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Abstract

:

In this paper, we initiate the concept of interpolative Ćirić-Reich-Rus type contractions via the Branciari distance and prove some related fixed points results for such mappings. Moreover, an example is provided to show the useability of our obtained results.
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1. Introduction and Preliminaries


In 1968, Kannan [1,2] extended the Banach Contraction Principle [3] as follows.



Theorem 1.

Let (X,ρ) be a complete metric space and T be a self-mapping on X. Suppose there exists λ∈[0,12) such that


ρTξ,Tη≤λρ(ξ,Tξ)+ρ(η,Tη) for each ξ,η∈X.








Then T has a unique fixed point.





More information concerning Kannan fixed point theorem can be found in the early paper by Reich [4]. Denote by Fix(T) the set of fixed points of a self-mapping T on a non-empty set X. In 2018, Karapınar [5] considered Theorem 1 concerning interpolation theory. The main result in [5] via an interpolative Kannan type contraction is



Theorem 2

([5]). Let X,ρ be a complete metric space. Suppose that the self-mapping T:X→X is such that


ρTξ,Tη≤λρξ,Tξα·ρη,Tη1−α,



(1)




where λ∈[0,1) and α∈(0,1), for all ξ,η∈X∖Fix(T) with Fix(T)={u∈X:Tu=u}. Then T possesses a unique fixed point in X.





If T:X→X satisfies (1), T is said to be an interpolative Kannan type contraction. Very recently, the authors in [6] pointed out a gap in [5], that is, the fixed point in Theorem 2 may be not unique. For more other details, see ([7,8]). On the other hand, the known fixed point of Reich [9] is stated as follows.



Theorem 3.

Let X,ρ be a complete metric space. If T:X→X is such that


ρTξ,Tη≤λρ(ξ,η)+ρ(ξ,Tξ)+ρ(η,Tη),



(2)




for all ξ,η∈X, where λ∈0,13, then T possess a unique fixed point.





Note that this result was proved independently also by Ćirić and Rus. For this reason, whenever we mention Reich type contractions, we shall say “ Ćirić-Reich-Rus type contractions.”



On the other hand, the concept of a Branciari distance space has been introduced by Brianciari [10] where the triangular inequality is replaced by a quadrilateral one. For some known fixed point results in this setting, we may refer to [11,12,13,14,15,16,17,18,19,20,21]. In the sequel, N will represent the set of all positive integer numbers. First, we recall some basic concepts and notations on Branciari distance (rectangular metric) spaces.



Definition 1.

Let X be a non-empty set. Let d:X×X→[0,∞) be a function such that for all ξ,η∈X and all distinct points u,v∈X, each distinct from ξ and η:



(d1)d(ξ,η)=0 if and only if ξ=η (identification);



(d2)d(ξ,η)=d(η,ξ) (symmetry);



(d3)d(ξ,η)≤d(ξ,u)+d(u,v)+d(v,η) (quadrilateral inequality).



Then d is called a Branciari distance and the pair (X,d) is called a Branciari distance space.





Notice that in some sources, Branciari distance is called as “a rectangular metric” or “a generalized metric”. On the other hand, it was reported in [22] that the topology of standard metric and Branciari distance are not comparable.



Definition 2.

Let (X,d) be a Branciari distance space and {ξn} be a sequence in X.



(i) A sequence {ξn} is convergent to point x∈X if limn→∞d(ξn,x)=0.



(ii) A sequence {ξn} is said to be Cauchy if for every ε>0, there exists a positive integer N=N(ε) such that d(ξn,ξm)<ε for all n,m>N.



(iii) We say that (X,d) is complete if each Cauchy sequence in X is convergent.





Lemma 1.

Let (X,d) be a Branciari distance space. We say that a mapping T:X→X is continuous at u∈X, if we have Tξn→Tu, (in other words, limn→∞d(Tξn,Tu)=0,) for any sequence {ξn} in X converges to u∈X, that is, ξn→u.





The following proposition is useful in the sequel.



Proposition 1

([23]). Suppose that {ξn} is a Cauchy sequence in a Branciari distance space such that


limn→∞d(ξn,u)=limn→∞d(ξn,z)=0,








where u,z∈X. Then u=z.





In this paper, using the Branciari distance, we initiate the notion of interpolative Ćirić-Reich-Rus type contractions. We also present an example illustrating our approach.




2. Main Results


We start this section by introducing the notion of interpolative Ćirić-Reich-Rus type contractions.



Definition 3.

Let X,d be a Branciari distance space. A self-mapping T on X is called aninterpolative Ćirić-Reich-Rus type contraction, if there are λ∈[0,1) and positive reals α,β with α+β<1 such that


dTξ,Tη≤λdξ,ηβ·dξ,Tξα·dη,Tη1−α−β,



(3)




for all ξ,η∈X∖Fix(T).





Theorem 4.

Let T:X→X be an interpolative Ćirić-Reich-Rus type contraction on a complete Branciari distance space X,p, then T has a fixed point in X.





Proof. 

We take an arbitrary point ξ0∈(X,p). Consider {ξn} by ξn=Tn(ξ0) for each positive integer n. If there exists n0 such that ξn0=ξn0+1, then ξn0 is a fixed point of T. It completes the proof. Throughout the proof, we assume that ξn≠ξn+1 for each n≥0.



Step 1: We shall prove that


limn→∞d(ξn,ξn+1)=0.



(4)




By substituting the values ξ=ξn and η=ξn−1 in (3), we find that


dξn+1,ξn=dTξn,Tξn−1≤λdξn,ξn−1βdξn,Tξnα·dξn−1,Tξn−11−α−β=λdξn,ξn−1β·dξn,ξn+1α·dξn−1,ξn1−α−β=λdξn−1,ξn1−α·dξn,ξn+1α.



(5)




We derive


dξn,ξn+11−α≤λdξn−1,ξn1−α.



(6)




So, we conclude that


dξn,ξn+1≤dξn−1,ξn,foralln≥1.



(7)




That is, {dξn−1,ξn} is a non-increasing sequence with non-negative terms. Eventually, there is a nonnegative constant ℓ such that limn→∞dξn−1,ξn=ℓ. Note that ℓ≥0. Indeed, from (6), we deduce that


dξn,ξn+1≤λdξn−1,ξn≤λndξ0,ξ1.



(8)




Regarding λ<1, and by taking n→∞ in the inequality (8), we deduce that ℓ=0.



Step 2: We shall also show that


limn→∞d(ξn,ξn+2)=0.



(9)




Using (3), (7) and the quadrilateral inequality, we have


dξn+2,ξn=dTξn+1,Tξn−1≤λdξn+1,ξn−1βdξn+1,Tξn+1α·dξn−1,Tξn−11−α−β=λdξn+1,ξn−1β·dξn+1,ξn+2α·dξn−1,ξn1−α−β≤λdξn+1,ξn−1β·dξn,ξn+1α·dξn−1,ξn1−α−β≤λdξn+1,ξn−1β·dξn−1,ξn1−β≤λdξn+1,ξn+2+dξn+2,ξn+dξn,ξn−1β·dξn−1,ξn1−β≤λdξn+2,ξn+2dξn,ξn−1β·dξn+2,ξn+2dξn,ξn−11−β≤λdξn+2,ξn+2dξn,ξn−1.








We deduce that


(1−λ)dξn+2,ξn≤2λdξn−1,ξn,foralln≥1.








Therefore,


dξn+2,ξn≤2λ1−λdξn−1,ξn,foralln≥1.



(10)




Letting n→∞ in (10) and using (4), we get (9), which completes the proof of step 2.



Step 3: We shall prove that ξn≠ξm for all n≠m.



Suppose that ξn=ξm for some n>m, so we have ξn+1=Tξn=Tξm=ξm+1.



By continuing in this direction, we obtain ξn+k=ξm+k for all k∈N. By (5) and (7), we have


0<d(ξm,ξm+1)=d(ξn,ξn+1)=d(Tξn−1,Tξn)≤λdξn−1,ξn1−α·dξn,ξn+1α≤λdξn−1,ξn<d(ξn−1,ξn)<d(ξn−2,ξn−1)⋮<d(ξm,ξm+1),








which is a contradiction. Thus, in that follows, we can assume that ξn≠ξm for all n≠m.



Step 4: We shall prove that {ξn} is a Cauchy sequence, that is, limn→∞d(ξn,ξn+p)=0 for all p∈N.



The cases p=1 and p=2 are proved in step 1 and step 2, respectively. Now, take p≥3 arbitrary. We distinguish two cases:



Case (1). Let p=2m where m≥2. By quadrilateral inequality, using (8), we find


d(ξn,ξn+2m)≤d(ξn,ξn+2)+d(ξn+2,ξn+3)+d(ξn+3,ξn+2m)≤d(ξn,ξn+2)+d(ξn+2,ξn+3)+d(ξn+3,ξn+4)+d(ξn+4,ξn+5)+d(ξn+5,ξn+2m)≤d(ξn,ξn+2)+d(ξn+2,ξn+3)+d(ξn+3,ξn+4)+d(ξn+4,ξn+5)+d(ξn+5,ξn+2m)⋮≤d(ξn,ξn+2)+d(ξn+2,ξn+3)+d(ξn+3,ξn+4)+d(ξn+4,ξn+5)+⋯+d(ξn+2m−1,ξn+2m)=d(ξn,ξn+2)+∑k=n+2n+2m−1d(ξk,ξk+1)≤d(ξn,ξn+2)+∑k=n+2n+2m−1λkd(ξ0,ξ1)≤d(ξn,ξn+2)+d(ξ0,ξ1)∑k=n+2∞λk=d(ξn,ξn+2)+λn+21−λd(ξ0,ξ1).








Obviously,


limn→∞d(ξn,ξn+2m)=0.








Case (2): Let p=2m+1 where m≥1. By quadrilateral inequality, using (8), we find


d(ξn,ξn+2m+1)≤d(ξn,ξn+1)+d(ξn+1,ξn+2)+d(ξn+2,ξn+2m+1)≤d(ξn,ξn+1)+d(ξn+1,ξn+2)+d(ξn+2,ξn+3)+d(ξn+3,ξn+4)+d(ξn+4,ξn+2m+1)≤d(ξn,ξn+1)+d(ξn+1,ξn+2)+d(ξn+2,ξn+3)+d(ξn+3,ξn+4)+d(ξn+4,ξn+2m+1)⋮≤d(ξn,ξn+1)+d(ξn+1,ξn+2)+d(ξn+2,ξn+3)+d(ξn+3,ξn+4)+⋯+d(ξn+2m,ξn+2m+1)=∑k=nn+2md(ξk,ξk+1)≤∑k=nn+2mλkd(ξ0,ξ1)≤d(ξ0,ξ1)∑k=n∞λk=λn1−λd(ξ0,ξ1)→0asn→∞.








Finally, we get


limn→∞d(ξn,ξn+p)=0uniformlyinp.








We conclude that {ξn} is a Cauchy sequence in (X,d). Since (X,d) is complete, there exists ξ∈X such that


limn→∞d(ξn,ξ)=0.



(11)




We shall show that ξ is a fixed point of T. We argue by contradiction by assuming that ξ≠Tξ. Recall that ξn≠Tξn for each n≥0. By letting ξ=ξn and η=ξ in (3), we determine that


dξn+1,Tξ=dTξn,Tξ≤λdξn,ξβ·dξn,Tξnα·dξ,Tξ1−α−β.



(12)




Letting n→∞ in the inequality (12), we find limn→∞d(ξn,Tξ)=0. By Proposition 1, we conclude that Tξ=ξ, which contradicts our last assumption. Thus ξ=Tξ, and so ξ is a fixed point of T. ☐





The following example illustrates Theorem 4.



Example 1.

Let X={0,1,2,3} be a set endowed with the Branciari distance ρ given as


ρ(ξ,η)0123000.10.80.910.1010.720.8100.230.90.70.20








Consider the self-mapping T on X as T:01230013. We have ρ(1,2)>ρ(1,3)+ρ(3,2), so ρ is not a metric. Let ξ,η∈X∖Fix(T). Then (ξ,η)∈{(1,1),(2,2),(1,2),(2,1)}. By choosing λ∈[0.4,1), α=0.6 and β=0.3, it is obvious that the self-mapping T is an interpolative Ćirić-Reich-Rus type contraction. Here, T has two fixed points, which are 0 and 3.



On the other hand, the inequality (2) does not hold for x=0 and y=3 (by taking the classical metric d(x,y)=∣x−y∣). That is, Theorem 3 is not applicable.





In what follows, we introduce the concept of interpolative Kannan type contractions.



Definition 4.

Let X,d be a Branciari distance space. A self-mapping T on X is called aninterpolative Kannan type contraction, if there are constants λ∈[0,1) and α∈(0,1) such that


dTξ,Tη≤λdξ,Tξα·dη,Tη1−α,



(13)




for all ξ,η∈X∖Fix(T).





Theorem 5.

Let T:X→X be an interpolative Kannan type contraction on a complete Branciari distance space X,p, then T has a fixed point in X.





We skip the proof since it is similar to the proof of Theorem 4.
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