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Abstract: In this paper, we consider fault-tolerant resolving sets in graphs. We characterize n-vertex
graphs with fault-tolerant metric dimension n, n− 1, and 2, which are the lower and upper extremal
cases. Furthermore, in the first part of the paper, a method is presented to locate fault-tolerant
resolving sets by using classical resolving sets in graphs. The second part of the paper applies
the proposed method to three infinite families of regular graphs and locates certain fault-tolerant
resolving sets. By accumulating the obtained results with some known results in the literature,
we present certain lower and upper bounds on the fault-tolerant metric dimension of these families
of graphs. As a byproduct, it is shown that these families of graphs preserve a constant fault-tolerant
resolvability structure.

Keywords: resolving set; fault-tolerant resolving set; extended Petersen graphs; anti-prism graphs;
squared cycle graphs
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1. Introduction

In 1975, Slater [1] introduced the concept of a resolving set and its minimality within the graph,
known as the metric dimension. Independently, Harary and Melter [2] proposed the same concept
by explaining its diverse applicability. The research on this graph-theoretic parameter is excelling,
and hundreds of manuscripts have been published from both theoretic and applicability perspectives.
By considering its applicability perspective, the metric dimension significantly possesses many
potentially diverse applications in different areas of science, social science, and technology. Next, we
discuss applications of the metric dimension in other scientific disciplines.

The emergence and diversity of metric dimension applications prevail in many scientific areas,
such as the navigation of robots in robotics [3], determining routing protocols geographically [4], and
telecommunication [5]. The vertex–edge relation in graphs and its equivalence to the atom–bond
relation derive many applications in chemistry [6]. Network discovery and its verification [5] is another
area in which interesting applications of the metric dimension emerge. Based on its importance in
other scientific areas, it is natural to study the mathematical properties of this parameter. Next, we
review some literature on the mathematical significance of this graph-theoretic parameter.

Various families of graphs of mathematical interest have been studied from the metric dimension
perspective. Here, we mention some of the important work: the metric dimension of certain families
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of distance-regular graphs, such as Grassmann graphs [7] and Johnson graphs [8], which have
been studied by Bailey and others. The metric dimension of Kneser graphs was also studied by
Bailey at al. [8]. Graphs of group-theoretic interest, such as Cayely digraphs [9] and Cayley graphs
generated by certain finite groups [10], have also been studied from the metric dimension viewpoint.
The metric dimension and resolving sets of product graphs, such as the Cartesian product of graphs [11]
and categorical product of graphs [12], have also been investigated. Certain infinite families generated
from wheel graphs have been studied by Siddiqui et al. [13]. The metric dimension of rotationally
symmetric convex polytopes (resp. convex polytopes produced by wheel-related graphs) has been
studied by Kratica et al. [14] (resp. Imran et al. [15]). The question of whether or not the metric
dimension is a finite number was answered in [16]. They showed this result by constructing some
infinite families of graphs possessing infinite metric dimension. Similar to many other graph-theoretic
parameters, the computational complexity of the metric dimension problem was investigated in [17].

Metric dimension has also been generalized and extended by providing more mathematical
rigorous general concepts, such as the k-metric dimension. Hernando et al. [18] introduced another
concept: fault tolerance in resolvability, which tolerates the removal of any arbitrary vertex and
preserves the resolvability status of the underlying set. By considering the vertices in a resolving
set as the location for loran/sonar stations, we can say that the location of any such vertex is
distinctly measured by its vertex distances from the site of the stations. From this perspective,
a fault-tolerant (unique) resolving set is the one which still preserves the property of a resolving
set when neglecting any station at a uniquely determined location of a vertex in the resolving set.
Consequently, fault-tolerant resolving sets enhance the applicability of classical resolving sets in graphs.
In addition, this shows that the fault-tolerant metric dimension possesses applicative superiority over
the metric dimension.

Chartrand [19] investigated certain applications by referring to components of a metric basis as
sensors. From the fault-tolerant resolvability point of view, if some sensor is lacking in performance
and does not convey information efficiently, the system will not have enough information process in
order to tackle the thief/intruder/fire, etc. A fault-tolerant resolving set from this perspective deals
with this problem by conveying the information efficiently when one of the sensors does not catch
the intruder. It turns out that fault tolerance in resolvability has applicative superiority over classical
resolvability in graphs. In other words, the fault-tolerant metric dimension has application wherever
the metric dimension is applicable. Nevertheless, fault-tolerant resolving sets have not received much
attention from researchers. The fault-tolerant metric dimension of certain interesting graphs possessing
chemical importance was studied in [20]. Recently, Raza et al. [21,22] considered certain rotationally
symmetric convex polytopes and studied their fault-tolerant metric dimension and binary-locating
dominating sets. The reader is referred to [23] for consideration of fault-tolerant resolvability as an
optimization problem and its applicative perspective. We also refer the reader to [24–28] for a study of
other interesting graph-theoretic parameters having potential applications in chemistry.

Based on the importance of fault-tolerant resolvability from both mathematical and applicative
perspectives as discussed above, it is natural to study the mathematical properties of fault-tolerant
resolving sets in graphs. In this paper, we study the fault-tolerant resolvability in graphs.
We characterize the graphs with fault-tolerant metric dimension n, n − 1, and 2, which are the
non-trivial extremal values of the fault-tolerant metric dimension. We utilize a lemma to trace a
fault-tolerant resolving set from a given resolving set. This results in proving a non-trivial upper
bound on the fault-tolerant metric dimension of a graph with a given resolving set. We study the
fault-tolerant resolvability for three infinite families of regular graphs and show some upper and lower
bounds on their fault-tolerant metric dimension.
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2. Preliminaries

This section defines the terminologies and explains the undefined terms from the previous section.
We also provide an overview of basic results in the literature which are used in subsequent sections.
Notations and graph-theoretic concepts were taken from Bondy and Murty [29].

A graph is an ordered pair Γ = (V, E), where V is considered to be the vertex set and E is called
the edge set. Γ is called finite if V is finite; it is said to be simple if it does not contain any loop and
parallel edges; it is called undirected if its edges do not possess direction; and it is called connected
if any two vertices in it are connected by a path. The length of the shortest path between two given
vertices is called the distance between them. For u, v ∈ V, the distance between u and v is usually
denoted as du,v.

For two arbitrary vertices x and y, a vertex u is said to resolve the pair x, y if it satisfies du,x 6= du,y.
If this resolvability condition is satisfied by a number of vertices composing a subset R ⊆ V, i.e.,
any pair of vertices in the graph is resolved by at least one vertex in R, then L is said to be a resolving
set. The idea behind this definition goes back to Harary and Melter [2], who showed that this concept
naturally arises from communication networks. The minimum cardinality of a resolving set in a given
graph is said to be the metric dimension. It is usually denoted by β(G). A resolving set in which
the number of elements is β is called the metric basis. For an ordered subset R = (x1, x2, . . . , xr),
the R-coordinate/code/representation of vertex u in V is CR(u) = (du,x1 , du,x2 , . . . , du,xr ). In these
terms, L is said to be a resolving set of Γ if any two vertices in Γ have distinct codes or distance vectors.

Chartrand et al. [6] determined all the connected graphs with metric dimension 1. Let Pν be the
ν-vertex path graph.

Theorem 1. [6] A connected graph has metric dimension 1 if and only if it is the path graph.

They also showed that a graph having metric dimension 2 cannot possess K3,3 and K5 as its
subgraphs. Let Kν be the complete graph on ν vertices. They also classified the connected graphs
possessing metric dimension ν− 1.

Theorem 2. [6] A connected ν-vertex graph has metric dimension ν− 1 if and only if it is the complete graph.

Let Γ ∪Ω denote the disjoint union of two graphs Γ and Ω. The join of two graphs Γ and Ω,
symbolized as Γ + Ω, is obtained by joining any vertex of Γ to all the vertices of Ω and vice versa.
Graphs having ν vertices sharing the metric dimension ν− 2 are classified in the following result.

Theorem 3. [6] A connected ν-vertex graph Γ with ν ≥ 4 shares the metric dimension ν− 2 if and only if
Γ ∈ {Ks + Kt (s ≥ 1, t ≥ 2), Ks,t (s, t ≥ 1), Ks + (K1 ∪ Kt) (s, t ≥ 1)}.

A fault-tolerant resolving set is a resolving set in which the removal of an arbitrary vertex
maintains the resolvability. The idea of a fault-tolerant resolving set (also known as resilient) has
been widely investigated in networked systems; see, for example, [30,31]. The fault-tolerant metric
dimension and fault-tolerant metric basis are defined similarly as metric dimension. We denote the
fault-tolerant metric dimension of graph Γ by β′(Γ).

A family of graphs on ν vertices is said to possess a constant (resp. bounded)
resolvability/fault-tolerant resolvability structure if the metric dimension/fault-tolerant metric
dimension does not depend on the parameter ν (resp. is a function of ν). Note that our definition of
a constant/bounded metric/fault-tolerant metric dimension could be different from the one in the
literature. In view of Theorem 1, path graphs are a family of graphs with a constant metric dimension.
On the other hand, in view of Theorem 2, complete graphs provide a family of graphs possessing a
bounded resolvability structure.
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In a path graph, there exists a unique fault-tolerant metric basis comprising the initial and terminal
vertices. Thus, we obtain β′(Pn) = 2. Hernando et al. [18] showed that the tree T in Figure 1 has
β(T) = 10 and β′(T) = 14. The set P = (1, 2, 3, 4, . . . , 10) (resp. Q = P ∪ {y, v, r, s}) forms the metric
basis (resp. fault-tolerant metric basis) of T.
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u v t
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T

Figure 1. The tree example from Hernando et al. [18].

Javaid et al. proved the following lemma, which shows an alternative way to trace a fault-tolerant
resolving set in a graph.

Lemma 1. [32] A resolving set R of graph Γ is fault-tolerant if and only if any arbitrary pair of vertices of Γ is
resolved by at least two vertices of R.

Proof. Let R be a fault-tolerant resolving set of G. Assume contrarily that two vertices x and y of G are
resolved by a single vertex r ∈ R. Then, R \ {r} is not a resolving set since both x and y have the same
codes with respect to r ∈ R. This raises a contradiction to the assumption that R is a fault-tolerant
resolving set of G.

Now, we assume that every pair of vertices of G is resolved by at least two vertices of R.
Then, R \ {r} for any r ∈ R is a resolving set by definition. This shows the lemma.

Hernando et al. [18] showed the following upper bound on β′ in terms of β.

Theorem 4. [18] The upper bound β′(Γ) ≤ β(Γ)
(
1 + 2× 5β(Γ)−1) holds for any arbitrary graph.

The following result demonstrates that the difference between the two parameters β and β′ can
be increasingly large enough.

Theorem 5. [32] There always exists a graph Γ for which β′(Γ) ≥ β(Γ) + p holds for any integer p.

From this, we can also note that, with the defining structures of β and β′, we can have β′(Γ) ≥
β(Γ) + 1. In the next section, we discuss graphs which hold equality in this lower bound.

3. Main Results

This section contains the main result presented in this paper.
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3.1. Some Characterizations

In this subsection, we prove some characterization results on extreme values of the fault-tolerant
metric dimension of graphs. These results are the fault-tolerant metric dimension analogs of
Theorems 1–3, where similar results on the metric dimension of graphs are obtained. Note that
from the interpretation of the fault-tolerant metric dimension of a graph Γ with n vertices, we have
2 ≤ β′(Γ) ≤ n.

In the following result, graphs with fault-tolerant metric dimension 2 are characterized.

Theorem 6. A graph has β′(Γ) = 2 if and only if it is the path graph.

Proof. First, we assume that Γ ∼= Pn. By Theorem 1, we obtain β(Γ) = 1. By the definition of the
fault-tolerant metric dimension, it is noted that

β′(Γ) ≥ β(Γ) + 1. (1)

By inserting β(Γ) = 1 in Equation (1), we get β′(Γ) ≥ 2. Let R′ = {a, b} ⊆ V(Γ), where a and b are
the vertices with degree one in Γ. Clearly, R′ is a resolving set in Γ. Note that both R′ \ {a} and R′ \ {b}
are also resolving sets in Γ, because any vertex of degree one resolves the path graph. This implies that
R′ is a fault-tolerant resolving set of Γ, and thus, β′(Γ) ≤ 2. By combining two inequalities, we obtain
β′(Γ = Pn) = 2.

Conversely, suppose that Γ is a graph with fault-tolerant metric dimension 2. Since both β(Γ) and
β′(Γ) are positive integers, by Equation (1), we get β(Γ) < β′(Γ). By implying β′(Γ) = 2, we obtain
β(Γ) < 2, which indicates that β(Γ) = 1. By Theorem 1, we find that the only graphs with metric
dimension 1 are the path graphs. This implies that Γ ∼= Pn.

In the next theorem, we characterize the equality in β′(Γ) ≤ n, where Γ is an n-ordered graph.

Theorem 7. An n-vertex connected graph has β′(Γ) = n if and only if it is the complete graph Kn.

Proof. Let Γ be an n-ordered complete graph. Then, by Theorem 2, we have β(Γ) = n− 1. By putting
this in Equation (1), we get β′(Γ) ≥ n. Let R′ = V(Γ); for some c ∈ V(Γ), the set R′ \ {c} is a resolving
set, because any collection of n − 1 vertices of Γ resolve Γ completely. Thus, R′ is a fault-tolerant
resolving set of Γ, and thus, β′(Γ) ≤ n. By combining these two cases, we obtain β′(Γ) = n.

Conversely, suppose that Γ is a graph with fault-tolerant metric dimension n. From Equation (1),
we have β(Γ) < β′(Γ), which shows that β(Γ) ≤ n− 1. In Theorem 2, it is shown that equality holds
in β(Γ) ≤ n− 1 if and only if Γ = Kn. This shows that equality holds in β(Γ) ≤ β′(Γ)− 1 = n− 1.
This implies that Γ is a complete graph on n vertices.

In the next theorem, graphs with fault-tolerant metric dimension n− 1 are characterized.

Theorem 8. Let Γ be a graph with order n ≥ 4. Then, β′(Γ) = n − 1 if and only if Γ = Ks,t (s, t ≥ 1),
Γ = Ks + Kt (s ≥ 1, t ≥ 2) and Γ = Ks + (K1 ∪ Kt) (s, t ≥ 1).

Proof. Let Γ1 = Ks,t (s, t ≥ 1), Γ2 = Ks + Kt (s ≥ 1, t ≥ 2), and Γ3 = Ks + (K1 ∪ Kt) (s, t ≥ 1). Assume
that Γ belongs to one of the three infinite families Γi, i = 1, 2, 3. Then, by Theorem 3, β(Γ) = n− 2.
By using this in Inequality (1), we get β′(Γ) ≥ n− 1. Since Γ is not a complete graph, by Theorem 7, we
obtain β′(Γ) < n. This implies that β′(Γ) ≤ n− 1. Now, we combine the two inequalities to achieve
β′(Γ) = n− 1.

Conversely, when we let Γ be a graph with fault-tolerant metric dimension n − 1, by using
Equation (1), β′(Γ) ≥ β(G) + 1 implies

β(Γ) ≤ n− 2. (2)
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By Theorem 3, equality holds in Equation (2) if Γ ∈ {Γ1, Γ2, Γ3}, if n ≥ 4. This implies that
the equality holds in β(Γ) ≤ β′(Γ)− 1, and thus, for n ≥ 4, Γ ∈ Γi for i = 1, 2, 3. This completes
the proof.

By Theorems 6–8, if Γ is a graph with Γ /∈ {Pn, Kn, Γ1, Γ2, Γ3}, then 3 ≤ β′(Γ) ≤ n− 2. Next, we
focus on the graphs for which 3 ≤ β′(Γ) ≤ n− 2.

3.2. Relation between Resolving Sets and Fault-Tolerant Resolving Sets of Graphs

In Theorem 4, Hernando et al. [18] showed that the fault-tolerant metric dimension is bounded
by a function of metric dimension. They also showed a relation between a resolving set and a
fault-tolerant resolving set for an arbitrary graph. Now, let N(w) (resp. N[w]) represent the open
and close neighborhood of a vertex w ∈ V(Γ), where N(w) := {u ∈ V(Γ) | uw ∈ E(Γ)} and
N[w] := {w} ∪ N(w).

Lemma 2. [18] Let R be a resolving set of graph Γ. For all w ∈ R, let T(w) := {x ∈ V(Γ) : N(w) ⊆ N(x)}.
Then, R′ := ∪w∈R(N[w] ∪ T(w)) is a fault-tolerant resolving set of Γ.

Now, the following lemma will help us to obtain upper bounds on the fault-tolerant metric
dimension of a given graph. It uses R in a graph to produce a fault-tolerant resolving set within
it. In view of Lemma 2, for a given resolving set R of a graph Γ, finding the set R′ to evaluate the
corresponding fault-tolerant resolving set seems tedious due to the calculation of the set T(w) for a
vertex w ∈ R. Raza et al. [21] further simplify this lemma so that one does not have to check every
vertex x of Γ to verify whether or not it belongs to T(w) for some w ∈ R. Now, for vertices x and y
in Γ, we let λ(x, y) be a set of common neighbors of these vertices and, for some Q ⊂ V(Γ), let λ(Q)

be the set of common neighbors of each vertex in Q. The following lemma is a key result for finding
upper bounds on the fault-tolerant metric dimension of a given graph.

Lemma 3. [21] For a graph Γ, let R be a distinguishing or resolving set, and R′ := ∪w∈R
(

N[w] ∪ λ(N(w))
)
.

Then, β′(G) ≤| R′ |.

Proof. Let R be a resolving set of graph Γ. For v ∈ R, let T(v) := {x ∈ V(Γ) : N(v) ⊆ N(x)}. Then, for
any x ∈ T(v), we notice that d(x, v) = 2 (see Figure 2).

N(v)

N(x)

v x
x
x

x

T(v)

Figure 2. A depiction of the proof of Lemma 3.

Moreover, for y, z ∈ N(v), we obtain λ(y, z) = x for some x ∈ T(v). This implies that T(v) =
λ
(

N(v)
)
\ {v} for any v ∈ R. Now, by Lemma 2, R′ := ∪v∈R(N[v] ∪ T(v)) is a fault-tolerant resolving

set of Γ. Since v is contained in N[v], then, for any v ∈ R,

N[v] ∪ T(v) = N[v] ∪ λ
(

N(v)
)
.
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This shows the lemma.

We use Lemma 3 in later subsections to calculate upper bounds on the fault-tolerant metric
dimension for certain families of regular graphs.

3.3. Extended Petersen Graphs

The extended Petersen graph P(n), n ≥ 3, has a vertex set

V = {z1, z2, . . . zn, y1, y2, . . . yn}

and an edge set
E = {zizi+1, ziyi, yiyi+2|with indices taken as modulo n}.

The extended Petersen graph P(n) is a special case of the generalized Petersen graphs which were
first studied by Watkins [33].

We studied the problem of the fault-tolerant metric dimension of the extended Petersen graph.
The set {z1, z2, . . . , zn} prompts a cycle in P(n), with zkzk+1 (1 ≤ k ≤ n) and ykyk+2 (1 ≤ k ≤ n), with
indices taken modulo n, as edges. For even n, {y1, y2, . . . , yn} induces two cycles, again with edges
ykyk+2 (1 ≤ k ≤ n), with indices taken modulo n. For example, P(5) is the standard Petersen graph.
For the sake of simplicity, we denote the cycle induced by {z1, z2, . . . , zn} as the outer cycle and the
cycle induced by {y1, y2, . . . , yn} as the inner cycle or cycles.

The following result was shown by Javaid et al. [34].

Proposition 1. [34] Let Γ be the extended Petersen graph P(n) with n ≥ 5; then, β(Γ) = 3.

They also showed the following:

Proposition 2. [34] P(n), the extended Petersen graph, can be classified as a family of graphs with a constant
metric dimension.

In this section, we present our main results. We derive the upper as well as lower bounds on
the fault-tolerant metric dimension of the extended Petersen graph P(n). Note that Claim 1 in the
following result was essentially shown in Proposition 1.

Theorem 9. Let Γ be the extended Petersen graph P(n); then,

4 ≤ β′(Γ) ≤
{

10, i f n ≡ 0( mod 2) with n ≥ 8;
12, i f n ≡ 1( mod 2) with n ≥ 11.

Proof. Let Γ be the extended Petersen graph P(n), with n ≥ 4.

Case 1: When n ≡ 0( mod 2) with n ≥ 8.
Claim 1: Resolving set R of order 3 exists in Γ.

Based on the location of basis elements in Γ, we further divide this case into two subcases.

Subcase 1.1: When n ≡ 0( mod 4).

It can be written as n = 4`, 2 ≤ ` ∈ Z+. We prove that R = {y1, y2, y3} resolves V(Γ). In order
to show that R resolves vertices of V(Γ), we first represent the vertices in Γ with respect to R \ {y3}.
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Indeed, the vertices y1 and y2 distinguish the inner cycle vertices and a few of the outer cycle vertices.
The vertices in the outer cycle are represented by CR\{y3}(z1) = (1, 2), CR\{y3}(z2) = (2, 1),

CR\{y3}(z2k) =

{
(k + 1, k), 2 ≤ k ≤ `;
(2`− k + 2, 2`− k + 2), `+ 1 ≤ k ≤ 2`.

CR\{y3}(z2k+1) =

{
(k + 1, k + 1), 1 ≤ k ≤ `;
(2`− k + 1, 2`− k + 2), `+ 1 ≤ k ≤ 2`− 1.

In the inner cycle,

CR\{y3}(y2k) =

{
(k + 2, k− 1), 2 ≤ k ≤ `;
(2`− k + 3, 2`− k + 1), `+ 1 ≤ k ≤ 2`.

and

CR\{z3}(y2k+1) =

{
(k, k + 2), 1 ≤ k ≤ `;
(2`− k, 2`− k + 3), `+ 1 ≤ k ≤ 2`− 1.

From the above discussion, it is clear that there are no two vertices with the same representation
in the inner cycle. However, in the outer cycle, CR\{y3}(z3+k) = CR\{y3}(zn−k) for k = 0, 2, . . . , 2`− 2.
Vertex y3 distinguishes these pairs with the same representation as d(y3, z3+k) = b 3+k

2 c 6= d(y3, zn−k) =

b 3+k
2 c+ 2 for k = 0, 2, . . . , 2`− 4 and d(y3, z2`+2) = d(y3, z2`+1)+ 1. This shows that R resolves vertices

of Γ, which means β(Γ) ≤ 3 when n ≡ 0( mod 4).

Subcase 1.2: When n ≡ 2( mod 4).

It can be written as n = 4`+ 2, 2 ≤ ` ∈ Z+. In this case, again, R = {y1, y2, y3} resolves V(Γ).
In order to show that R resolves the vertices of V(P(n)), we first represent the vertices in Γ with respect
to R \ {y3}. Again, it is clear that the vertices y1 and y2 distinguish the inner and outer cycle vertices.
Note that for the outer cycle, we have CR\{y3}(z1) = (1, 2), CR\{y3}(z2) = (2, 1),

CR\{y3}(z2k) =

{
(k + 1, k), 2 ≤ k ≤ `+ 1;
(2`− k + 3, 2`− k + 3), `+ 2 ≤ k ≤ 2`+ 1.

and

CR\{y3}(z2k+1) =

{
(k + 1, k + 1), 1 ≤ k ≤ `;
(2`− k + 2, 2`− k + 3), `+ 1 ≤ k ≤ 2`.

In the inner cycle,

CR\{y3}(y2k) =

{
(k + 2, k− 1), 2 ≤ k ≤ `+ 1;
(2`− k + 4, 2`− k + 2), `+ 2 ≤ k ≤ 2`+ 1.

and

CR\{y3}(y2k+1) =

{
(k, k + 2), 1 ≤ k ≤ `;
(2`− k + 1, 2`− k + 4), `+ 1 ≤ k ≤ 2`.

Again, in this case, it is clear for the inner cycle that there are no two vertices with the same
representation. However, for the outer cycle, CR\{y3}(z3+k) = CR\{y3}(zn−k) for k = 0, 2, . . . , 2`− 2.
Note that the pairs with the same representations are distinguished by y3 since d(y3, z3+k) = b 3+k

2 c 6=
d(y3, zn−k) = b 3+k

2 c+ 2 for k = 0, 2, . . . , 2`− 2. This shows that R resolves the vertices of Γ, which
means β(Γ) ≤ 3, when n ≡ 2( mod 4).

Claim 2: When n ≥ 8, the cardinality of the fault-tolerant resolving set in Γ is 10.
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We can write n = 4`, ` ≥ 2, ` ∈ Z+. Note that, for this, R = {y1, y2, y3} is a resolving set of Γ.
We show that Γ has a fault-tolerant resolving set of cardinality 10.

As seen from Figure 3, it can be observed that N[y1] = {y1, y3, yn−1, z1}, N[y2] = {y2, y4, yn, z2},
and N[y3] = {y1, y3, y5, z3}. Moreover, we find that λ(NΓ(y1)) = λ(NΓ(y2)) = λ(NΓ(y3)) = ∅. Thus,
by using Lemma 3, we find that R′ = {y1, y2, y3, y4, y5, yn−1, yn, z1, z2, z3} is a fault-tolerant resolving
set of Γ. Thus, a fault-tolerant resolving set of Γ with cardinality 10 exists when n ≥ 8.

Case 2: When n ≡ 1( mod 2) with n ≥ 11.

Based on the location of basis elements in Γ, we further divide this case into two subcases.

Subcase 2.1: When n ≡ 1( mod 4).
Claim 1: Γ has a resolving set R of order 3.

In this case, we can write n = 4`+ 1, 1 ≤ ` ∈ Z+. It can be seen that {y1, y2, z3} is a resolving
set for the standard Petersen graph P(5). For P(9), we see that W = {y1, y2, z4} is a resolving set.
Now, we show that, for n ≥ 9, R = {y1, y2, z2`−1} resolves the vertices of Γ, where n ≡ 1( mod 4).
In order to show this, first we present representations of the vertices with respect to R \ {z2`−1}.
The representations of the vertices in the outer cycle are CR\{z2`−1}(z1) = (1, 2), CR\{z2`−1}(z2) = (2, 1),

CR\{z2`−1}(z2k) =


(k + 1, k), 2 ≤ k ≤ `;
(k, k), k = `+ 1;
(2`− k + 2, 2`− k− 3), `+ 2 ≤ k ≤ 2`.

and

CR\{z2`−1}(z2k+1) =

{
(k + 1, k + 1), 1 ≤ k ≤ `;
(2`− k + 2, 2`− k + 2), `+ 1 ≤ k ≤ 2`.

Now, the representations of the vertices in the inner cycle are

CR\{yz2`−1}
(y2k) =



(k + 2, k− 1), 2 ≤ k ≤ `− 1;
(k + 1, k− 1), k = `;
(k− 1, k− 1), k = `+ 1;
(k− 3, k− 1), k = `+ 2;
(2`− k + 1, 2`− k + 4), `+ 3 ≤ k ≤ 2`.

and

CR\{z2`−1}(y2k+1) =


(k, k + 2), 1 ≤ k ≤ `− 1;
(k, k + 1), k = `;
(k, k− 1), k = `+ 1;
(2`− k + 3, 2`− k + 1), `+ 2 ≤ k ≤ 2`.

From the above discussion, it is clear that R \ {z2`−1} distinguishes all but the following vertices.
(i) z3+k and zn−k for i = 0, 2, . . . , 2` − 6. (ii) z2`−1 and z2`+5 and y2`+2. (iii) z2`+1 , z2`+2, and
z2`+3. (iv) y2`−1 and y2`+4. (v) y2` and y2`+5. (vi) z2` and y2`+3. (vii) y2`+1 and z2`+4. It is
easy to see that vertices with the same representation in the outer cycle are at different distances
from z2`−1.d(z2`−1, z2`+5) = 5 and d(z2`−1, y2`+2) = 3, d(z2`−1, y2`−1) = 1 and d(z2`−1, y2`+4) = 4,
d(z2`−1, y2`) = 2 and d(z2`−1, y2`+5) = 4, d(z2`−1, z2`) = 1 and d(z2`−1, y2`+3) = 3, d(z2`−1, y2`+1) = 2
and d(z2`−1, z2`+4) = 5. The above discussion shows that R is a resolving set for V(Γ) when
n ≡ 1( mod 4). Hence, β(Γ)) ≤ 3 for n ≡ 1( mod 4).

Claim 2: Γ has a fault-tolerant resolving set of cardinality 12 when n ≥ 11.

We can write n = 4`+ 1, ` ≥ 3 and ` ∈ Z+. Note that, in this case, R = {y1, y2, z2`−1} is a resolving
set of Γ. We prove here that Γ has a fault-tolerant resolving set of cardinality 12. From Figure 3,
it can be observed that N[y1] = {y1, yn−1, yn, z1}, N[y2] = {y2, y4, yn, z2} and N[z2`−1] =
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{z2`−2, z2`−1, z2`, y2`−1}. Moreover, we find that λ(NΓ(y1)) = λ(NΓ(y2)) = λ(NΓ(z2`−1)) = ∅.
Thus, by using Lemma 3, we find that R′ = {y1, y2, y3, y4, y2`−1, yn−1, yn, z1, z2, z2`−2, z2`−1, z2`} is a
fault-tolerant resolving set of Γ. Thus, there exists a fault-tolerant resolving set of Γ with cardinality 12.

Subcase 2.2: When n ≡ 3( mod 4).
Claim 1: Resolving set R of order 3 in Γ exists.

We can write n = 4` + 3, 1 ≤ ` ∈ Z+. It is not difficult to see that U = {y1, y2, z3} resolves
V(P(7)). For n ≡ 3( mod 4) and n ≥ 11, we show that R = {y1, y2, z2`+1} resolves V(Γ = P(n)).
Representations of the vertices in the outer cycle are CR\{z2`+1}(z1) = (1, 2), CR\{z2`+1}(z2) = (2, 1),

CR\{z2`+1}(z2k) =

{
(k + 1, k), 2 ≤ k ≤ `+ 1;
(2`− k + 3, 2`− k + 4), `+ 2 ≤ k ≤ 2`+ 1.

and

CR\{z2`+1}(z2k+1) =

{
(k + 1, k + 1), 1 ≤ k ≤ `+ 1;
(2`− k + 3, 2`− k + 3), `+ 2 ≤ k ≤ 2`+ 1.

Now, in the inner cycle,

CR\{z2`+1}(y2k) =


(k + 2, k− 1), 2 ≤ k ≤ `;
(k, k− 1), k = `+ 1;
(k− 2, k− 1), k = `+ 2;
(2`− k + 2, 2`− k + 5), `+ 3 ≤ k ≤ 2`+ 1.

and

CR\{z2`+1}(2k+1) =


(k, k + 2), 1 ≤ k ≤ `;
(k, k), k = `+ 1;
(2`− k + 4, 2`− k + 2), `+ 2 ≤ k ≤ 2`+ 1.

Again, in this case, R \ {z2`+1} distinguishes all the vertices in Γ except the following vertices:
(i) z3+i and zn−i for i = 0, 2, . . . , 2`− 4. (ii) z2`, y2`+2. (iii) z2`+1, z2`+5, and y2`+3. (iv) y2`+4 and z2`+6.
It is easy to see that vertices with same representation in the outer cycle are at different distances
from z2`+1.d(z2`+1, z2`) = 1, d(z2`+1, y2`+2) = 2 and d(z2`+1, z2`+5) = 4, d(z2`+1, y2`+3) = 2 and
d(z2`+1, y2`+4) = 3, d(z2`+1, y2`+6) = 5. The above discussion shows that R is a resolving set for V(Γ)
when n ≡ 3( mod 4) and n ≥ 11. Hence, β(Γ) ≤ 3 for n ≡ 3( mod 4).

Claim 2: Γ has a fault-tolerant resolving set of cardinality 12 with n ≥ 11.

We can write n = 4`+ 3, ` ≥ 2, ` ∈ Z+. Note that, in this case, R = {y1, y2, z2`+1} is a resolving
set of Γ.

We show that Γ has a fault-tolerant resolving set of cardinality 12.
From Figure 3, it can be observed that N[y1] = {y1, y3, yn−1, z1}, N[y2] = {y2, y4, yn, z2}, and

N[z2`+1] = {z2`, z2`+1, z2`+2, y2`+1}. Moreover, we find that λ(NΓ(y1)) = λ(NΓ(y2)) = λ(NΓ(z2`+1)) = ∅.
Thus, by using Lemma 3, we find that R′ = {y1, y2, y3, y4, yn−1, yn, y2`+1, z1, z2, z2`, z2`+1, z2`+2} is a
fault-tolerant resolving set of Pn,2. Thus, a fault-tolerant resolving set of Pn,2 with cardinality 12 exists.

By using Proposition 1, the above discussion, and Inequality (1), we find that β′(Γ) ≥ 4.

As a consequence of Theorem 9, we have the following corollary. It provides a fault-tolerant
metric dimension analog of Proposition 2.

Corollary 1. The extended Petersen graph P(n) is a family of graphs with a constant fault-tolerant
metric dimension.
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Proof. By Theorem 9, we have

4 ≤ β′
(

P(n)
)
≤
{

10, i f n ≡ 0( mod 2) with n ≥ 8;
12, i f n ≡ 1( mod 2) with n ≥ 11.

This implies that the fault-tolerant metric dimension of P(n) does not depend on the defining
parameter n. Thus, by definition, P(n) is a family of graphs with a constant fault-tolerant
metric dimension.

In view of Lemma 3 and Proposition 1, we find enough reasoning to propose the following
conjecture on the greatest lower bound of the fault-tolerant metric dimension for the extended Petersen
graph P(n).

Conjecture 1. Let Γ be the extended Petersen graph P(n); then,

β′(Γ) ≥
{

10, i f n ≡ 0( mod 2) with n ≥ 8;
12, i f n ≡ 1( mod 2) with n ≥ 11,

and thus, we have

β′(Γ) =

{
10, i f n ≡ 0( mod 2) with n ≥ 8;
12, i f n ≡ 1( mod 2) with n ≥ 11.

Figure 3. (a) The extended Petersen graph P(5), (b) The extended Petersen graph P(6).

3.4. Anti-Prism Graphs

The cross product of a cycle Cn and P2 is actually called a prism, usually denoted by D(n). In [11],
it was shown that

β(Pm2Cn) =

{
2, if n is odd;
3, if n is even.

This implies that

β(D(n)) =

{
2, if n is odd;
3, if n is even.

By applying Equation (1) and Theorem 4 to the prism graph D(n), we find the following result.



Mathematics 2019, 7, 78 12 of 19

Proposition 3. The prism graph D(n) has a constant fault-tolerant metric dimension.

We investigate fault-tolerant resolvability in the anti-prism graphs. The anti-prism A(n) [35] is
a 4-regular graph. It is the octahedron for n ≥ 3. For n ≥ 3, the anti-prism A(n) consists of an inner
cycle y1, y2, . . . , yn, an outer cycle z1, z2, . . . , zn, and a set of n spokes ykzk and yk+1zk, k = 1, 2, . . . , n,
with indices taken as modulo n. Thus, |V(A(n))| = 2n and |E(A(n))| = 4n.

Javaid et al. [34] showed the following result.

Proposition 4. [34] Let Γ be the anti-prism graph A(n) with n ≥ 3; then, β(Γ) = 3.

They also showed the following:

Proposition 5. [34] The anti-prism graph A(n) has a constant metric dimension.

In this section, we present the main results, and, for the anti-prism graph A(n), the upper and
lower bounds on the fault-tolerant metric dimension are proved. Note that Claim 1 in the following
result was essentially shown in Proposition 4.

Theorem 10. Let Γ be the anti-prism graph A(n), with n ≥ 10; then, 4 ≤ β′(Γ) ≤ 14.

Proof. Let n = 2` or n = 2`+ 1 for even or odd n, respectively.

Claim 1: A resolving set R of order 3 exists in Γ.

Based on the location of basis elements in G, we divide this in two cases.

Case 1: When n is even, n = 2`, with ` ≥ 3.

For n ≥ 6, there exists a resolving set R of cardinality 3. R = {z1, z3, z`+1} is a resolving set.
Representation of the vertices in the outer cycle with respect to {z1, z3} is as follows. As we can see,
CR\{z`+1}(z2) = (1, 1); in general, the representations of the vertices in the outer cycle are

CR\{z`+1}(zk) =


(k− 1, k− 3), 4 ≤ k ≤ `+ 1;
(n− k + 1, k− 3), k = `+ 2,k = `+ 3;
(n− k + 1, n− k + 3), `+ 4 ≤ k ≤ n.

Representations of the vertices in the inner cycle are CR\{z`+1}(y1) = (1, 3), CR\{z`+1}(y2) = (1, 2),
CR\{z`+1}(y3) = (2, 1). In general,

CR\{z`+1}(yk) =


(k− 1, k− 3), 4 ≤ k ≤ `+ 1;
(`, `− 1), k = `+ 2;
(`− 1, `), k = `+ 3;
(n− k + 2, n− k + 4), `+ 4 ≤ k ≤ n.

Case 2: For odd n, n = 2`+ 1 with ` ≥ 3. Then,

CR\{z`+1}(yk) =


(k− 1, k− 3), 4 ≤ k ≤ `+ 2;
(`, `), k = `+ 3;
(n− k + 2, n− k + 4), `+ 4 ≤ k ≤ n.

From the above discussion, we can see there are few vertices with the same representation yk,zk,
with 4 ≤ k ≤ `+ 1; for even and odd n, y1,zn and ys+1,zs with `+ 3 ≤ s ≤ n− 1 and `+ 4 ≤ s ≤ n− 1,
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respectively. In order to distinguish the pairs with the same vertices, we take y`+1 in the outer and
inner cycle. Representation in the outer cycle is

d(y`+1, zs) =

{
`− s + 1, 1 ≤ s ≤ `;
s− `− 1, `+ 2 ≤ s ≤ n.

Now, representation in the inner cycle is

d(y`+1, yk) =


`− k + 2, 1 ≤ k ≤ `;
1, s = `+ 1;
k− `− 1, `+ 2 ≤ k ≤≤ n.

Also, d(z`+1, y1) = n − `. So, from the above discussion, we see that z`+1 distinguishes the
vertices of Γ. Hence, R = {z1, z3, z`+1} is a resolving set of Γ. This shows that β(Γ) ≤ 3.

Claim 2: There exists a fault-tolerant resolving set of cardinality 14 in Γ.

Γ contains a resolving set R of order 3. We show that Γ has a fault-tolerant resolving set of 14.
Now, we can see from Figure 4 that N[z1] = {z1, z2, zn, y1, y2}, N[z3] = {z2, z3, z4, y3, y4}, and N[z`+1] =

{z`, z`+1, z`+2, y`+1, y`+2}. Moreover, we find that λ(NΓ(z1)) = λ(NΓ(z2)) = λ(NΓ(z`+1)) = ∅.
Thus, by using Lemma 3, we find that R′ = {y1, y2, y3, y4, z1, z2, z3, z4, y`+1, y`+2, z`, z`+1, z`+2, zn}.
Thus, there exists a fault-tolerant resolving set of Γ with cardinality 14 when n ≥ 10.

By using Proposition 4, the above discussion, and Inequality (1), we find that β′(Γ) ≥ 4.

Figure 4. The anti-prism graph A3.

As a result of Theorem 10, we present the following corollary. It provides a fault-tolerant metric
dimension analog of Proposition 5.

Corollary 2. The anti-prism graph A(n) has a constant fault-tolerant metric dimension.

Proof. By Theorem 10, we have 4 ≤ β′
(

A(n)
)
≤ 14. This implies that the fault-tolerant metric

dimension of A(n) does not depend on the defining parameter n. Thus, by definition, A(n) is a family
of graphs with a constant fault-tolerant metric dimension.

In view of Lemma 3 and Proposition 4, we propose the following conjecture on the greatest lower
bound on the fault-tolerant metric dimension for the anti-prism graph A(n).

Conjecture 2. Let Γ be an anti-prism graph A(n) and n ≥ 10; then, β′(Γ) ≥ 14, and thus, β′(Γ) = 14.
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3.5. Squared Cycle Graphs

Javaid et al. [32] proved that the fault-tolerant metric dimension of cycle graphs is 3.

Lemma 4. Let Γ be the cycle graph Cn, where n ≥ 3. Then, β′(Γ) = 3.

In the subsequent section, we study fault-tolerant resolvability of squared cycle graphs, which are
somewhat of an extension of cycle graphs. The squared cycle graph S(n) is a 4-regular graph of order
n, with V(S(n)) = {y1, y2, . . . , yn}. For each k (1 ≤ k ≤ n), we join yk to yk+1, yk+2 and to yk−1, yk−2.
If we cyclically arrange the vertices y1, y2, . . . , yn, then each vertex yk is adjacent to the 2 vertices that
immediately follow yk and 2 vertices that immediately precede yk. Thus, S(n) is a four-regular graph.
In Figure 5, we depict the squared cycle graph S(n) for n = 8 and n = 9. Note that the squared cycle
graph is a special case of the Harary graph H(m, n), with m = 4.

Figure 5. (a) The squared cycle graph S(8), (b) the squared cycle graph S(9).

Javaid et al. [34] showed the following result.

Proposition 6. [34] For n ≡ 0, 2, 3( mod 4), let Γ be the squared cycle graph S(n) with n ≥ 5. Then,
β(Γ) = 3.

They also showed the following:

Proposition 7. [34] For a positive integer n, the squared cycle graph S(n) is a family of graphs with a constant
metric dimension.

The following is the main result of this section. Note that Claim 1 in the following result was
essentially shown in Proposition 6.

Theorem 11. Let Γ be the squared cycle graph S(n); then,

β′(Γ) ≤
{

7, i f n ≡ 0, 2, 3( mod 4) with n ≥ 7;
12, i f n ≡ 1( mod 4) with n ≥ 13,
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and

β′(Γ) ≥
{

4, i f n ≡ 0, 2, 3( mod 4) with n ≥ 5;
δ, i f n ≡ 1( mod 4) with n ≥ 5.

where

δ =

{
4, i f β(Γ) > 2;
5, i f β(Γ) > 3.

Proof. Let Γ be the squared cycle graph S(n). We show the following claims to complete the proof.

Claim 1: There exists a resolving set R of order 3 in Γ.
Case 1: When n ≡ 0, 2, 3( mod 4) with n ≥ 7.

Based on the location of basis elements in Γ, we further divide this case into three subcases.

Subcase 1.1: When n ≡ 0( mod 4).

We can write n = 4`, ` ∈ Z+. We prove that R = {y1, y2, y3} resolves V(Γ). In order to show that
R resolves vertices of V(Γ), the representation of the vertices of V(Γ) with respect to the resolving set
is given.

CR(y2k) =


(k, k− 1, k− 1), 2 ≤ k ≤ `;
(`, `, `), k = `+ 1;
(2`− k + 1, 2`− k + 1, 2`− k + 2), `+ 2 ≤ k ≤ 2`.

and

CR(y2k+1) =

{
(k, k, k− 1), 2 ≤ k ≤ `;
(2`− k, 2`− k + 1, 2`− k + 1), `+ 1 ≤ k ≤ 2`− 1.

From the above discussion, it is shown that all vertices have a distinct representation for
n ≡ 0( mod 4), so β(G) ≤ 3.

Subcase 1.2: When n ≡ 2( mod 4).

It can be written as n = 4`+ 2, ` ∈ Z+.

CR(y2k) =

{
(k, k− 1, k− 1), 2 ≤ k ≤ `+1;
(2`− k + 2, 2`− k + 2, 2`− k + 3), `+ 2 ≤ k ≤ 2`+ 1.

and

CR(y2k+1) =


(k, k, k− 1), 2 ≤ k ≤ `;
(`, `+ 1, `), k = `+ 1;
(2`− k + 1, 2`− k + 2, 2`− k + 2), `+ 2 ≤ k ≤ 2`.

Again, all vertices in Γ have a distinct representation, which shows that β(Γ) ≤ 3 when
n ≡ 2( mod 4).

Subcase 1.3: When n ≡ 3( mod 4).

We can write n = 4`+ 3, ` ∈ Z+.

CR(y2k) =

{
(k, k− 1, k− 1), 2 ≤ k ≤ `+1;
(2`− k + 2, 2`− k + 3, 2`− k + 3), `+ 2 ≤ k ≤ 2`+ 1.

and

CR(y2k+1) =

{
(k, k, k− 1), 2 ≤ k ≤ `+ 1;
(2`− k + 2, 2`− k + 2, 2`− k + 3), `+ 2 ≤ k ≤ 2`+ 1.
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Once again, we can see that all vertices in Γ have a distinct representation, which shows that
β(Γ) ≤ 3 when n ≡ 3( mod 4).

Claim 2: Γ has a fault-tolerant resolving set of cardinality 7 when n ≥ 7.

We can write n = 4`, ` ≥ 2, ` ∈ Z+. Note that, in this case, R = {y1, y2, y3} is a resolving set
of Γ. We show that Γ is the graph in which there exists a fault-tolerant resolving set of cardinality 7.
From Figure 5, it can be observed that N[y1] = {y1, y2, y3, yn−1, yn}, N[y2] = {y1, y2, y3, y4, yn}, and
N[y3] = {y1, y2, y3, y4, y5}. Moreover, we find that λ(NΓ(y1)) = λ(NΓ(y2)) = λ(NΓ(y3)) = ∅. Thus,
by using Lemma 3, we find that R′ = {y1, y2, y3, y4, y5, yn−1, yn} is a fault-tolerant resolving set of Γ.
Thus, it is shown that a fault-tolerant resolving set of Γ with cardinality 7 exists when n ≥ 7.

Claim 1: There exists a resolving set R of order 4 in Γ.
Case 1: When n ≡ 1( mod 4).

Now, we can write n = 4`+ 1, ` ∈ Z+.

CR(y2k) =


(k, k− 1, k− 1), 2 ≤ k ≤ `;
(`, `, `), k = `+ 1;
(2`− k + 1, 2`− k + 2, 2`− k + 2), `+ 2 ≤ k ≤ 2`.

and

CR(y2k+1) =


(k, k, k− 1), 2 ≤ k ≤ `;
(`, `, `), k = `+ 1;
(2`− k + 1, 2`− k + 1, 2`− k + 2), `+ 2 ≤ k ≤ 2`.

For n ≡ 1( mod 4), the vertices y2`+2 and y2`+3 have the same representation. In order to have
distinct representations, we add y2`+2 to the resolving set R. Now, R′ = {y1, y2, y3, y2`+2} resolves
V(Γ). So, it is shown that β(Γ) ≤ 4 for n ≡ 1( mod 4).

Claim 2: When n ≥ 13, Γ has a fault-tolerant resolving set of cardinality 12. It can be written
n = 4` + 1, ` ≥ 3, ` ∈ Z+. Now, for this, R = {y1, y2, y3, y2`+2} is a resolving set
of Γ. We show that Γ has a fault-tolerant resolving set of cardinality 12. From Figure 5,
it can be observed that N[y1] = {y1, y2, y3, yn−1, yn}, N[y2] = {y1, y2, y3, y4, yn}, N[y3] =

{y1, y2, y3, y4, y5}, and N[y2`+2] = {y2`, y2`+1, y2`+2, y2`+3, y2`+4}. Moreover, we find that
λ(NΓ(y1)) = λ(NΓ(y2)) = λ(NΓ(y3)) = λ(NΓ(y2`+2)) = ∅. Thus, by using Lemma 3, we find
that R′ = {y1, y2, y3, y4, y5, yn−1, yn, y2`, y2`+1, y2`+2, y2`+3, y2`+4} is a fault-tolerant resolving set of Γ.
Thus, Γ is the graph in which there exists a fault-tolerant resolving set of cardinality 12 when n ≥ 13.
In view of Lemma 3 and Proposition 1, we find enough reasoning to propose the following conjecture
on the lower bound of the fault-tolerant metric dimension for the squared cycle graph S(n).

From the above discussion, Inequality, and Proposition 6, we find that

β′(Γ) ≥
{

4, i f n ≡ 0, 2, 3( mod 4) with n ≥ 5;
δ, i f n ≡ 1( mod 4) with n ≥ 5.

where

δ =

{
4, i f β(Γ) > 2;
5, i f β(Γ) > 3.

Because of Theorem 11, the following corollary is presented. It provides a fault-tolerant metric
dimension analogous to Proposition 7.

Corollary 3. The squared cycle graph S(n) is a family of graphs with a constant fault-tolerant metric dimension.
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Proof. By Theorem 11, we have

β′
(
S(n)

)
≤
{

7, i f n ≡ 0, 2, 3( mod 4) with n ≥ 7;
12, i f n ≡ 1( mod 4) with n ≥ 13,

and

β′(Γ) ≥
{

4, i f n ≡ 0, 2, 3( mod 4) with n ≥ 5;
δ, i f n ≡ 1( mod 4) with n ≥ 5.

where

δ =

{
4, i f β(Γ) > 2;
5, i f β(Γ) > 3.

This implies that the fault-tolerant metric dimension of S(n) does not depend on the defining
parameter n. Thus, by definition, S(n) is a family of graphs with a constant fault-tolerant
metric dimension.

In view of Lemma 3 and Proposition 6, the following conjecture is proposed.

Conjecture 3. Let Γ be the squared cycle graph S(n) such that n ≡ 0, 2, 3( mod 4), with n ≥ 7.
Then, β′(Γ) ≥ 7; thus, we have β′(Γ) = 7.

4. Concluding Remarks

This paper investigates the fault-tolerant metric dimension of graphs. We present certain
characterizations of graphs with some extreme values of the fault-tolerant metric dimension. A method
is presented to calculate the upper bounds on the fault-tolerant metric dimension of graphs. We
study fault-tolerant resolvability in three non-finite families of regular graphs and show that they
are the families of graphs with a constant fault-tolerant metric dimension. The following remark
shows a comparison between the upper bound produced by our method and the upper bound by
Hernando et al.

Remark 1. Note that the upper bound on the fault-tolerant metric dimension provided by Theorem 4 is always
crude. For example, if Γ ∈ {P(n), A(n)} or S(n), with n ≡ 0, 2, 3( mod 4), then by using β(Γ) = 3 in
Theorem 4, we obtain β′(Γ) ≤ 153, which is not interesting. In view of this fact, Lemma 3 always gives a much
better bound on β′(Γ).

Recently, Raza et al. [36] studied the fault-tolerant metric dimension of hexagonal, honeycomb,
and hex-derived networks. See [37] for a study of hexagonal and honeycomb networks. We conclude
the paper with some open problems.

Problem 1. In view of the characterizations of graphs with fault-tolerant metric dimension 2 and n− 1, the
following open problems are proposed.

(i) Characterize n-ordered graphs with fault-tolerant metric dimension 3.
(ii) Characterize n-ordered graphs with fault-tolerant metric dimension n− 2.

We also propose the following open problems:

(i) Study the fault-tolerant metric dimension of other interesting families of the regular graph, such as the
prism graphs, and the generalized Petersen graphs P(n, m), m > 2.

(ii) Investigate the fault-tolerant metric dimension of strongly regular graphs, such as the square grid graphs
and the triangular graphs.

(iii) In view of Raza et al. [36], study the fault-tolerant resolvability in other direct and multiplex interconnection
networks, such as the butterfly and Benes networks.
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(iv) Study the applicability of fault-tolerant resolvability in the optimal flow control of multiplex interconnection
networks; see, for example, [38–40] for a through study on multiplex networks.
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