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Abstract: As is well-known, the advantage of the high-order compact difference scheme (H-OCD) is
that it is unconditionally stable and convergent on the order O(τ2 + h4) (where τ is the time step size
and h is the mesh size), under the maximum norm for a class of nonlinear delay partial differential
equations with initial and Dirichlet boundary conditions. In this article, a new numerical gradient
scheme based on the collocation polynomial and Hermite interpolation is presented. The convergence
order of this kind of method is also O(τ2 + h4) under the discrete maximum norm when the spatial
step size is twice the one of H-OCD, which accelerates the computational process. In addition,
some corresponding analyses are made and the Richardson extrapolation technique is also considered
in the time direction. The results of numerical experiments are consistent with the theoretical analysis.

Keywords: heat equation; compact difference schemes; numerical gradient; collocation polynomial;
Hermite interpolation; Richardson extrapolation

1. Introduction

Recently, a great deal of effort has been devoted to the development of numerical approximations
to heat equation problems (see [1–4]). It is well known that the traditional numerical schemes have
low accuracy, and thus need fine discretization in order to obtain the desired accuracy, which leads to
many computational challenges due to prohibitive computer memory and time requirements (see [3]).

For heat equations, the forward Euler, backward Euler, and Crank–Nicolson methods were
presented many years ago (see Reference [2]). In addition, three layer implicit schemes also appeared
in Reference [4]. The forward and backward Euler methods only have first-order accuracy in
time and second-order accuracy in space. Also, the forward Euler method is not stable when
cτ/h2 > 1/2. The three layer implicit compact format can reach O(τ2 + h4), but the format is complex.
The Crank–Nicolson method has second-order accuracy in time and space, which is not better when
compared to the high-order compact difference scheme (see Reference [3]), with second-order accuracy
in time and fourth-order accuracy in space. The high-order compact difference format (H-OCD) has
many advantages such as its use of less grid backplane points, its high accuracy, its unconditionally
stability, and its convergence order O(τ2 + h4) under the maximum norm for a class of nonlinear delay
partial differential equations with initial and Dirichlet boundary conditions.

In this paper, based on the H-OCD rough grids, we introduce numerical gradients and utilize local
information to improve the calculation accuracy of the rough grids, and the purpose of acceleration
is achieved. Our strategy is as follows: first, we obtain the intermediate points of the H-OCD rough
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mesh grid by cubic and bi-cubic Hermite interpolation. Then, according to these intermediate points,
a new explicit scheme on the gradient of the discrete solutions of the heat equation is deduced based
on the collocation polynomial. This greatly reduces the amount of calculation for the same accuracy as
the high-order compact difference schemes.

The outline of the article is organized as follows. In Section 2, the compact difference scheme is
derived for one-dimensional heat equations, the numerical gradient method is presented, and then its
convergence is analyzed in detail. In Section 3, we generalize the previous one-dimensional numerical
gradient scheme to a two-dimensional one, and some similar results are obtained. In addition,
the Richardson extrapolation on the time term is also considered. Finally, some numerical results are
reported in Section 4.

2. One-Dimensional Numerical Gradient Schemes Based on the Local Hermite Interpolation and
Collocation Polynomial

For the convenience of description, let us firstly consider the one-dimensional case and then
generalize to the two-dimensional case.

2.1. The High-Order Compact Difference Scheme in One-Dimension

First, let us consider the following one-dimensional heat equation problem:
∂u
∂t (x, t) = c ∂2u

∂x2 (x, t), (x, t) ∈ (0, 1)× (0, T],
u(x, 0) = ϕ(x), x ∈ [0, 1],
u(0, t) = g1(t), u(1, t) = g2(t), t ∈ (0, T],

(1)

Here T is a positive number. Denote Ω = (0, 1) × (0, T]. In addition, the solution u(x, t) is
assumed to be sufficiently smooth and has the required continuous partial derivative.

Next, let us recall the compact difference scheme, which has been introduced in Reference [5].
Let Ωh = {xj|xj = jh, 0 ≤ j ≤ N} be a uniform partition of [0, 1] with the mesh size h = 1/N

and Ωτ = {tk|tk = kτ, 0 ≤ k ≤ M} be a uniform partition of [0, T] with the time step size τ = T/M.
We denote Ωhτ = Ωh ×Ωτ . Let {uk

j |0 ≤ j ≤ N, 0 ≤ k ≤ M} be a mesh function defined on Ωhτ .
For convenience, some other notations are introduced below:

[u]kj = u(xj, tk), uk
j ≈ u(xj, tk), uk+ 1

2
j =

uk
j +uk+1

j
2 ,

δtu
k+ 1

2
j = uk+1

j − uk
j , uk

j− 1
2
=

uk
j +uk

j−1
2 ,

δxuk
j− 1

2
= uk

j − uk
j−1, and δ2

xuk
j = uk

j−1 − 2uk
j + uk

j+1.

In addition, we sometimes use the index pair (j, k) to represent the mesh point (xj, tk). In order
to obtain the high-order compact difference scheme on the Equation (1), let us first recall the
following lemma.

Lemma 1 ([3,5]). Suppose g(x) ∈ C6[xi−1, xi+1], then

1
12 [g

′′(xi−1) + 10g′′(xi) + g′′(xi+1)]− 1
h2 [g(xi−1)− 2g(xi) + g(xi+1)] =

h4

240 g6(ωi), (2)

where ωi ∈ (xi−1, xi+1).

Next, let us consider the Equation (1) at the point (xj, tk+ 1
2
):

∂u
∂t

(xj, tk+ 1
2
) = c

∂2u
∂x2 (xj, tk+ 1

2
), 0 ≤ i ≤ N, 0 ≤ k ≤ M− 1. (3)
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Then for g = [g0, g1, . . . , gN ], we introduce the operator β with the help of Lemma 1, where
we denote:

βgj =
1
12

[gj−1 + 10gj + gj+1], 1 ≤ j ≤ N − 1. (4)

By the famous Taylor formula, we have that:

1
12τ

[
δtu

k+ 1
2

j−1 + 10δtu
k+ 1

2
j + δtu

k+ 1
2

j+1

]
=

c
h2 δ2

xu(xj, tk+ 1
2
) + Rk

j , (5)

and:

Rk
j = τ2βrk

j +
ch4

480

[
∂6u
∂x6 (θ

k
j , tk) +

∂6u
∂x6 (θ

k+1
j , tk+1)

]
, (6)

where rk
j = 1

24
∂3u
∂t3 (xj, ξk

j ) −
c
8

∂4u
∂x2∂t2 (xj, ηk

j ), and ξk
j , ηk

j , θk
j , θk+1

j ∈ (xj−1, xj+1), 1 ≤ j ≤ N − 1, and
0 ≤ k ≤ M− 1.

Noting the initial and boundary conditions in Equation (1), we obtain the following high-order
compact difference scheme:

(uk+1
j−1 − uk

j−1) + 10(uk+1
j − uk

j ) + (uk+1
j+1 − uk

j+1)

= 6cτ
h2 δ2

x(uk
j + uk+1

j ),
(7)

where 1 ≤ j ≤ N − 1, and 0 ≤ k ≤ M− 1 and with:

u0
j = ϕ(xj), 0 ≤ j ≤ N, (8)

uk
0 = g1(kτ), uk

N = g2(kτ), 0 ≤ k ≤ M. (9)

Denoting uk
h = [uk

1, uk
2, . . . , uk

N−1]
T , for k = 0, 1, 2, . . . , M− 1, the above Equations (7)–(9) can

be written as: (
T1 −

6cτ

h2 T2

)
uk+1

h =

(
T1 +

6cτ

h2 T2

)
uk

h + F0, (10)

where:

T1 =


10 1 0 . . . 0 0
1 10 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 10

 and T2 =


−2 1 0 . . . 0 0
1 −2 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −2

 .

In addition, if we denote:

C = max
{

c
240

max
0≤x≤1,0≤t≤T

∣∣∣∣∂6u(x, t)
∂x6

∣∣∣∣ ,
1

24
max

0≤x≤1,0≤t≤T

∣∣∣∣∂3u(x, t)
∂t3

∣∣∣∣+ c
8

max
0≤x≤1,0≤t≤T

∣∣∣∣∂4u(x, t)
∂x2∂t2

∣∣∣∣} ,

then, according to Reference [5], we have:

|Rk
j | ≤ C(τ2 + h4), 1 ≤ j ≤ N − 1, 0 ≤ k ≤ M− 1.

That is, the truncation error of the compact difference scheme in Equation (7) is O(τ2 + h4).

2.2. One-Dimensional Numerical Gradient Scheme Based on Local Hermite Interpolation and the
Collocation Polynomial

As is stated in previous Sections 1 and 2.1, the compact difference method has some advantages.
However, the amount of calculation will be rapidly increased with an increase in the number of mesh
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grid points, see the numerical experiments in Section 4. In order to deal with this problem, next we
give a new numerical gradient scheme based on the collocation polynomial and Hermite interpolation.

Let Uh be the vector space of the grid function on Ωτh, and let uh denote the discrete solution
satisfying Equations (7)–(9). Denote:

Pj =
∂u(xj, t)

∂x
, and Pk

j =
∂u(xj, tk)

∂x
. (11)

Our strategy is as follows:

1. First, get the values of points uT
j by the H-OCD scheme, Equations (7)–(9);

2. Then obtain a formula (see Equation (17)) for Pj with the help of the collocation polynomial; i.e.,:

Pj =
1

12h
[8u(xj+1, t)− 8u(xj−1, t) + u(xj−2, t)− u(xj+2, t)];

3. Finally, determine the values (see Equation (14)) of the intermediate points ut
j+ 1

2
based on Hermite

interpolation; i.e.,:

ut
j+ 1

2
=

1
2
(ut

j + ut
j+1) +

h
8
(Pj − Pj+1).

Thus, combining the H-OCD scheme with the above improvements, a new explicit numerical
gradient scheme for the gradient terms of the discrete solutions of heat equations is deduced, which
will greatly reduce the amount of calculation at the same accuracy as the high-order compact difference
method. Next, let us give a concrete analysis of this approach.

2.2.1. Local Hermite Interpolation and Refinement in the One-Dimensional Case

For convenience, we just consider Hermite cubic and bi-cubic interpolation functions uH(x, t) on
the interval [xj, xj+1] ⊂ Ωh; its vertexes are as follows:

z1(xj, t), z2(xj+1, t) ∈ Ωτh.

On the segment z1 − z2, let the cubic interpolation function satisfy the conditions:

uH(z1) = u(z1), uH(z2) = u(z2),

(uH)x(z1) = ux(z1), and (uH)x(z2) = u(z2).

Based on Reference [6], we can get the Hermite interpolation polynomial as follows:

uH(xj+ 1
2
, t) =

1
2
[u(z1) + u(z2)] +

h
8
[ux(z1)− ux(z2)], (12)

where j = 1, 2, . . . , N − 1. The interpolation errors are

uH(xj+ 1
2
, t)− u(xj+ 1

2
, t) = 1

4! uxxxx(ξ j)(xj+ 1
2
− xj)

2(xj+ 1
2
− xj+1)

2

= h4

24×16 uxxxx(ξ j), j = 1, 2, . . . , N − 1,
(13)

where ξ j lies between z1 and z2 (see Reference [6]). So, by Equation (11), we have the refinemed
computation format:

ut
j+ 1

2
=

1
2
[u(xj, t) + u(xj+1, t)] +

h
8
(Pj − Pj+1), j = 1, 2, . . . , N − 2. (14)

From Equation (13), we know that the above refinement schemes have fourth-order accuracy in
the space direction.
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2.2.2. The Collocation Polynomial in the One-Dimensional Case

From Equation (14), we know that we must obtain the expression of Pj in order to get the
specific formula of the intermediate points. Here, we choose the collocation polynomial method.
For convenience, we first consider the sub-domain:

[xj−1, xj+1] ⊂ Ω, j = 1, 2, . . . , N − 1.

Then, we denote:
ξ = x− xj, x ∈ Ω, j = 1, 2, . . . , N − 1.

In order to get the approximation polynomial of u, we consider the polynomial space:

H4 = span{1, ξ, ξ2, ξ3, ξ4}, (15)

and the approximation polynomial of u:

H(ξ) = a0 + a1ξ + a2ξ2 + a3ξ3 + a4ξ4. (16)

Let:
H(xj−1) = ut

j−1, H(xj+1) = ut
j+1,

c
∂2 H(xj−1)

∂x2 = ∂u
∂t (xj−1, t), c

∂2 H(xj)

∂x2 = ∂u
∂t (xj, t), and

c
∂2 H(xj+1)

∂x2 = ∂u
∂t (xj+1, t), j = 2, 3, , . . . N − 2.

Thus, by Equations (1) and (11), the approximation of Pj can be described as follows:

Pj = 1
2h [u(xj+1, t)− u(xj−1, t)] + h

12c [
∂u
∂t (xj−1, t)− ∂u

∂t (xj+1, t)]
= 1

12h [8u(xj+1, t)− 8u(xj−1, t) + u(xj−2, t)− u(xj+2, t)],
P1 = 1

6h [−2g1(t)− 3u(x1, t) + 6u(x2, t)− u(x3, t)],
PN−1 = 1

6h [2g2(t) + 3u(xN−1, t)− 6u(xN−2, t) + u(xN−3, t)],

(17)

where j = 2, 3, . . . N − 3.
Thus:

ut
j+ 1

2
= 1

2 [u(xj, t) + u(xj+1, t)] + h
8 (Pj − Pj+1)

= 1
2 [u(xj, t) + u(xj+1, t)] + 1

96 [8u(xj+1, t)− 8u(xj−1, t) + u(xj−2, t)−
u(xj+2, t)]− 1

96 [8u(xj+2, t)− 8u(xj, t) + u(xj−1, t)− u(xj+3, t)]
= 1

96 [56u(xj, t) + 56u(xj+1, t) + u(xj−2, t)− 9u(xj+2, t) + u(xj+3, t)],
ut

3
2

= 1
2 [u(x1, t) + u(x2, t)] + h

8 (P1 − P2)

= 1
96 [50u(x1, t) + 60u(x2, t)− 10u(x3, t)− u(x0, t) + u(x4, t)− 4g1(t)],

ut
N− 3

2
= 1

2 [u(xN−2, t) + u(xN−1, t)] + h
8 (PN−2 − PN−1)

= 1
96 [60u(xN−2, t) + 50u(xN−1, t)− 10u(xN−3, t) + u(xN−4, t)−
u(xN , t)− 4g2(t)],

(18)

where j = 2, 3, , . . . N − 3.
Next, according to our improvement scheme, let us analyze the convergence order of this kind of

numerical gradient scheme.

Theorem 1. If u(x, t) ∈ C6
x(Ω) and u(x, t) ∈ C3

t (Ω), then we have:∣∣∣∣∂u(xj, tk)

∂x
− Pk

j

∣∣∣∣ ≤ O(h4), (19)
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where j = 2, 3, 4, . . . N − 2.

Proof. When T = kτ, we know that:

Pk
j = 1

12h [8u(xj+1, tk)− 8u(xj−1, tk) + u(xj−2, tk)− u(xj+2, tk)]

= 4
3

u(xj+1,tk)−u(xj−1,tk)

2h − 1
3

u(xj+2,tk)−u(xj−2,tk)

4h .

So, by the H-OCD method and the energy method with the Sobolev embedding theorem in
Reference [7]:∣∣∣∣∂u(xj, tk)

∂x
−
{

4
3

u(xj+1, tk)− u(xj−1, tk)

2h
− 1

3
u(xj+2, tk)− u(xj−2, tk)

4h

}∣∣∣∣ = O(h4),

where j = 2, 3, 4, . . . N − 2. Thus the proof is completed.

By the above theorem, we know that the accuracy of the partial derivative of u (i.e., Pj) in the
space direction is O(h4) when T = kτ. In fact, due to Equation (14), it is easy to prove that the accuracy
of the intermediate points is O(h4) as well. The corresponding analysis is as follows.

Theorem 2. If u(x, t) ∈ C6
x(Ω) and u(x, t) ∈ C3

t (Ω), and u(x, t) is the exact solution of Equation (1), then:∣∣∣u(xj+ 1
2
, tk)− uk

j+ 1
2

∣∣∣ ≤ O(τ2 + h4), (20)

where j = 2, 3, . . . N − 3.

Proof. First, note that:∣∣∣∣u(xj+ 1
2
, tk)− uk

j+ 1
2

∣∣∣∣ =

∣∣∣∣u(xj+ 1
2
, tk)− uH(xj+ 1

2
, tk) + uH(xj+ 1

2
, tk)− uk

j+ 1
2

∣∣∣∣
≤

∣∣∣∣u(xj+ 1
2
, tk)− uH(xj+ 1

2
, tk)|+ |uH(xj+ 1

2
, tk)− uk

j+ 1
2

∣∣∣∣ ,

then, by the Taylor expansion at (xj+ 1
2
, T) (where T = kτ), we have:

u(xj, tk) = u(xj+ 1
2
, tk)−

h
2

ux(xj+ 1
2
, tk) +

h2

8
uxx(xj+ 1

2
, tk)−

h3

48
uxxx(xj+ 1

2
, tk) + O(h4),

u(xj+1, tk) = u(xj+ 1
2
, tk) +

h
2

ux(xj+ 1
2
, tk) +

h2

8
uxx(xj+ 1

2
, tk) +

h3

48
uxxx(xj+ 1

2
, tk) + O(h4).

Thus, by Equation (14), we can obtain:

u(xj+ 1
2
, tk) = 1

2 [u(xj, tk) + u(xj+1, tk)]− h2

8 uxx(xj+ 1
2
, tk) + O(h4)

= 1
2 [u(xj, tk) + u(xj+1, tk)]− h2

8
∂

∂x
∂u
∂x (xj+ 1

2
, tk) + O(h4)

= 1
2 [u(xj, tk) + u(xj+1, tk)]− h2

8
∂

∂x [
1
h δxu(xj+ 1

2
, tk) + O(h2)] + O(h4)

= 1
2 [u(xj, tk) + u(xj+1, tk)] +

h2

8
∂

∂x
u(xj ,tk)−u(xj+1,tk)

h + O(h4)

= 1
2 [u(xj, tk) + u(xj+1, tk)] +

h
8 [ux(xj, tk)− ux(xj+1, tk)] + O(h4)

= uH(xj+ 1
2
, tk) + O(h4),

where j = 2, 3, . . . N − 3.
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Note that there is no change in the time direction corresponding to the H-OCD method. Therefore,
by Equations (12) and (14), and Theorem 1, we have:

uH(xj+ 1
2
, T)− uT

j+ 1
2

= 1
2 [u(z1) + u(z2)] +

h
8 [ux(z1)− ux(z2)]−

1
2 [u(xj, T) + u(xj+1, T)]− h

8 (Pj − Pj+1)

= h
8 [ux(z1)− ux(z2)]− h

8 (Pj − Pj+1)

= h
8 [ux(z1)− Pj − ux(z2) + Pj+1]

≤ O(τ2 + h4).

So: ∣∣∣∣u(xj+ 1
2
, tk)− uk

j+ 1
2

∣∣∣∣ ≤ ∣∣∣u(xj+ 1
2
, tk)− uH(xj+ 1

2
, tk)

∣∣∣+ ∣∣∣∣uH(xj+ 1
2
, tk)− uk

j+ 1
2

∣∣∣∣
≤ O(h4) + O(τ2 + h4)

≤ O(τ2 + h4).

Thus the proof is completed.

2.3. Richardson Extrapolation on the H-OCD Scheme in the One-Dimensional Case

For the compact difference H-OCD scheme considered in Section 2.1, the numerical solution and
its difference quotient in space direction are unconditionally convergent with a convergence order
O(τ2 + h4) under the maximum norm. Furthermore, the convergence of the difference quotient in
space direction can be proved by the energy method with the Sobolev embedding theorem, that is:∣∣∣∣∂u(xj, tk)

∂x
−
{

4
3

u(xj+1, tk)− u(xj−1, tk)

2h
− 1

3
u(xj+2, tk)− u(xj−2, tk)

4h

}∣∣∣∣ = O(τ2 + h4),

and: ∣∣∣u(xj, tk)− uk
j

∣∣∣ = O(τ2 + h4), 1 ≤ j ≤ N − 1, 1 ≤ k ≤ M.

Next, we consider Richardson extrapolation [8] on this H-OCD scheme, Equations (7)–(9), in the
time direction in order to reduce the total computation time, as in Reference [9].

Lemma 2 ([10]). Let {Vk
j |0 ≤ j ≤ N, 0 ≤ k ≤ M} be the solution of the equation below:

1
τ δtV

k+ 1
2

j − a
h2 δ2

xVk+ 1
2

j = gk+ 1
2

j , 0 ≤ j ≤ N − 1, 0 ≤ k ≤ M− 1,
V0

j = ϕj, 0 ≤ j ≤ N − 1,
Vk

0 = 0, Vk
N = 0, 0 ≤ k ≤ M.

(21)

Then:

|Vk|∞ ≤
1
2

(
|V0|21 +

τ

2a

k−1

∑
l=0
|gl+ 1

2 |2
) 1

2

, 0 ≤ k ≤ N,

where:

|gl+ 1
2 |2 = h

N−1

∑
j=1

(gl+ 1
2

j )2.

Theorem 3. Let uk
j (h, τ) be the solution of H-OCD scheme in Equations (7)–(9) with the time step τ and the

spatial step h. Then:∣∣∣∣u(xj, tk)−
[

4
3

u2k
j (h,

τ

2
)− 1

3
uk

j (h, τ)

]∣∣∣∣ = O(τ4 + h4), 1 ≤ j ≤ N − 1, 1 ≤ k ≤ M.
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Proof. Let us consider the following initial–boundary problem:

ut −4u = Fu(x, t), (x, t) ∈ (0, 1)× (0, T],
u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,
u(x, 0) = 0, x ∈ (0, 1)

with the smooth solution p(x, t), where:

Fp(x, t) =
1

24
∂3u(x, t)

∂t3 − c
8

∂4u(x, t)
∂x2∂t2 .

By Equation (6), we know:

Rk
j = Fp(xj, tk+ 1

2
)τ2 + O(τ4 + h4), 1 ≤ j ≤ N − 1, 0 ≤ k ≤ M− 1.

So:

δte
k+ 1

2
j
τ − c

h2 δ2
xek+ 1

2
j = Fp(xj, tk+ 1

2
)τ2 + O(τ4 + h4), 1 ≤ j ≤ N − 1, 0 ≤ k ≤ M− 1,

e0
j = 0, 0 ≤ j ≤ N,

ek
0 = 0, ek

m = 0, 1 ≤ k ≤ M.

Here ek
j = u(xj, tk)− uk

j , 0 ≤ j ≤ N, and 0 ≤ k ≤ M.
In addition, according to the H-OCD in Equations (7)–(9), we obtain:

δt p
k+ 1

2
j
τ − c

h2 δ2
x pk+ 1

2
j = Fp(xj, tk+ 1

2
), 1 ≤ j ≤ N − 1, 0 ≤ k ≤ M− 1,

p0
j = 0, 0 ≤ j ≤ N,

pk
0 = 0, pk

m = 0, 1 ≤ k ≤ M.

Then:
u(xj, tk)− pk

j (h, τ) = O(τ2 + h4), 1 ≤ j ≤ N − 1, 0 ≤ k ≤ M.

By denoting:
rk

j = ek
j + τ2 pk

j , 1 ≤ j ≤ N, 0 ≤ k ≤ M,

and combining the above equations, we get:

δtr
k+ 1

2
j
τ − c

h2 δ2
xrk+ 1

2
j = O(τ4 + h4), 1 ≤ j ≤ N − 1, 0 ≤ k ≤ M− 1,

r0
j = 0, 0 ≤ j ≤ N,

rk
0 = 0, rk

N = 0, 1 ≤ k ≤ M.

Then by Lemma 2 we have:

|rk|∞ ≤
1
2

(
|r0|21 +

τ

2a

k−1

∑
l=0
|Ol+ 1

2 (τ4 + h4)|2
) 1

2

, 0 ≤ k ≤ N,

where:

|Ol+ 1
2 (τ4 + h4)|2 = h

N−1

∑
j=1

(gl+ 1
2

j (τ4 + h4))2.

That is:
|rk|∞ = O(τ4 + h4), 1 ≤ k ≤ M,
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i.e.,:
uk

j (h, τ) = u(xj, tk) + τ2 p(xj, tk) + O(τ4 + h4), 1 ≤ j ≤ N − 1, 0 ≤ k ≤ M,

u2k
j (h,

τ

2
) = u(xj, tk) + (

τ

2
)2 p(xj, tk) + O((

τ

2
)4 + h4), 1 ≤ j ≤ N − 1, 0 ≤ k ≤ M.

Finally:∣∣∣∣u(xj, tk)−
[

4
3

u2k
j (h,

τ

2
)− 1

3
uk

j (h, τ

]∣∣∣∣ = O(τ4 + h4), 1 ≤ j ≤ N − 1, 1 ≤ k ≤ M.

Thus, the conclusion is proved.

Remark 1. With the Richardson extrapolation method above, the truncation errors in the time direction for
the H-OCD scheme is O(τ4 + h4) in terms of the maximum norm. Similarly, the extrapolation 16

15 u4k
2j (

τ
4 , h

2 )−
1

15 uk
j (τ, h) can obtain the following result for any 1 ≤ j ≤ N − 1, 1 ≤ k ≤ M:∣∣∣∣u(xj, tk)−

[
16
15

u4k
2j (

τ

4
,

h
2
)− 1

15
uk

j (τ, h)
]∣∣∣∣ = O(τ4 + h6).

3. Two-Dimensional Numerical Gradient Scheme Based on Local Hermite Interpolation and the
Collocation Polynomial

3.1. The High-Order Compact Difference Scheme in Two-Dimensions

Next, let us generalize the previous one-dimensional H-OCD scheme to the two-dimensional one.
Similar to the previous Section 2, the following two-dimensional heat equation problem is considered:

∂u
∂t = ∂2u

∂x2 +
∂2u
∂y2 , (x, y, t) ∈ Ω× (0, T],

u(x, y, 0) = ϕ(x, y), (x, y) ∈ [a, b]× [c, d],
u(a, y, t) = g1(y, t), u(b, y, t) = g2(y, t), (y, t) ∈ [c, d]× (0, T],
u(x, c, t) = g3(x, t), u(x, d, t) = g4(x, t), (x, t) ∈ [a, b]× (0, T],

(22)

where T is a positive number. Denote Ω = (a, b)× (c, d). In addition, the solution u(x, y, t) is assumed
to be sufficiently smooth and has the required continuous partial derivative.

Let hx = b−a
Nx

, hy = d−c
Ny

, and Ωh = {
(

xi, yj
)
|xi = ihx, yj = jhy, 0 ≤ i, j ≤ N}. When τ = T/M,

define Ωτ = {tk|tk = kτ, 0 ≤ k ≤ M} and Ωhτ = Ωh × Ωτ . In addition, we denote {uk
ij|0 ≤

i, j ≤ N, 0 ≤ k ≤ M} as the mesh function defined on Ωhτ . Moreover, some other notations are
introduced below:

[u]kij = u
(

xi, yj, tk
)

, uk
ij ≈ u

(
xi, yj, tk

)
;

δ2
xuk

ij = uk
i−1,j − 2uk

ij + uk
i+1,j, and δ2

yuk
ij = uk

i,j−1 − 2uk
ij + uk

i,j+1.

For convenience, define the operators Dx = d
dx , Dy = d

dy , E =
∞
∑

k=0

1
k! (hD)k = ehD and its inverse

operator E−1 = e−hD. Obviously:

δ2 = E−1 − 2 + E = e−hD − 2 + ehD = h2D2 + 1/12h4D4 + O(h6).

Note that δ2 = h2D2 + O
(
h4), therefore:

δ2 = h2D2 +
1

12
h2D2

[
δ2 −O

(
h4
)]

+ O
(

h6
)
=

(
1 +

1
12

δ2
)

h2D2 + O
(

h6
)

. (23)
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That is:
(1 +

1
12

δ2)−1δ2 = h2D2 + O
(

h6
)

.

Applying Equation (23) to Equation (22), we obtain:

(
1 +

1
12

δ2
x +

1
12

δ2
y

)
∂u
∂t

=

(
1 + 1

12 δ2
y

)
h2

x
δ2

xu +

(
1 + 1

12 δ2
x

)
h2

y
δ2

yu + O
(

h4
)

, (24)

where O
(
h4) = O

(
h4

x + h4
y

)
. In addition, according to the Crank–Nicolson difference scheme [1,7],

we further have:

(
1 +

1
12

δ2
x +

1
12

δ2
y

)
un+1 − un

τ
=


(

1 + 1
12 δ2

y

)
h2

x
δ2

x +

(
1 + 1

12 δ2
x

)
h2

y
δ2

y

 un+1 + un

2
,

which can be written as:(
1 + 1

12 δ2
x +

1
12 δ2

y − τ
(1+ 1

12 δ2
y)

2h2
x

δ2
x − τ

(1+ 1
12 δ2

x)
2h2

y
δ2

y

)
un+1

=

(
1 + 1

12 δ2
x +

1
12 δ2

y + τ
(1+ 1

12 δ2
y)

2h2
x

δ2
x + τ

(1+ 1
12 δ2

x)
2h2

y
δ2

y

)
un.

Next, in order for convenience of description, let h = hx = hy, N = Nx = Ny, and define
r = τ/2h2, then the above equation can be reduced to the following discrete form by the initial and
boundary conditions:(

2
3 + 10

3 r
)

un+1
ij −

(
2r
3 −

1
12

) (
un+1

i−1,j + un+1
i+1,j + un+1

i,j−1 + un+1
i,j+1

)
− r

6 (u
n+1
i−1,j−1 + un+1

i−1,j+1

+un+1
i+1,j−1 + un+1

i+1,j+1) =
(

2r
3 + 1

12

) (
un

i−1,j + un
i+1,j + un

i,j−1 + un
i,j+1

)
+(

2
3 −

10
3 r
)

un
ij +

r
6

(
un

i−1,j−1 + un
i−1,j+1 + un

i+1,j−1 + un
i+1,j+1

)
,

(25)

where i, j = 1, 2, . . . , N − 1. Furthermore, u0
ij = u0

(
xi, yj

)
, uk

0j = g1
(
yj, tk

)
, uk

Nj = g2
(
yj, tk

)
, uk

i0 =

g3 (xi, tk) , and uk
iN = g4 (xi, tk) , with i, j = 1, 2, . . . , N − 1, k = 1, 2, . . . , M. The concrete computation

process of the above discrete scheme may be described as follows:
A1

−B1

−B1

A1

· · ·
· · ·

0 0
0 0

...
...

. . . ...
...

0 0 · · · −B1 A1




un+1
h1

un+1
h2
...

un+1
hN−1

 =


A2

B2

B2

A2

· · ·
· · ·

0 0
0 0

...
...

. . . ...
...

0 0 · · · B2 A2




un
h1

un
h2
...

un
hN−1

+


Un+1

h1
Un+1

h2
...

Un+1
hN−1

+


B1un+1

h0
0
...

B1un+1
hN

+


Un

h1
Un

h2
...

Un
hN−1

+


B2un

h0
0
...

B2un
hN

 ,

(26)
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where:

Un+1
hj =

[
8r−1

12 un+1
0j + r

6 un+1
0j+1 +

r
6 un+1

0j−1, 0 . . . 0, 8r−1
12 un+1

Nj + r
6 un+1

N,j+1 +
r
6 un+1

N,j−1

]T
,

Un
hj =

[
8r+1

12 un
0j +

r
6 un

0j+1 +
r
6 un

0j−1, 0 . . . 0, 8r+1
12 un

Nj +
r
6 un

N,j+1 +
r
6 un

N,j−1

]T
, j = 1, 2, . . . , N − 1.

un+1
h0 =

[
un+1

10 , un+1
20 , . . . , un+1

N−1,0

]T
, un+1

hN =
[
un+1

1N , un+1
2N , . . . , un+1

N−1,N

]T
,

un
h0 =

[
un

10, un
20, . . . , un

N−1,0

]T
, un

hN =
[
un

1N , un
2N , . . . , un

N−1,N

]T
.

and:

A1 =



2+10r
3

1−8r
12

1−8r
12

2+10r
3

1−8r
12

1−8r
12

. . . . . .

. . . . . . 1−8r
12

1−8r
12

2+10r
3


, A2 =



2−10r
3

1+8r
12

1+8r
12

2−10r
3

1+8r
12

1+8r
12

. . . . . .

. . . . . . 1+8r
12

1+8r
12

2−10r
3


;

B1 =



8r−1
12

r
6

r
6

8r−1
12

r
6

r
6

. . . . . .

. . . . . . r
6

r
6

8r−1
12


, B2 =



8r+1
12

r
6

r
6

8r+1
12

r
6

r
6

. . . . . .

. . . . . . r
6

r
6

8r+1
12


.

This is the compact difference scheme (H-OCD) for Equation (22). The truncation errors O(τ2 + h4)

can be directly obtained by the derivation process.

3.2. Two-Dimensional Numerical Gradient Scheme

Next, analogous to Section 2, let us consider the two-dimensional numerical gradient scheme on
the above discrete form, Equation (25), by local Hermite interpolation and the collocation polynomial.
The intermediate points u(xi+ 1

2
, yj+ 1

2
) can be expressed (see Equation (28)) by the values of the mesh

points and the partial derivatives P(xi, yj) (i.e., Kij and Lij, see Equations (34) and (35)) around it (see
Figure 1), where P(xi, yj) is computed by the difference points around u(xi, yj) (see Figure 2).

x

y

u(x
i+1/2

,y
j+1/2

)

(i+1, j+1)(i, j+1)

u(x
i
,y

j
)and

P(x
i
, y

j
)

(i+1/2, j+1/2)

(i, j) (i+1, j)

Figure 1. The relationships between u(xi+ 1
2
, yj+ 1

2
), and the surrounding points u(xi, yj) and partial

derivatives P(xi, yj).
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x

y

 

 

(i+2, j)

P(x
i
, y

j
)

(i+1, j)(i−1, j)

(i−2, j)

u(x
i−1

, y
j−1

)

(i+1, j−1)

(i+1, j+1)(i−1, j+1)

(i−1, j−1)

(i, j)

Figure 2. The relationships between P(xi, yj) and the surrounding points u(xi, yj).

3.2.1. Local Hermite Interpolation and Refinement in the Two-Dimensional Case

For convenience, we denote:

Ki,j =
∂u
(

xi, yj, t
)

∂x
∆
=

∂u
∂x

∣∣∣∣
(xi ,yj ,t)

, and Li,j =
∂u
(
xi, yj, t

)
∂y

.

Let us consider Hermite bilinear interpolation functions ΨH(x, y, t) on the rectangular mesh
[xi, xi+1]× [yj, yj+1] ⊂ Ωh, where its four vertexes are as follows:

z1 :
(

xi, yj, t
)

, z2 :
(

xi+1, yj, t
)

, z3 :
(
xi, yj+1, t

)
, z4 :

(
xi+1, yj+1, t

)
∈ Ωh.

On the segment z1 − z2, let the bilinear interpolation function satisfy the following conditions:

ΨH(z1) = u(z1), ΨH(z2) = u(z2),

(ΨH)x(z1) = ux(z1), and (ΨH)x(z2) = u(z2).

Based on Reference [6], we can obtain the following Hermite interpolation polynomial:

ΨH(xi+ 1
2
, yj, t) =

1
2
[u(z1) + u(z2)] +

h
8
[ux(z1)− ux(z2)], (27)

where i = 1, 2, . . . , N − 1. The interpolation errors are:

ΨH

(
xi+ 1

2
, yj, t

)
− u

(
xi+ 1

2
, yj, t

)
=

uxxxx(ξi ,yj ,t)
4!

(
xi+ 1

2
− xi

)2(
xi+ 1

2
− xi+1

)2

= h4
x

384 uxxxx
(
ξi, yj, t

)
, i, j = 1, 2, . . . , N − 1.

(28)

where ξ j lies between z1 and z2 (see Reference [6]). Thus, we obtain the following approximate
computation formula for any i = 2, 3, . . . , , N − 1, j = 1, 2, . . . , N − 1:

uk
i+ 1

2 ,j =
1
2

(
uk

ij + uk
i+1,j

)
+

hx

8
(
Kij − Ki+1,j

)
. (29)

Similarly, we have also that:

uk
i,j+ 1

2
=

1
2

(
uk

ij + uk
i,j+1

)
+

hy

8
(

Lij − Li,j+1
)

. (30)



Mathematics 2019, 7, 93 13 of 22

Therefore, for i, j = 2, 3, . . . , N − 3, uk
i+ 1

2 ,j+ 1
2

can be approximated as follows:

uk
i+ 1

2 ,j+ 1
2
= 1

2

(
uk

i,j+ 1
2
+ uk

i+1,j+ 1
2

)
+ h

8

(
Ki,j+ 1

2
− Ki+1,j+ 1

2

)
= 1

4

(
uk

ij + uk
i,j+1

)
+ h

16
(

Lij − Li,j+1 + Li+1,j − Li+1,j+1
)
+

1
4

(
uk

i+1,j + uk
i+1,j+1

)
+ h

16
(
Kij − Ki+1j + Kij+1 − Ki+1j+1

)
.

(31)

In Section 3.3, we will prove that the above refinement scheme has fourth-order accuracy in the
space direction, see Theorem 5.

3.2.2. The Collocation Polynomial in the Two-Dimensional Case

Next, we use the collocation polynomial method to obtain the approximate values of Kij and Lij.
For convenience, we consider the sub-domain:

[xi−1, xi+1]× [yj−1, yj+1] ⊂ Ω, i, j = 1, 2, . . . , N − 1,

and denote:
ξ = x− xi, η = y− yj, (x, y) ∈ Ωh, (i, j = 1, 2, . . . , N − 1) .

In order to get the approximation polynomial of u, we consider the polynomial space:

H4 = span
{

1, ξ, η, ξ2, ξη, η2, ξ3, ξ2η, ξη2, η3, ξ4, ξ2η2, η4
}

, (32)

and define the approximation polynomial as follows:

H(ξ, η) = a0 + a1ξ + a2η + a3ξ2 + a4ξη + a5η2 + a6ξ3 + a7ξ2η+

a8ξη2 + a9η3 + a10ξ4 + a11ξ2η2 + a12η4.
(33)

Let:

H (xm, yn) = u (xm, yn) ; m = i− 1, i, i + 1; n = j− 1, j, j + 1; (m− i) (n− j) 6= 0;
∂2 H(xm ,yn)

∂x2 + ∂2 H(xm ,yn)
∂y2 = ∂u

∂t (xm, yn, t) ,

where n = j; m = i − 1, i, i + 1 and n = j± 1, m = i. Then, we can obtain the following numerical
gradient approximate scheme:

Kij =
1

12h
[
8u
(

xi+1, yj, t
)
− 8u

(
xi−1, yj, t

)
+ u

(
xi−2, yj, t

)
− u

(
xi+2, yj, t

)]
,

i = 2, 3, . . . , N − 2, j = 1, 2, . . . , N − 1;
(34)

Lij =
1

12h
[
8u
(

xi, yj+1, t
)
− 8u

(
xi, yj−1, t

)
+ u

(
xi, yj−2, t

)
− u

(
xi, yj+2, t

)]
,

i = 1, 2, . . . , N − 1, j = 2, 3, . . . , N − 2.
(35)

3.3. The Truncation Errors of the Numerical Gradient Scheme

As stated in the previous Section 2, the truncation errors of the compact difference method in
Reference [5] are O(τ2 + h4). In fact, the above numerical gradient schemes, Equations (34) and (35),
also have the same convergence order.

Theorem 4. If u(x, y, t) ∈ C6
x(Ω) and u(x, y, t) ∈ C6

y(Ω), then we have:∣∣∣∣∣Kij −
∂u
(

xi, yj, t
)

∂x

∣∣∣∣∣ < O
(

h4
)

, (i = 2, 3, . . . , N − 2; j = 1, 2, . . . , N − 1), (36)
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∣∣∣∣∣Lij −
∂u
(

xi, yj, t
)

∂y

∣∣∣∣∣ < O
(

h4
)

, (j = 2, 3, . . . , N − 2; i = 1, 2, . . . , N − 1) . (37)

Proof. According to Equation (34), we know:

Kij = 1
12h
[
8u
(

xi+1, yj, t
)
− 8u

(
xi−1, yj, t

)
+ u

(
xi−2, yj, t

)
− u

(
xi+2, yj, t

)]
= 4

3
u(xi+1,yj ,t)−u(xi−1,yj ,t)

2h − 1
3

u(xi−2,yj ,t)−u(xi+2,yj ,t)
4h .

In addition, according to the Taylor series expansion theorem, we have:

∂u
(

xi, yj, t
)

∂x
=

4
3

u
(

xi+1, yj, t
)
− u

(
xi−1, yj, t

)
2h

− 1
3

u
(

xi−2, yj, t
)
− u

(
xi+2, yj, t

)
4h

+ O
(

h4
)

So: ∣∣∣∣∣∂u
(

xi, yj, t
)

∂x
− Kij

∣∣∣∣∣ = O
(

h4
)

.

Similarly, we may also prove that:∣∣∣∣∣∂u
(

xi, yj, t
)

∂y
− Lij

∣∣∣∣∣ = O
(

h4
)

.

Thus the proof is completed.

By the above theorem, we know that the accuracy of the numerical gradient schemes in
Equations (34) and (35) is O(h4) in the space direction. In fact, in the intermediate points (xi+ 1

2
, yj+ 1

2
, t),

the above refinement scheme, Equation (31), also has fourth-order accuracy in space direction.

Theorem 5. If u(x, y, t) ∈ C6
x(Ω) and u(x, y, t) ∈ C6

y(Ω), then:∣∣∣u (xi+ 1
2
, yj+ 1

2
, tk

)
− uk

i+ 1
2 ,j+ 1

2

∣∣∣ ≤ O
(

h4
)

, i, j = 2, 3, . . . , N − 3. (38)

Proof. First, by the Taylor expansion of u
(
xi, yj, tk

)
at (xj+ 1

2
, T), we have:

u
(

xi, yj, tk
)
= u

(
xi+ 1

2
, yj, tk

)
− h

2 ux

(
xi+ 1

2
, yj, tk

)
+ h2

8 uxx

(
xi+ 1

2
, yj, tk

)
−

h3

48 uxxx

(
xi+ 1

2
, yj, tk

)
+ O

(
h4) ,

u
(

xi+1, yj, tk
)
= u

(
xi+ 1

2
, yj, tk

)
+ h

2 ux

(
xi+ 1

2
, yj, tk

)
+ h2

8 uxx

(
xi+ 1

2
, yj, tk

)
+

h3

48 uxxx

(
xi+ 1

2
, yj, tk

)
+ O

(
h4) .

Therefore:

u
(

xi+ 1
2
, yj+ 1

2
, tk

)
= 1

4
[
u
(

xi, yj, tk
)
+ u

(
xi, yj+1, tk

)
+ u

(
xi+1, yj, tk

)
+ u

(
xi+1, yj+1, tk

)]
−

h2

8 uxx

(
xi+ 1

2
, yj+ 1

2
, tk

)
− h2

16 [uyy

(
xi, yj+ 1

2
, tk

)
− uyy

(
xi+1, yj+ 1

2
, tk

)
] + O

(
h4)

= 1
4
[
u
(

xi, yj, tk
)
+ u

(
xi, yj+1, tk

)
+ u

(
xi+1, yj, tk

)
+ u

(
xi+1, yj+1, tk

)]
−

h
16

∂
∂y δy

[
u
(

xi, yj+ 1
2
, tk

)
− u

(
xi+1, yj+ 1

2
, tk

)]
− h

8
∂

∂x

[
δxu

(
xi+ 1

2
, yj+ 1

2
, tk

)]
+ O

(
h4)

= 1
4

(
uk

ij + uk
i,j+1 + uk

i+1,j + uk
i+1,j+1

)
− h

16
(

Lij − Li,j+1 + Li+1j − Li+1j+1
)
−

h
16
(
Kij − Ki+1,j + Ki,j+1 − Ki+1,j+1

)
+ O

(
h4)

= uk
i+ 1

2 ,j+ 1
2
+ O

(
h4) .

That is, the conclusion holds.



Mathematics 2019, 7, 93 15 of 22

In addition, to reduce the total computing time, we also consider the Richardson extrapolation
on the H-OCD scheme of Equation (25) in the two-dimensional case. For convenience, we take the
following initial–boundary problem as a simple example:

ut − ∆u = Fu (x, y, t) , (x, y, t) ∈ (a, b)× (c, d)× (0, T] ,
u (x, c, t) = u (x, d, t) = u (a, y, t) = u (b, y, t) = 0, (x, y) ∈ [a, b]× [c, d] , 0 ≤ t ≤ T,
u (x, y, 0) = 0, [x, y] ∈ [a, b]× [c, d]

(39)

with the smooth solution u(x, y, t), where:

Fu (x, y, t) =
1

24
∂3u (x, y, t)

∂t3 − 1
8

∂4u (x, y, t)
∂x2∂t2 .

Theorem 6. Let u (x, y, t) ∈ C8,6 (Ωh × [0, T]) be the solution of Equation (22) for the initial–boundary
problem of Equation (39), and let uk

ij (h, τ) be the numerical solution of the H-OCD scheme, Equation (25), with
time step τ and spatial step h. Then:

max
1≤i,j≤N−1,1≤k≤M

∣∣∣∣u (xi, yj, tk
)
−
[

4
3

u2k
ij

(
h,

τ

2

)
− 1

3
uk

j (h, τ)

]∣∣∣∣ = O
(

τ4 + h4
)

.

Proof. The proof is similar to that of Theorem 3.

In addition, the corresponding numerical experiments will be shown in Table 10.

4. Numerical Experiments

4.1. Numerical Experiments for the One-Dimensional Case

Example 1. Let u(x, 0) = sin(πx), u(0, t) = u(1, t) = 0 for Equation (1) with (x, t) ∈ (0, 1) × (0, T].
Then the exact solution of Equation (1) is:

u(x, t) = exp(−π2t) sin(πx).

Next, let us observe and compare the numerical solutions and computation times for the same
number of points in the above two schemes.

First, we note that matrix computations are based on LAPACK, and the optimized basic linear
algebra subroutines (BLAS) on the Matlab platform which speeds up matrix multiplications and
the LAPACK routines themselves, according to Matlab user manual. Therefore, all the numerical
experiments were performed in Matlab 2011b. In addition, for convenience, we denote Rate(h) =

log2

(
Error(h)
Error( h

2 )

)
and Error(h) = maxxk=x0+kh,k=0,1,...N{| (u(xk, T)− uT

k ) |}, where u(xk, T) represents

the exact solution and uT
k is the numerical solution. Let:

Error(P) = max
xk=x0+kh,k=0,1,...N

{∣∣∣∣∂u
∂x

(xj, T)− PT
k )

∣∣∣∣} .

Table 1 lists the computational results for the mesh grid points, the intermediate points, and
ux with different spatial step sizes, when time step size is fixed as τ = 1/100, 000. We can see that
the convergence order in space can reach O(h4) which is consistent with the theoretical analysis in
this article.
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Table 1. Errors and rate for calculations of the intermediate points and numerical gradients P in space
direction, with τ = 1/100, 000.

h
Mesh Grid
Points

Intermediate
Points

P (i.e., ∂u
∂x )

Error
Rate

Error
Rate

Error
Rate

1/4 8.3491× 10−7 4.0355 5.4790× 10−7 3.5729 3.7721× 10−6 3.7762
1/8 5.0915× 10−8 4.0073 4.6043× 10−8 3.9694 2.5732× 10−7 3.9370
1/16 3.1660× 10−9 4.0045 2.9394× 10−9 3.9952 1.7976× 10−8 3.9823
1/32 1.9725× 10−10 4.0466 1.8433× 10−10 4.0474 1.1374× 10−9 3.9715
1/64 1.1936× 10−11 - 1.1148× 10−11 - 7.2504× 10−11 -

Figure 3 displays the errors curves with different step sizes for the mesh grid points (by the
H-OCD method) and for all the points (by the new method) when T = 1. This displays that the
changes of the truncation errors in the mesh grid points and the other points are large with large h and
τ. At the same time, the shape of the curves is approximately the same. That means that the points
obtained through the new method are not worse than the H-OCD method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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1
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h=1/10,dt=1/10
h=1/20,dt=1/40
h=1/40,dt=1/160
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Figure 3. (Top) The error curves of the mesh grid points in the high-order compact difference (H-OCD)
method, when T = 1; (Bottom) The error curves of all the points in the new method, when T = 1.
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Figure 4 shows that the numerical solution (the red line), for all the points calculated by the new
method, is closer to the exact solution (the green line) when h = 1/8, τ = 1/100, T = 1. That is to say,
the simulation result of the red line is better than the other one. In order to make Figure 4 more clear,
we choose h = 1/8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 10

−5

x

 

 
numerical solutions of all
the points(new method)
exact solution
numerical solutions of
the mesh−grid points

Figure 4. The numerical solutions and the exact solution for all the points in the new method and for
the mesh grid points in the H-OCD method, when h = 1/8, τ = 1/100, t = 1.

Figure 5 displays the error surface maps with different step sizes in both the spatial and time
directions for the mesh grid points (by the H-OCD method) and for all the points (by the new method)
when t = 1. This display that the truncation errors in the mesh grid points and the other points are
large when h and τ are large. At the same time, the shape of the curves is approximately the same.
That means that the points obtained through the new method work very well too.

In addition, from Table 2, we know that the H-OCD method takes more time to compute the same
number of difference points, compared to the new method. For example, if we need the numerical
solutions of 255 points to simulate the real figure, we only need h = 1/128. Through the method
proposed in this article, we can get the numerical solutions for the 255 points.

Table 2. Errors of the numerical solutions in the mesh grid points (H-OCD method), and in all
the points (numerical gradient scheme), and the total time to calculate the solutions when τ = h2,
T = 1, h = 1/(n− 1) .

Grid Node Number
H-OCD Method Numerical Gradient Scheme

Error
Time

Error
Time

N = 15 6.0041× 10−8 0.1544 9.5518× 10−7 0.0312
N = 31 3.7541× 10−9 0.5725 6.0041× 10−8 0.1560
N = 63 2.3464× 10−10 2.5389 3.7623× 10−9 0.5839
N = 127 1.4665× 10−11 11.505 2.3536× 10−10 2.7233
N = 255 9.1633× 10−13 142.64 1.4713× 10−11 12.8879
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Figure 5. (Top) The error surface map of the compact difference scheme for the mesh grid points;
(Bottom) The error surface map of the numerical gradient scheme for the intermediate points.

Example 2. For u(x, 0) = exp(x), u(0, t) = exp(t), u(1, t) = exp(1 + t) with (x, t) ∈ (0, 1)× (0, T], the
exact solution of Equation (1) is:

u(x, t) = exp(x + t).

In the following, we compare the numerical solution with the exact solution as follows (see
Tables 3–6).
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Table 3. Errors and rates of the H-OCD scheme, Equations (7)–(9), the intermediate points (new
method), and the numerical gradient Pj in the spatial direction, with τ = 1/100, 000.

h
Mesh-Grid
Points

Intermediate
Points

P (i.e., ∂u
∂x )

Error
Rate

Error
Rate

Error
Rate

1/4 8.4064× 10−6 3.9974 2.9136× 10−4 3.8091 6.8324× 10−3 2.7543
1/8 5.2636× 10−7 3.9895 2.0787× 10−5 3.9099 1.1027× 10−3 2.8763
1/16 3.3138× 10−8 3.9993 1.3828× 10−6 3.9564 1.3792× 10−4 2.9379
1/32 2.0721× 10−9 4.0472 8.9081× 10−8 3.9787 1.7998× 10−5 2.9689
1/64 1.2534× 10−10 - 5.6505× 10−9 - 2.2987× 10−6 -

Table 4. Errors and rates of the H-OCD scheme, Equations (7)–(9), the intermediate points (new
method), and the numerical gradient Pj in the time direction, with h = 1/10, 000.

τ
Compact
Difference

Intermediate
Points

P (i.e., ∂u
∂x )

Error
Rate

Error
Rate

Error
Rate

1/10 4.3449× 10−4 1.9988 4.3449× 10−4 1.9988 2.0491× 10−3 1.9769
1/20 1.0871× 10−4 1.9998 1.0871× 10−4 1.9998 5.2055× 10−4 1.9887
1/40 2.7183× 10−5 1.9999 2.7183× 10−5 1.9999 1.3116× 10−4 1.9945
1/80 6.7960× 10−6 2.0005 6.7960× 10−6 2.0005 3.2914× 10−5 1.9987
1/160 1.6984× 10−6 2.0053 1.6984× 10−6 2.0053 8.2362× 10−6 2.0053
1/320 4.2303× 10−7 2.0246 4.2303× 10−7 2.0246 2.0515× 10−6 2.0259
1/640 1.0397× 10−7 - 1.0397× 10−7 - 5.0375× 10−7 -

From Tables 3 and 4, we know that the numerical results are consistent with our theoretical results.

Table 5. Errors of the numerical solutions for the mesh grid points and for all points in the new method,
and the time to get these solutions when τ = h2, t = 1, h = 1/(n− 1) .

Grid Node Number
H-OCD Method Numerical Gradient Scheme

Error Time Error Time

N = 15 6.2975× 10−7 0.1248 1.3540× 10−5 0.0406
N = 31 3.9376× 10−8 0.5725 1.1199× 10−6 0.1265
N = 63 2.4630× 10−9 3.1590 8.0259× 10−8 0.5959
N = 127 1.5453× 10−10 20.117 5.3654× 10−9 3.1844
N = 255 1.2050× 10−11 128.44 3.4669× 10−10 21.542

In addition, the conclusion in the space direction we get from Table 5 is the same as that from
Table 2. Thus, combining with Figure 6, the advantage of the numerical gradient scheme is obvious.
In Table 6, we consider the Richardson extrapolation on the H-OCD scheme of Equations (7)–(9) in the
time direction. This result is consistent with Theorem 3.
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Table 6. Errors and rates for all points in the new method for Examples 1 and 2 when τ = h, T = 1.

τ = h
Example 1 Example 2

Error
error(h,τ)

error(h/2,τ/2) Error
error(h,τ)

error(h/2,τ/2)

1/8 5.5147× 10−6 14.2567 2.0369× 10−5 14.9661
1/16 3.8682× 10−7 15.6251 1.3610× 10−6 15.4867
1/32 2.4756× 10−8 15.9066 8.7881× 10−8 15.7438
1/64 1.5563× 10−9 15.9741 5.5819× 10−9 15.8711
1/128 9.7429× 10−11 15.9934 3.5170× 10−10 15.9209
1/256 6.0918× 10−12 - 2.2091× 10−11 -

4.2. Numerical Experiments for the Two-Dimensional Case

Example 3. When:
u (x, y, 0) = sin (πx) sin (πy) ,
u (0, y, t) = u (1, y, t) = u (x, 0, t) = u (x, 1, t) = 0,

the exact solution of Equation (22) is:

u (x, y, t) = e−2π2t sin (πx) sin (πy) , (x, y, t) ∈ Ω× (0, T] .

Next, let us observe and compare the numerical solutions from the different methods.
Table 7 lists the computational results for the mesh grid points and intermediate points with

different spatial step sizes, when the time step size is fixed as τ = 1/100, 000. We can see that the
convergence orders in space can reach O(h4) which is consistent with the theoretical analysis (see
Theorems 4 and 5) in this article. In addition, from Table 8, we see also that the numerical gradient
scheme has the same convergence order O(τ2 + h4) as the H-OCD method when the time and space
step sizes are the same.

Table 7. Errors and rates for intermediate points and numerical gradients P in spatial direction with
τ = 1/100, 000.

h
H-OCD
Mesh-Grid Points

Intermediate Points
(New Method)

Error
Rate

Error
Rate

1/4 5.3017× 10−11 3.9403 - -
1/8 3.4536× 10−12 3.9878 4.6576× 10−12 3.9629
1/16 2.1769× 10−13 3.9805 2.9869× 10−13 3.9791
1/32 1.3791× 10−14 - 1.8939× 10−14 -

Table 8. Errors and rates of all points (new method) for Example 3 when τ = h2, h = 1/n− 1, T = 1.

N
H-OCD
Method

Numerical
Gradient

Error

error(h,τ)
error(h/2,τ/2)

Error

error(h,τ)
error(h/2,τ/2)

N = 5 1.6485× 10−9 9.7908 1.8257× 10−9 11.0802
N = 10 1.6838× 10−10 15.6079 1.6477× 10−10 15.3196
N = 20 1.0788× 10−11 15.9751 1.0755× 10−11 15.9015
N = 40 6.7530× 10−13 - 6.7638× 10−13 -

In addition, Table 9 and Figure 6 also show similar results to those of Table 5 and Figures 3 and 4,
respectively. Table 10 lists the computational results for the Richardson extrapolation scheme.
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These results show that the convergence order in time direction can reach O(τ4), which is consistent
with the theoretical analysis (see Theorem 6).

Table 9. A comparison of the computation time between the H-OCD method and the numerical
gradient scheme.

Grid Number
H-OCD
Method Grid

Number

Numerical
Gradient

Error Time Error Time

n = 16 1.6485× 10−9 0.0374 n = 17 1.8257× 10−9 0.0421
n = 81 1.6838× 10−10 0.4563 n = 117 1.6838× 10−10 0.5756
n = 224 3.3602× 10−11 2.8782 n = 433 3.4081× 10−11 2.8860
n = 361 1.0788× 10−11 9.0527 n = 745 1.0788× 10−11 10.8556
n = 624 4.4056× 10−12 25.2347 n = 1233 4.4370× 10−12 26.8556
n = 899 2.1338× 10−12 63.2506 n = 1783 2.1347× 10−12 66.8199
n = 1599 6.7530× 10−13 422.8602 n = 3183 6.7638× 10−13 424.2073
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Figure 6. Curves of the numerical solutions and the exact solution for Example 3 when h = 1/20,
τ = 1/400, T = 1.

Table 10. The convergence order for the Richardson extrapolation scheme of Example 3 when
τ = h/20, T = 1.

h

H-OCD
Method

Numerical
Gradient

Error

error(h,τ)
error(h/2,τ/2)

Error

error(h,τ)
error(h/2,τ/2)

h = 1/5 2.1070× 10−11 14.1419 3.2895× 10−11 16.4508
h = 1/10 1.4899× 10−12 15.9254 1.9996× 10−12 15.7474
h = 1/20 9.3555× 10−14 15.9822 1.2698× 10−13 15.9392
h = 1/40 5.8537× 10−15 15.9955 7.9665× 10−15 15.9848
h = 1/40 3.6596× 10−16 - 4.9838× 10−16 -

For this two-dimension problem, we have obtained similar experimental results as the previous
one-dimension problem, which shows that this method is effective.

5. Conclusions

Recently, many people have devoted themselves to the development of numerical approximations
of heat equation problems. By numerical comparisons, we know that the high-order compact difference
scheme (H-OCD) of Reference [5] is better than the traditional numerical schemes. In this article,
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we further improve this method to a new numerical gradient scheme. Moreover, our theoretical analysis
and numerical experiments show that this numerical gradient scheme has the same convergence order
as the H-OCD in Reference [5]. We hope that this is a useful supplement to the existing results.
The results also provide potential for several applications for example those in References [11–14].

In addition, many new methods have recently emerged for solving differential equations such as
the Lie algebra method [15,16]. Absorbing or drawing on the advantages of these methods to obtain
better results is a problem worthy of further study.
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