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Abstract: In this study, the value distribution of the differential polynomial ϕ f 2 f ′2 − 1 is considered,
where f is a transcendental meromorphic function, ϕ( 6≡ 0) is a small function of f by the reduced
counting function. This result improves the existed theorems which obtained by Jiang (Bull Korean
Math Soc 53: 365-371, 2016) and also give a quantitative inequality of ϕ f f ′ − 1.
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1. Introduction and Results

In this paper, we assumed that the reader is familiar with the notations of Nevanlinna theory (see,
e.g., [1,2]).Let f (z) and α(z) be two meromorphic functions in the complex plane. If T(r, α) = S(r, f ),
then α(z) is called a small function of f (z).

Definition 1. Reference [2] Let k be a positive integer. For any constant a in the complex plane we denote
by Nk)(r, 1/( f − a)) the counting function of those a-points of f whose multiplicities are not great than k,
by N(k(r, 1/( f − a)) the counting function of those a-points of f whose multiplicities are not less than k,
by Nk(r, 1/( f − a)) the counting function of those a-points of f with multiplicity k, and denote the reduced
counting function by Nk)(r, 1/( f − a)), N(k(r, 1/( f − a)) and Nk(r, 1/( f − a)), respectively.

Definition 2. If z0 is a pole of f (z) with multiplicity l, then we say ω( f , z0) = l, ω( f , z0) = 1. Otherwise,
ω( f , z0) = ω( f , z0) = 0.

Clearly, for p meromorphic functions, we have

ω(Πp
j=1 f j, z0) ≤ ∑

p
j=1 ω( f j, z0), (1)

and when f j 6= 0(∀j = 1, 2, ..., p), we have

ω(Πp
j=1 f j, z0) = ∑

p
j=1 ω( f j, z0). (2)

Definition 3. Reference [2] Let f (z) be a transcendental meromorphic function. The deficiency of a complex
number a with respect to f (z) is defined by

δ(a, f ) = lim inf
r→∞

m(r, 1
f−1 )

T(r, f )
= 1− lim sup

r→∞

N(r, 1
f−a )

T(r, f )
.

It is easy to see 0 ≤ δ(a, f ) ≤ 1.
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Definition 4. Reference [2] If the coefficients of differential polynomials M[ f ] are aj, j = 0, 1, ..., n, which satisfy
m(r, aj) = S(r, f ), then M[ f ] is called a quasi-differential polynomials in f .

In 1959, Hayman proved the following theorem.

Theorem 1. (see [3]) Let f be a transcendental meromorphic function, n(≥ 3) be an integer. Then φ = f n f ′

has infinitely many zeros for finite non-zero complex value a.

Moreover, Hayman [4] conjectured that Theorem 1 remains valid for the cases n = 1, 2. In 1979,
Mues [5] confirmed the case n = 2 and the conjecture was proved by Bergweiler-Eremenko [6] in 1995
and independently by H.H. Chen and M.L. Fang [7].

Naturally, we will ask that if the constant a is replaced by a small function of α(z), what is the
distributions of zeros of f f ′ − α? Many scholars have studied this problem.

In 1994, Q. D. Zhang proved the following two results:

Theorem 2. (see [8]) Let f be a transcendental meromorphic function, α( 6≡ 0, ∞) is a small function and
δ(∞; f ) > 7

9 , then f f ′ − α has infinitely many zeros.

Theorem 3. (see [8]) Let f be a transcendental meromorphic function, a( 6≡ 0, ∞) is a small function and
2δ(0; f ) + δ(∞; f ) > 1, then f f ′ − α has infinitely many zeros.

In 1997, W. Bergweiler proved the following special case when f is of finite order and α is
a polynomial:

Theorem 4. (see [9]) If f is a transcendental meromorphic function of finite order and α is a non-vanishing
polynomial, then f f ′ − α has infinitely many zeros.

In order to achieve the desired result, there are some conditions for the zeros or poles of f in
Theorem 2 and Theorem 3. Except for the order of f , there is no other conditional constraint in
Theorem 4, but the result is only valid for the polynomial.

Yu deals with the general situation of the small functions and proved the following result:

Theorem 5. (see [10]) Let f be a transcendental meromorphic function and α( 6≡ 0, ∞) be a small function.
Then f f ′ − α and f f ′ + α at least one has infinitely many zeros.

Remark 1. Note that the proof of Theorem 5 requires the conclusion of Theorem 2, this is, the proof
only holds under the condition δ(∞; f ) ≤ 7/9. In this paper, we will use a new way to get a quantitative
description of Theorem 5 (see [11–13]). In fact, we prove the following result.

Theorem 6. Let f be a transcendental meromorphic function and ϕ( 6≡ 0) be a small function. Then

T(r, f ) < 6N(r,
1

ϕ f 2 f ′2 − 1
) + S(r, f ). (3)

Corollary 1. Let f be a transcendental meromorphic function and α( 6≡ 0) be a small function of f . Then

T(r, f ) < 6N(r,
1

f f ′ + α
) + 6N(r,

1
f f ′ − α

) + S(r, f ). (4)

From the corollary, we can obtain Theorem 5.
Recently, Y. Jiang obtained the following inequality:
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Theorem 7. (see [14]) Let f be a transcendental meromorphic function, let ϕ( 6≡ 0) be a small function and
n(≥ 2) be an integer. Then

T(r, f ) < (3 +
6

n− 1
)N(r,

1
ϕ f 2( f ′)n − 1

) + S∗(r, f ), (5)

where S∗(r, f ) = o(T(r, f )) as r → ∞, r 6∈ E∗, E∗ is a set of logarithmic density 0.

If n = 2, Theorem 6 improves the conclusion of Theorem 7. Not only is the coefficient 9 reduced
to 6, but also the counting function is replaced by a reduced counting function. We conjecture the
coefficient 3 + 6

n−1 can be reduced to 6 for n ≥ 2 in Theorem 7.

2. Lemmas

In order to prove our result, we need the following lemma.

Lemma 1. (see [15]) Let f be a non-constant meromorphic function in the complex plane, let Q1[ f ], Q2[ f ] be
quasi-differential polynomials in f , satisfying f nQ1[ f ] = Q2[ f ]. If the total degree of Q2 is inferior or equal to
n, then

m(r, Q1[ f ]) = S(r, f ).

Notations:
F(z) = ϕ(z) f 2(z)( f ′(z))2 − 1, (6)

h(z) = F′(z)
f (z) = 2ϕ(z)[ f (z) f ′(z) f ′′(z) + ( f ′(z))3] + ϕ′(z) f (z)( f ′(z))2, (7)

φ(z) =
h(z)
F(z)

=
1

f (z)
· F′(z)

F(z)
, (8)

G(z) = 20(
F′(z)
F(z)

)2 + 24(
F′(z)
F(z)

)′ − 39
F′(z)
F(z)

h′(z)
h(z)

+ 18(
h′(z)
h(z)

)2 − 18(
h′(z)
h(z)

)′

+
15
4

ϕ′(z)
ϕ(z)

F′(z)
F(z)

− 9
4

ϕ′(z)
ϕ(z)

h′(z)
h(z)

− 9(
ϕ′(z)
ϕ(z)

)′ − 15
8
(

ϕ′(z)
ϕ(z)

)2.
(9)

Lemma 2. Let f (z) be a transcendental meromorphic function and let ϕ(z)( 6≡ 0) be a small function.
Then ϕ f 2 f ′2 is not equivalent to a constant.

Proof. Suppose ϕ f 2 f ′2 ≡ C, where C is a constant.
Obviously, C 6= 0. Then

1
f 4 ≡

ϕ

C
(

f ′

f
)2,

1
f 2 f ′2

≡ Cϕ.

Therefore,

m(r,
1
f
) ≤ 1

4
m(r,

1
C

ϕ(
f ′

f
))2

≤ 1
4

m(r, ϕ) +
1
4

m(r, (
f ′

f
)2) + O(1) = S(r, f ),

N(r,
1
f
) ≤ N(r,

1
f 2 f ′2

)

= N(r,
1
C

ϕ) = S(r, f ).

From the above, we have T(r, f ) = S(r, f ). It is a contradiction. Hence the proof of Lemma 2
is completed.
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Lemma 3. Let f be a transcendental meromorphic function, and let ϕ(z)( 6≡ 0) be a small function of f . Then

4T(r, f ) ≤ N(r, f ) + 3N(r,
1
f
)

+ N(r,
1

ϕ f 2 f ′2 − 1
)− N0(r,

1
(ϕ f 2 f ′2)′

) + S(r, f ),
(10)

where N0(r, 1
(ϕ f 2 f ′2)′ ) denotes the counting function of the zeros of (ϕ f 2 f ′2)′, which are not zeros of

f (ϕ f 2 f ′2 − 1).

Proof. Let
1
f 4 ≡

ϕ f 2 f ′2

f 4 − (ϕ f 2 f ′2)′

f 4
ϕ f 2 f ′2 − 1
(ϕ f 2 f ′2)′

,

We have

4m(r, 1
f ) = m(r,

1
f 4 )

≤ m(r,
ϕ f 2 f ′2 − 1
(ϕ f 2 f ′2)′

) + m(r, ϕ
f 2 f ′2

f 4 ) + m(r,
(ϕ f 2 f ′2)′

f 4 ) + O(1)

≤ N(r,
(ϕ f 2 f ′2)′

ϕ f 2 f ′2 − 1
)− N(r,

ϕ f 2 f ′2 − 1
(ϕ f 2 f ′2)′

) + S(r, f )

= N(r, (ϕ f 2 f ′2)′) + N(r,
1

ϕ f 2 f ′2 − 1
)− N(r,

1
(ϕ f 2 f ′2)′

)−

N(r, ϕ f 2 f ′2 − 1) + S(r, f )

= N(r, f ) + N(r,
1

ϕ f 2 f ′2 − 1
)− N(r,

1
(ϕ f 2 f ′2)′

) + S(r, f ).

(11)

Hence

4T(r, f ) = 4m(r,
1
f
) + 4N(r,

1
f
) + O(1)

= N(r, f ) + 4N(r,
1
f
) + N(r,

1
ϕ f 2 f ′2 − 1

)− N(r,
1

(ϕ f 2 f ′2)′
) + S(r, f ).

(12)

Let

N(r,
1

(ϕ f 2 f ′2)′
) = N000(r,

1
(ϕ f 2 f ′2)′

) + N00(r,
1

(ϕ f 2 f ′2)′
) + N0(r,

1
(ϕ f 2 f ′2)′

), (13)

where N000(r, 1
(ϕ f 2 f ′2)′ ) denotes the counting function of the zeros of (ϕ f 2 f ′2)′, which come from the

zeros of ϕ f 2 f ′2− 1, N00(r, 1
(ϕ f 2 f ′2)′ ) denotes the counting function of the zeros of (ϕ f 2 f ′2)′, which come

from the zeros of f . Then we obtain

N(r,
1

ϕ f 2 f ′2 − 1
)− N000(r,

1
(ϕ f 2 f ′62)′

) = N(r,
1

ϕ f 2 f ′2 − 1
). (14)

Suppose that z0 is a zero of f with multiplicity q and the pole of ϕ with multiplicity of t.

Case I. Suppose that t ≤ 4q− 3. If q = 1, then z0 is a zero of (ϕ f 2 f ′2)′ with multiplicity at least
1− t; if q ≥ 2, then z0 is a zero of (ϕ f 2 f ′2)′ with multiplicity at least 4q− 3− t.

Case II. Suppose that t ≥ 4q− 2. Then z0 is at most the pole of ϕ2.
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Hence we have

4N(r,
1
f
)− N00(r,

1
(ϕ f 2 f ′2)′

) ≤ 2N1)(r, 1
f ) + N1)(r, 1

f ) + 3N(2(r, 1
f ) + N(r, ϕ2)

= 2N1)(r, 1
f ) + N(r, 1

f ) + 2N(2(r, 1
f ) + S(r, f ).

(15)

Combining (12)–(15), we have

4T(r, f ) ≤ N(r, f ) + 3N(r,
1
f
) + N(r,

1
ϕ f 2 f ′2 − 1

)− N0(r,
1

(ϕ f 2 f ′2)′
).

This completes the proof of the Lemma 3.

Lemma 4. Under the hypotheses of Theorem 6, for any z0 ∈ C, we have

ω( 1
f , z0) + ω( 1

h , z0) ≤ ω( 1
f h , z0) + ω(ϕ, z0) + ω( 1

ϕ , z0). (16)

Proof. This proof is divided into three Cases:

Case 1. f (z0) 6= 0, ∞. If h(z0) 6= 0, then ω( 1
f , z0) + ω( 1

h , z0) = 0. If h(z0) = 0, from (2), then we get

ω( 1
f , z0) + ω( 1

h , z0) = ω( 1
f h , z0).

Hence the inequality (16) holds.
Case 2. f (z0) = 0. By ω( ϕ′

ϕ , z0) ≤ 1, we have

h
ϕ = 2[ f f ′ f ′′ + ( f ′)3] + ϕ′

ϕ f ( f ′)2 6= ∞(z = z0).

From this, (1) and (2), we have

ω( 1
f , z0) + ω( 1

h , z0) ≤ ω( 1
f , z0) + ω( ϕ

h , z0) + ω( 1
ϕ , z0)

= ω( 1
f ·

ϕ
h , z0) + ω( 1

ϕ , z0)

≤ ω( 1
f h , z0) + ω(ϕ, z0) + ω( 1

ϕ , z0).

Hence the inequality (16) holds.
Case 3. f (z0) = ∞. Suppose l = ω( f , z0), l1 = max{ω(ϕ, z0), ω( 1

ϕ , z0)}. In the following, we divide
into two Subcases:

Subcase 3.1. Let 1 ≤ l ≤ l1. Then

ω( 1
f , z0) + ω( 1

h , z0) = ω( 1
f h · f , z0) ≤ ω( 1

f h , z0) + ω( f , z0)

≤ ω( 1
f h , z0) + ω(ϕ, z0) + ω( 1

ϕ , z0).

Subcase 3.2. Let l > l1 ≥ 0. Using the Laurent series of h
f 3 ϕ

= 2[ f ′ f ′′

f 2 + ( f ′
f )

3] + ϕ′

ϕ · (
f ′
f )

2 at

the point z0, we obtain the coefficient of (z− z0)
−3:

a−3 = −2l2(l + 1)− 2l3 − l2(l1 + 1) < 0.

Thus ω( f 3 ϕ
h , z0) = 0. Therefore,

ω( 1
f , z0) + ω( 1

h ) = ω( f 3 ϕ
h ·

1
f 3 · 1

ϕ , z0)

≤ ω( f 3 ϕ
h , z0) + 3ω( 1

f , z0) + ω( 1
ϕ , z0) = ω( 1

ϕ , z0).
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Hence the inequality (16) holds.
This completes the proof of Lemma 4.

Lemma 5. Under the hypotheses of Theorem 6, if z0 ∈ C and G(z0) = 0, then

ω(φ, z0) ≤ 2ω(ϕ, z0) + ω(
1
ϕ

, z0), (17)

ω(
1
F

, z0) ≤ ω(
1
h

, z0) + 2ω(ϕ, z0) + ω(
1
ϕ

, z0). (18)

Proof. First, we prove the following inequality

ω(
1
F

, z0) ≤ ω(ϕ, z0) + ω(
1
ϕ

, z0). (19)

Obviously, if F(z0) 6= 0, then the inequality (19) holds. Now let ω( 1
F , z0) = l(l ≥ 1) and

ϕ(z0) 6= 0, ∞. Since ϕ(z0) f 2(z0) f ′2(z0) = F(z0) + 1 = 1, then f (z0) 6= 0, ∞. Thus, z0 is a zero of
h(z) = F′(z)

f (z) with multiplicity l − 1 (if l = 1 and h(z0) 6= 0, ∞). Using the Laurent series of G(z) at the

point z0, we obtain the coefficient of (z− z0)
−2:

b−2 = 20l2 − 24l − 39l(l − 1) + 18(l − 1)2 + 18(l − 1) = −l(l + 3) < 0.

It contradicts with G(z0) = 0. Hence z0 is a zero or a pole of ϕ(z0). This implies that the
inequality (19) holds.

In order to prove (17), we will divide two Cases.

Case 1. f (z0) 6= 0.

Suppose that F(z0) 6= ∞. By (19), we have

ω(φ, z0) = ω( 1
f ·

F′
F , z0) ≤ ω( 1

f , z0) + ω( F′
F , z0)

= ω( 1
F , z0) ≤ ω(ϕ, z0) + ω( 1

ϕ , z0).

Suppose that F(z0) = ∞. If f (z0) = ∞ and 1
f ·

F′
F 6= ∞(z = z0), then

ω(φ, z0) = ω(
1
f
· F′

F
, z0) = 0.

If f (z0) 6= ∞, since ϕ(z0) f 2(z0) f ′2(z0) = F(z0) + 1 = ∞, then we get

ω(ϕ, z0) ≥ 1.

Therefore,

ω(φ, z0) ≤ ω(
1
f

, z0) + ω(
F′

F
, z0) = 1 ≤ ω(ϕ, z0).

Case 2. f (z0) = 0.

Suppose that ω( 1
f , z0) > ω(ϕ, z0). Then F(z0) = ϕ(z0) f 2(z0) f ′2(z0) − 1 = −1 and ϕ′

ϕ f 6= ∞
(z = z0), therefore

ω(
1
F

, z0) = 0,

ω(
h
ϕ

, z0) = ω(2 f f ′ f ′′ + f ′3 +
ϕ′

ϕ
f f ′2, z0) = 0.
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Thus, ω(φ, z0) = ω( 1
F ·

h
ϕ · ϕ, z0) ≤ ω( 1

F , z0) + ω( h
ϕ , z0) + ω(ϕ, z0) = ω(ϕ, z0).

Suppose that 1 ≤ ω( 1
f , z0) ≤ ω(ϕ, z0). Then

ω(φ, z0) ≤ ω(
1
f

, z0) + ω(
F′

F
, z0) ≤ ω(φ, z0) + 1 ≤ 2ω(φ, z0).

Therefore, the inequality (17) holds.
In the following we begin to prove the Equation (18).
If F(z0) 6= 0, then the inequality (18) obviously holds. If F(z0) = 0, then from (19) we obtain

ω( 1
F , z0)−ω( 1

h , z0) = [ω( 1
F , z0)−ω( 1

F′ , z0)] + [ω( 1
f h , z0)−ω( 1

h , z0)]

≤ ω( 1
F , z0) + ω( 1

f , z0) ≤ ω( 1
f , z0) + ω(ϕ, z0) + ω( 1

ϕ , z0).

If f (z0) 6= 0, then we have ω( 1
f , z0) = 0.

If f (z0) = 0, then from ϕ(z0) f 2(z0) f ′2(z0) = F(z0) + 1 = 1 we have ω( 1
f , z0) ≤ ω(ϕ, z0). Hence

ω(
1
F

, z0)−ω(
1
h

, z0) ≤ 2ω(ϕ, z0) + ω(
1
ϕ

, z0).

Thus, the inequality (18) holds.
This completes the proof of Lemma 5.

Lemma 6. Let f be a transcendental meromorphic function, and let aj(z)(j = 0, 1, · · · , 5) be meromorphic
functions, satisfying T(r, aj) = S(r, f ). If

a5(z) f 5(z) + a4(z) f 4(z) + a3(z) f 3(z) + a2(z) f 2(z) + a1(z) f (z) + a0(z) = 0,

then aj(z) ≡ 0, (j = 0, 1, · · · , 5).

Proof. If a5(z) 6≡ 0, then from f 5 = − a4
a5

f 4 − a3
a5

f 3 − a2
a5

f 2 − a1
a5

f − a0
a5

, we get

5T(r, f ) ≤ 4T(r, f ) + T(r, a4
a5
) + T(r, a0

a5
)

≤ 4T(r, f ) + S(r, f ).

It is a contradiction. Hence a5 ≡ 0. Similarly, we get aj ≡ 0(j = 0, 1, · · · , 5).
This completes the proof of Lemma 6.

3. The Proof of Theorem 6

Now we begin to prove Theorem 6.
Since F(z) = ϕ(z) f 2(z)( f ′(z))2 − 1 and

h(z) =
F′(z)
f (z)

= 2ϕ(z){ f (z) f ′(z) f ′′(z) + ( f ′(z))3}+ ϕ′(z) f (z)( f ′(z))2.

Obviously, h(z) 6≡ 0. If h(z) ≡ 0, then F(z) ≡ C, where C is a constant. By Lemma 2, it is
a contradiction.

Suppose z0 is a simple pole of f , such that ϕ(z0) 6= 0, ∞. We firstly prove G(z0) = 0. Near z = z0,
we have

f (z) =
a

(z− z0)

{
1 + b(z− z0) + c(z− z0)

2 + O[(z− z0)
3]
}
(a 6= 0),

and

ϕ(z) = A
{

1 + x(z− z0) + y(z− z0)
2 + O[(z− z0)

3]
}
(A 6= 0).



Mathematics 2019, 7, 87 8 of 12

Therefore we obtain

F(z) = ϕ(z) f 2(z)( f ′(z))2 − 1

=
Aa4

(z− z0)6 +
Aa4(x + 2b)
(z− z0)5 +

Aa4(b2 + 2bx + y)
(z− z0)4 + O[(z− z0)

−3],

h(z) =
F′(z)
f (z)

= − 6Aa3

(z− z0)6 −
Aa3(5x + 4b)
(z− z0)5 − Aa3(3bx + 4y− 6c)

(z− z0)4 + O[(z− z0)
−3].

ϕ′

ϕ = x + (2y− x2)(z− z0) + O[(z− z0)
2], (20)

F′
F = − 6

(z−z0)
+ (x + 2b) + (2y− x2 − 2b2)(z− z0) + O[(z− z0)

2], (21)

h′
h = − 6

(z−z0)
+ ( 5

6 x + 2
3 b) + ( 25

36 x2 + 4
9 b2 + 1

9 bx + 2c− 4
3 y)(z− z0) + O[(z− z0)

2], (22)(
F′
F

)2
= 36

(z−z0)2 −
12(x+2b)
(z−z0)

+ (13x2 + 28b2 + 4bx− 24y) + O[(z− z0)], (23)(
F′
F

)′
= 2k+4

(z−z0)2 + (2y + 4c− x2 − 2b2) + O[(z− z0)], (24)

F′
F

h′
h = 36

(z−z0)2 −
(11x+16b)
(z−z0)

+ (11x2 + 16b2 + 3bx + 12c− 20y) + O[(z− z0)], (25)(
h′
h

)2
= 36

(z−z0)2 −
2(5x+4b)
(z−z0)

+ ( 325
36 x2 + 52

9 b2 + 29
18 bx + 24c− 16y) + O[(z− z0)], (26)(

h′
h

)′
= 6

(z−z0)2 + ( 25
36 x2 + 4

9 b2 + 1
9 bx + 2c− 4

3 y] + O[(z− z0)], (27)

ϕ′

ϕ
F′
F = − 6x

(z−z0)2 + (7x2 + 2bx− 12y) + O[(z− z0)], (28)

ϕ′

ϕ
h′
h = − 6x

(z−z0)2 + ( 41
6 x2 + 2

3 bx− 12y) + O[(z− z0)], (29)(
ϕ′

ϕ

)′
= (2y− x2) + O[(z− z0)], (30)(

ϕ′

ϕ

)2
= x2 + 2x(2y− x2)(z− z0) + (2y− x2)2(z− z0)

2 + O[(z− z0)
3]. (31)

Substituting (23)–(31) into (9), we have

G(z) = O[(z− z0)].

This shows G(z0) = 0, which means that the simple pole of f (z) is the zero of G(z) except for the
zeros and poles of ϕ(z).

In the following, we begin to prove G(z) 6≡ 0.
Suppose G(z) ≡ 0. From (17) and (18) of Lemma 5, we have

N(r, φ) ≤ 2N(r, ϕ) + N(r, 1
ϕ ) = S(r, f ), (32)

and
N(r, 1

F )− N(r, 1
h ) ≤ 2N(r, ϕ) + N(r, 1

ϕ ) = S(r, f ). (33)

By (11), we have

4m(r, 1
f ) ≤ N(r, f ) + N(r, 1

F )− N(r, 1
f h ) + S(r, f ). (34)



Mathematics 2019, 7, 87 9 of 12

By (16), we have

N(r, 1
f ) + N(r, 1

h ) ≤ N(r, 1
f h ) + N(r, ϕ) + N(r, 1

ϕ ). (35)

From (34) and (35), we have

4m(r, 1
f ) ≤ N(r, f ) + N(r, 1

F )− N(r, 1
f )− N(r, 1

h ) + S(r, f ). (36)

From (33) and (36), we have

3m(r, 1
f ) ≤ N(r, 1

F )− N(r, 1
h ) + S(r, f ) = S(r, f ). (37)

From (32) and (37), we have

T(r, φ) = m(r, φ) + N(r, φ) = m(r, 1
f ·

F′
F ) + N(r, φ)

≤ m(r, 1
f ) + m(r, F′

F ) + N(r, φ) = S(r, f ).
(38)

By (8), we have
F′
F = φ f , (39)

and
h′
h = F′

F + φ′

φ = φ f + φ′

φ . (40)

Substituting (39) and (40) into (9), we have

f ′ = 1
6 φ f 2 − 1

2 (
ϕ′

2ϕ + φ′

φ ) f + 1
16

P
φ , (41)

where
P = 48( φ′

φ )′ − 48( φ′

φ )2 + 6 ϕ′

ϕ
φ′

φ + 24( ϕ′

ϕ )′ + 5( ϕ′

ϕ )2. (42)

Therefore,

F = ϕ f 2 f ′2 − 1 = 1
36 ϕφ2 f 6 − 1

6 ϕφ( ϕ′

2ϕ + φ′

φ ) f 5 + 1
4 ϕ[ P

12 + ( ϕ′

2ϕ + φ′

φ )2] f 4

− ϕP
16φ (

ϕ′

2ϕ + φ′

φ ) f 3 + ϕP2

256φ2 f 2 − 1.
(43)

Differentiating (43) and combining (41), we have

F′ = 1
36 ϕφ3 f 7 + [ (ϕφ2)′

36 − ϕφ2

6 ( ϕ′

2ϕ + φ′

φ )] f 6

+ [ 7ϕφP
288 + ϕφ

4 ( ϕ′

2ϕ + φ′

φ )2 + ϕφ
6 ( ϕ′

2ϕ + φ′

φ )′ − (ϕφ)′

6 ( ϕ′

2ϕ + φ′

φ )] f 5

+
(

ϕ
4 (2ϕ + 1)( ϕ′

2ϕ + φ′

φ )3 + ϕ′

4 (
ϕ′

2ϕ + φ′

φ )2 − ϕP
24 (ϕ + φ′

24 + 4)( ϕ′

2ϕ + φ′

φ )

− ϕ2( ϕ′

2ϕ + φ′

φ )( ϕ′

2ϕ + φ′

φ )′ + 1
48 [

ϕφ′P
φ − ϕP + (ϕP)′]

)
f 4

+ [ ϕP
16φ (

ϕ′

2ϕ + φ′

φ )2 + P
8φ (ϕ− 1

4 )(
ϕ′

2ϕ + φ′

φ )− (ϕP)′
16φ ( ϕ′

2ϕ + φ′

φ ) + 3ϕP2

384φ ] f 3

+ 1
256φ2 [(ϕP2)′ − 2ϕφ′P2

φ − 4ϕP2( ϕ′

2ϕ + φ′

φ )] f 2

+ ϕP3

2048φ3 f .

(44)

Substituting (42) and (43) into the equality φ = F′
f F , we have

a5 f 5 + a4 f 4 + a3 f 3 + a2 f 2 + a1 f + a0 = 0, (45)

where
a5 = (ϕφ2)′

36 , (46)
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a4 = ϕφP
288 + ϕφ

6 ( ϕ′

2ϕ + φ′

φ )′ − (ϕφ)′

6 ( ϕ′

2ϕ + φ′

φ ), (47)

a3 = ϕ
4 (2ϕ + 1)( ϕ′

2ϕ + φ′

φ )3 + ϕ′

4 (
ϕ′

2ϕ + φ′

φ )2 − ϕP
24 (ϕ + φ′

24 + 5
2 )(

ϕ′

2ϕ + φ′

φ )

− ϕ2( ϕ′

2ϕ + φ′

φ )( ϕ′

2ϕ + φ′

φ )′ + 1
48 [

ϕφ′P
φ − ϕP + (ϕP)′],

(48)

a2 = ϕP
16φ (

ϕ′

2ϕ + φ′

φ )2 + P
8φ (ϕ− 1

4 )(
ϕ′

2ϕ + φ′

φ )− (ϕP)′
16φ ( ϕ′

2ϕ + φ′

φ ) + ϕP2

256φ , (49)

a1 = 1
256φ2 [(ϕP2)′ − 2ϕφ′P2

φ − 4ϕP2( ϕ′

2ϕ + φ′

φ )], (50)

a0 = ϕP3

2048φ3 + φ. (51)

From the assumptions of Theorem 6, (38) and (42), we have

T(r, ϕ) = S(r, f ), T(r, φ) = S(r, f ), T(r, P) = S(r, f ).

Therefore,
T(r, aj) = S(r, f ) (j = 1, 2, 3, 4, 5).

Applying Lemma 6, we have

aj(z) ≡ 0 (j = 1, 2, 3, 4, 5).

From (51) and a0(z) ≡ 0, we have

P6 = 20482φ8

ϕ2 . (52)

Therefore
P(z) 6≡ 0. (53)

From (50) and a1(z) ≡ 0, we have

( ϕP2

φ2 )′

ϕP2

φ2

= 4(
ϕ′

2ϕ
+

φ′

φ
).

Therefore
ϕP2

φ2 = cϕ2φ4, (54)

where c is a nonzero constant.
Combining (52) and (54), we have

ϕ5φ10 =
20482

c
.

Therefore
ϕ′

2ϕ + φ′

φ = 0. (55)

Substituting (55) into (49), and combining a2(z) ≡ 0 we have

P(z) ≡ 0.

It is a contradiction with (53), thus G(z) 6≡ 0.
Differentiating the equation F = ϕ f 2 f ′2 − 1, we get

f β = − F′

F
, (56)
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where

β = ϕ′ f f ′2 + 2(ϕ f ′)3 + 2ϕ f f ′ f ′′ − ϕ f f ′2
F′

F
, h = −βF.

Note that the poles of G(z) whose multiplicities are at most two, come from the multiple poles of
f (z), the zeros of F(z) and h(z), or the zeros and the poles of ϕ(z).

Next we consider the poles of β2G. From h = −βF, we know the zeros of h are either the zeros
of F, or the zeros of β. From (56), we know that the multiple poles of f with multiplicity q(≥ 2) are
the zeros of β with multiplicity of q− 1. Therefore, the poles of β2G only come from the zeros of F,
except for the zeros and the poles of ϕ(z), and the multiplicity of β2G is at most 4. Thus

N(r, β2G) ≤ 4N(r, 1/F) + S(r, f ).

By (56) and Lemma 1, we have m(r, β) = S(r, f ). Note that m(r, G) = S(r, f ). Therefore
m(r, β2G) = S(r, f ). From the above, we have

T(r, β2G) ≤ 4N(r, 1/F) + S(r, f ).

If z1 is a zero of f with multiplicity p(≥2) and a pole of ϕ(z) with multiplicity t, then z1 is a
zero of β with multiplicity at least 3p − 3− t, therefore, is a zero of β2G with multiplicity at least
2(3p− 3)− 2− t = 6p− 8− t. Also note that the simple pole of f is the zero of β2G except for the
zeros and poles of ϕ. Hence we have

N1)(r, f ) + 4N1(r,
1
f
)− N(r, ϕ) ≤ N(r, 1

β2G ) + N(r, ϕ) + N(r, 1
ϕ )

≤ T(r, β2G) + S(r, f )

≤ 4N(r,
1
F
) + S(r, f ),

(57)

where N1(r, 1
f ) = N(r, 1

f )− N(r, 1
f ).

From (10), we have

m(r, f ) + N(r, f )− N(r, f ) + 3m(r,
1
f
) + 3N1(r,

1
f
) ≤ N(r,

1
F
) + S(r, f ). (58)

Combining doubled (58) with (57), we have

T(r, f ) + N(2(r, f )− 2N(2(r, f ) + m(r, f ) + 6m(r,
1
f
) + 10N1(r,

1
f
)

≤ 6N(r,
1
F
) + S(r, f ),

Hence we have
T(r, f ) < 6N(r,

1
ϕ f 2 f ′2 − 1

) + S(r, f ).

This completes the proof of Theorem 6.

4. The Proof of Corollary 1

Let ϕ = 1
a2 , α 6= 0, ∞. Then by Theorem 6, we have

T(r, f ) < 6N(r,
1

f 2 f ′2 − α2 ) + S(r, f )

< 6N(r,
1

f f ′ + α
) + 6N(r,

1
f f ′ − α

) + S(r, f ).

This completes the proof of Corollary 1.
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