, the equilibrium
solution x = x∗ of the nonlinear vector field is asymptotically stable.

However, it is worth mentioning that the situation is very complicated for the nonhyperbolic
equilibrium. Let us recall some definitions that are well known in the literature.

Definition 1. [18] An attractor is a minimal closed invariant set that attracts nearby trajectories lying in the
domain of stability (or basin of attraction) onto it.

Definition 2. [18] A chaotic attractor is an attractor that exhibits sensitivity to initial conditions.

Definition 3. [18] The spectrum of Lyapunov exponents are quantities that characterize the rate of separation
of infinitesimally close trajectories.

Chaos is a phenomenon that is not easily identified or classified. There is also no universally
accepted definitions for chaos, but there are some characteristics displayed by the solutions of
chaotic systems: sensitivity to initial conditions; long-term nonperiodic behavior and fractal structure.
Generally, a system is chaotic if at least one of the Lyapunov exponents is positive. This implies
that two trajectories that start initially close to each other on the strange attractor will diverge as
time increases.
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It is worthwhile to note that system (3) with a family of different curve equilibrium points displays
chaotic attractors (see Figure 2) for a = 5, b = 3, and the initial conditions (x(0), y(0), z(0)) = (0, 0, 0).
The black closed contour in the middle of each of Figure 2a–f is the plot of the closed curve equilibrium
for the different values of k, respectively. Chaotic behavior of the system is generally confirmed by the
Lyapunov exponents calculated by the Wolf method and the Kaplan–Yorke dimension DKY (see Table 1
and Figure 3). In simulation, the fourth-order Runge–Kutta integration method has been used with
a final time of 10, 000 and the time step equals 0.01. The results are very interesting that, with the
increasing values of k, the corresponding largest Lyapunov exponents have a trend of decreasing.
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Figure 2. 3D perspective view and plane projections of systems for k from 1 to 6.
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Table 1. Lyapunov exponents of the system (3) for the value of k from 1 to 7.

Equations Equilibrium LEs DKY

k = 1 |x∗|+ |y∗| = 1 (0.0392, 0,−0.0795) 2.4931
k = 2 (x∗)2 + (y∗)2 = 1 (0.0273, 0,−0.0638) 2.4279
k = 3 |x∗|3 + |y∗|3 = 1 (0.0197, 0,−0.0463) 2.4255
k = 4 (x∗)4 + (y∗)4 = 1 (0.0155, 0,−0.0363) 2.4270
k = 5 |x∗|5 + |y∗|5 = 1 (0.0235, 0,−0.0516) 2.4554
k = 6 (x∗)6 + (y∗)6 = 1 (0.0177, 0,−0.0387) 2.4574
k = 7 |x∗|7 + |y∗|7 = 1 (0.0078, 0,−0.0173) 2.4508
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S

Figure 3. The graph of the three Lyapunov exponents of system (3) for the value of k from 1 to 10.

Dynamical motion in the close neighborhood of the equilibrium is determined by the eigenvalues
and associated eigenspace established along this structure [14,15]. The partial derivatives of the
state variables are required in estimating the Jacobian matrix. The derivation of |·| can be obtained
in several ways. Here, sgn(·) is the signum function. It is known that the signum function is not
differentiable at 0.

In the case of the system (3), a state-dependent linearization matrix is easily established as

J(x,y,z) = D f(x,y,z) =

 0 0 1
−z2 −az− 2byz −2xz− ay− by2

kxk−1[sgn(x)]k kyk−1[sgn(y)]k 0

 . (9)

The equilibrium points lie in the plane z = 0, so we have

J(x,y,0) =

 0 0 1
0 0 −ay− by2

kxk−1[sgn(x)]k kyk−1[sgn(y)]k 0

 . (10)

The local behavior along the equilibrium is determined by the eigenvalues, i.e., the roots of the
characteristic equation

Det(J(x,y,0) − λE) = −λ[λ2 + kyk−1[sgn(y)]k(ay + by2)− kxk−1[sgn(x)]k] = 0. (11)

The eigenvalues are given by

λ1 = 0,

λ2,3 = ±(kxk−1[sgn(x)]k − kyk−1[sgn(y)]k(ay + by2))
1
2 .

(12)
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Particularly, for k = 1, we have (See Table 2)

λ1 = 0,

λ2,3 = ±(sgn(x)− sgn(y)(ay + by2))
1
2 .

(13)

Particularly, for k = 2, we have (See Table 3)

λ1 = 0,

λ2,3 = ±(2x− 2y(ay + by2))
1
2 .

(14)

In Tables 2 and 3, I, I I, I I I, IV represent the four quadrants, respectively.
A pair of purely imaginary eigenvalues represent an unstable center equilibrium. Then, there

are concentric periodic orbits around the equilibrium curves. In addition, the pair of purely real
eigenvalues implies an unstable saddle. Furthermore, three-dimensional Bogdanov–Takens equilibria
(λ1 = λ2 = λ3 = 0) are also presented for the case of k = 1, 2.

Table 2. Eigenvalues of the system (3) for k = 1.

Case λ2,3

I 0 < y < 0.1805 one positve real, one negative real
I 0.1805 < y < 1 a pair of purely imaginary
I I a pair of purely imaginary
I I I a pair of purely imaginary
IV −1 < y < −0.2324 a pair of purely imaginary
IV −0.2324 < y < 0 one positve real, one negative real
x = 0, y = 1 λ2,3 = ±2.8284i
x = −1, y = 0 λ2,3 = ±i
x = 0, y = −1 λ2,3 = ±1.4142i
x = 1, y = 0 λ2,3 = ±1
x = 0.8195, y = 0.1805 λ2,3 = 0
x = 0.7676, y = −0.2324 λ2,3 = 0

Table 3. Eigenvalues of the system (3) for k = 2.

Case λ2,3

I 0.9221 < x < 1, 0 < y < 0.3869 one positve real, one negative real
I 0 < x < 0.9221, y > 0.3869 a pair of purely imaginary
I I a pair of purely imaginary
I I I a pair of purely imaginary
IV 0.8676 < x < 1,−0.4973 < y < 0 a pair of purely imaginary
IV 0 < x < 0.8676,−1 < y < −0.4973 one positve real, one negative real
x = 0, y = 1 λ2,3 = ±4i
x = −1, y = 0 λ2,3 = ±1.4142i
x = 0, y = −1 λ2,3 = ±2i
x = 1, y = 0 λ2,3 = ±1.4142
x = 0.8676, y = 0.4973 λ2,3 = 0
x = 0.9221, y = 0.3869 λ2,3 = 0

3. Conclusions

The main goal of the current study is to propose a novel and more general family of chaotic
systems with different curve equilibriums located on a quadrangle, a circle or other general cases.
Furthermore, the chaotic systems here are the extension of existing literature. Dynamics of the new
system have been investigated via different tools such as Phase portrait, Kaplan–Yorke dimension,
Maximal Lyapunov exponents, and Eigenvalues. The results in this study provide a new and in-depth
understanding of such systems. Physical realization of chaotic models have been used in different
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applications such as chaotic masking communications [19] and autonomous robots [20]. Furthermore,
the feasibility of the theoretical model can be confirmed via their realizations, which is future work.
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