

Article A Refinement of Schwarz–Pick Lemma for Higher Derivatives

Ern Gun Kwon¹, Jinkee Lee^{2,*}, Gun Kwon³ and Mi Hui Kim⁴

- ¹ Department of Mathematics Education, Andong National University, Andong 36729, Korea; egkwon@anu.ac.kr
- ² Department of Mathematics, Pusan National University, Busan 46241, Korea
- ³ Department of Mechanical Engineering, Graduate School, Yeungnam University, Gyeongsan 38541, Korea; gunbbang80kg@gmail.com
- ⁴ Department of Mathematics, Graduate School, Andong National University, Andong 36729, Korea; mihezzang@naver.com
- * Correspondence: jklee235@pusan.ac.kr

Received: 23 November 2018; Accepted: 10 January 2019; Published: 13 January 2019

Abstract: In this paper, a Schwarz–Pick estimate of a holomorphic self map *f* of the unit disc *D* having the expansion $f(w) = c_0 + c_n(w - z)^n + ...$ in a neighborhood of some *z* in *D* is given. This result is a refinement of the Schwarz–Pick lemma, which improves a previous result of Shinji Yamashita.

Keywords: Schwarz Lemma; maximum principle; Littlewood inequality

MSC: 30C80

1. Introduction

For the open unit disc *D* of the complex plane and the boundary ∂D of *D*, the following Schwarz–Pick lemma(see [1], Lemma 1.2) is well-known.

Theorem 1. Let $f : D \longrightarrow D$ be holomorphic and $z_0 \in D$. Then,

$$\left|\frac{f(z) - f(z_0)}{1 - \overline{f(z_0)}f(z)}\right| \leq \left|\frac{z - z_0}{1 - \overline{z_0}z}\right|, \quad z \in D,$$
(1)

and

$$\frac{|f'(z_0)|}{1-|f(z_0)|^2} \le \frac{1}{1-|z_0|^2}.$$
(2)

Equality in (1) holds at some point $z \neq z_0$ or equality in (2) holds if and only if

$$f(z) = c \frac{z-a}{1-\overline{a}z}, \quad z \in D$$
(3)

for some $c \in \partial D$ *and* $a \in D$ *.*

Among those interesting extensions of (2), there is a result of Shinji Yamashita(see [2], Theorem 1):

Theorem 2. Let f be a function holomorphic and bounded, |f| < 1, in D, and let $z \in D$. Suppose that

$$f(w) = c_0 + c_n (w - z)^n + c_{n+1} (w - z)^{n+1} + \dots$$

in a neighborhood of z, where $n \ge 1$ depends on z and $c_n = 0$ is possible. Then,

$$\frac{(1-|z|^2)^n |f^{(n)}(z)|}{n!(1-|f(z)|^2)} \le 1.$$
(4)

The inequality (4) is sharp in the sense that equality holds for the function

$$f(w) = e^{i\alpha} \left(\frac{w-z}{1-\bar{z}w}\right)^n (\alpha; a \text{ real constant})$$

of w.

For *f* holomorphic in *D*, $0 \le r < 1$, and $0 \le p \le \infty$, as it is commonly used we denote $M_p(r, f)$ by the *p*-mean of *f* on ∂D , that is,

$$M_{p}(r,f) = \begin{cases} \exp\left(\int_{-\pi}^{\pi} \log|f(re^{i\theta})|\frac{d\theta}{2\pi}\right) & \text{if } p = 0, \\ \left(\int_{-\pi}^{\pi} |f(re^{i\theta})|^{p}\frac{d\theta}{2\pi}\right)^{\frac{1}{p}} & \text{if } 0$$

If *f* is holomorphic, then $M_p(r, f)$ is an increasing function of $p : 0 \le p \le \infty$ as well as an increasing function of $r : 0 \le r < 1$ (see [3]).

For $a \in D$, let φ_a be defined by

$$\varphi_a(z) = rac{z+a}{1+ar{a}z}, \ z\in D.$$

 φ_a satisfies $\varphi_a(\varphi_{-a}(z)) = z$ for all $z \in D$. It is well-known that $\varphi_a(\partial D) = \partial D$ and that the set of automorphisms, i.e., bijective biholomorphic mappings, of *D* consists of the mappings of the form $\alpha \varphi_a(z)$, where $a \in D$ and $|\alpha| = 1$.

Extending (2) in terms of $M_p(r, f)$, there is another result of Shinji Yamashita(see [4], Theorem 2):

Theorem 3. *Let f be a function holomorphic and bounded,* |f| < 1*, in D and let* $0 \le p \le \infty$ *. Then*

$$\frac{(1-|w|^2)|f'(w)|}{1-|f(w)|^2} \le \frac{1}{r}M_p(r, f_w) \le 1$$
(5)

for all $w \in D$ and r : 0 < r < 1, where

$$f_w(z) = \frac{f(\frac{z+w}{1+wz}) - f(w)}{1 - \overline{f(w)}f(\frac{z+w}{1+wz})}, \quad z \in D.$$

If the equality $r^{-1}M_p(r, f_w) = 1$ holds in (5) for $w \in D$ and 0 < r < 1, then f is of the form (3).

Note that n = 1 in (4) reduces to (2) and that (5) refines (2). As the same manner, it is expected that there might be a refinement of Theorem 2 which reduces to Theorem 3 when n = 1. This is our objective of this note.

2. Result

The following is our corresponding result:

Theorem 4. Let f be a function holomorphic and bounded, |f| < 1, in D and let $z \in D$. If

$$f(w) = c_0 + c_n (w - z)^n + c_{n+1} (w - z)^{n+1} + \dots$$
(6)

in a neighborhood of z, then

$$\left|\frac{f(w) - f(z)}{1 - \overline{f(z)}f(w)}\right| \leq \left|\frac{w - z}{1 - \overline{z}w}\right|^n, \quad w \in D,$$
(7)

and

$$\frac{(1-|z|^2)^n |f^{(n)}(z)|}{n!(1-|f(z)|^2)} \le \frac{1}{r^n} M_p(r,f_z) \le 1$$
(8)

for all r : 0 < r < 1, and for all $p : 0 \le p \le \infty$, where

$$f_z(w) = \frac{f \circ \varphi_z(w) - f(z)}{1 - \overline{f(z)}f \circ \varphi_z(w)}, \quad w \in D.$$
(9)

Equality in (7) holds at some point $w \in D$, $w \neq z$ if and only if

$$f(w) = \frac{\alpha (\varphi_{-z}(w))^n + c_0}{1 + \alpha \overline{c_0} (\varphi_{-z}(w))^n}, \quad w \in D$$
(10)

with $|\alpha| = 1$.

Equality in the first inequality or in the second inequality of (8) holds for some r : 0 < r < 1 and p: 0 if and only if <math>f is of the form (10) (with $|\alpha| \le 1$ or $|\alpha| = 1$, respectively).

Remark 1. (1) The case n = 1 of Theorem 4 should reduce to Theorem 1. Comparing (3) and (10), there should exist $z' \in D$ and $\beta : |\beta| = 1$ for which

$$\frac{\alpha\varphi_{-z}(w) + c_0}{1 + \alpha\overline{c_0}\varphi_{-z}(w)} = \beta \frac{w - z'}{1 - \overline{z'}w}$$
(11)

for all $w \in D$. This can be verified as follows:

Since any automorphism, i.e., bijective holomorphic mapping, of D is of the form of the right-hand side of (11), it suffices to show that the left-hand side of (11), denote $\Phi(w)$, is an automorphism of D. That $\Phi(w)$ is holomorphic and into D is obvious. We show $\Phi(w)$ is bijective: If $\Phi(w_1) = \Phi(w_2)$, then $\varphi_{-z}(w_1) = \varphi_{-z}(w_2)$, and the injectivity of φ_{-z} shows $w_1 = w_2$. Thus, $\Phi(w)$ is injective. Next, for any $\zeta \in D$, by the surjectivity of φ_{c_0} , there exists $\eta \in D$ such that

$$\frac{\alpha\eta+c_0}{1+\alpha\bar{c_0}\eta}=\zeta.$$

For this η , there is $\xi \in D$ such that $\eta = \varphi_{-z}(\xi)$, whence $\Phi(w)$ is surjective. (2) Fix $z \in D$ and self-map f of D. Then, applying Littlewood's inequality (see [3,5,6]), it follows that

$$\left|\frac{f(w) - f(z)}{1 - \overline{f(z)}f(w)}\right| \le \prod_{j} \left\{ |z_j| : f\left(\frac{w + z_j}{1 + \overline{z}_j w}\right) = f(z) \right\} = \prod_{f(z_j) = f(z)} \left|\frac{w - z_j}{1 - \overline{z}j w}\right|,\tag{12}$$

with equality holding only if f is an inner function. Equation (7) follows directly from (12).

In addition, the inequality

$$\frac{(1-|z|^2)^n |f^{(n)}(z)|}{n!(1-|f(z)|^2)} \le 1$$

of (8) can be obtained as a one stroke limit from (7):

$$1 \ge \left| \frac{f(w) - f(z)}{1 - \overline{f(z)}f(w)} \right| / \left| \frac{w - z}{1 - \overline{z}w} \right|^n = \left| \frac{f(w) - f(z)}{(w - z)^n} \right| \left| \frac{(1 - \overline{z}w)^n}{1 - \overline{f(z)}f(w)} \right| \\ \longrightarrow \frac{|f^{(n)}(z)|(1 - |z|^2)^n}{n!(1 - |f(z)|^2)}$$

as $w \rightarrow z$ (by applying L'Hospital's rule).

The point of Theorem 4 lies in its connection with $M_p(r, \cdot)$ and in clarifying the condition of equality to make Yamashita type theorem complete.

After proving Theorem 4 in Section 3, applications of Theorem 4 to some coefficient problems will be given in Section 4.

3. Proof of Theorem 4

We may assume $c_n \neq 0$. (7) can be expressed as

$$|\varphi_{-f(z)} \circ f(w)| \le |\varphi_{-z}(w)|^n, \quad w \in D.$$

By (6), f(w) - f(z) has a zero of order *n* at w = z so that

$$\frac{\varphi_{-f(z)} \circ f(w)}{\varphi_{-z}(w)^n}, \quad w \in D$$
(13)

is holomorphic in *D* whose modulus at $w \in \partial D$ is not greater than 1, so that the maximum principle gives (7).

Next, to verify inequality (8), take $\delta > 0$ such that (6) holds for $w : |w - z| < \delta$. Then, by (6),

$$f \circ \varphi_{z}(w) - f(z) = c_{n}(\varphi_{z}(w) - z)^{n} + \dots$$

= $c_{n} \left(\frac{w}{1 + \overline{z}w}\right)^{n} (1 - |z|^{2})^{n} + O(w^{n+1})$ (14)

for $w : |w| < \frac{\delta}{1+|z|}$. This is because

$$|w| < rac{\delta}{1+|z|} \implies |w| < rac{\delta|1+ar{z}w|}{1-|z|^2} \implies |arphi_z(w)-z| < \delta.$$

Thus, $f_z(w)$ defined by (9) has a zero of order *n* at w = 0. Hence,

$$h(w) = \frac{1}{w^n} f_z(w), \quad w \in D,$$
(15)

is holomorphic in *D*. Since $h(0) \neq 0$ in a neighborhood of 0, $\log |h|$ is harmonic in the neighborhood, hence there exists r_0 such that

$$|h(0)| = \exp\left(\int_{-\pi}^{\pi} \log|h(re^{i\theta})|\frac{d\theta}{2\pi}\right)$$
(16)

for $r : r < r_0$.

On the other hand, by (15),

$$n!h(0) = \frac{d^n}{dw^n}(w^n h(w))\Big|_{w=0} = \frac{d^n}{dw^n} f_z(w)\Big|_{w=0}.$$
(17)

In order to calculate the final term of (17), let's put $F(w) = f \circ \varphi_z(w) - f(z)$ and $G(w) = 1 - \overline{f(z)}f \circ \varphi_z(w)$. Then,

$$\frac{d^n}{dw^n} f_z(w)\Big|_{w=0} = \sum_{j=0}^n \binom{n}{j} F^{(j)}(0) \ (G^{-1})^{(n-j)}(0).$$

By (14),

$$F^{(j)}(0) = \begin{cases} 0, & \text{if } j < n, \\ c_n n! (1 - |z|^2)^n, & \text{if } j = n, \end{cases}$$

so that

$$\left. \frac{d^n}{dw^n} f_z(w) \right|_{w=0} = \frac{F^{(n)}(0)}{G(0)} = \frac{c_n n! (1-|z|^2)^n}{1-|f(z)|^2},$$

whence

$$h(0) = \frac{c_n (1 - |z|^2)^n}{1 - |f(z)|^2}.$$
(18)

Noting from (6) that $c_n = \frac{f^{(n)}(z)}{n!}$, we have, by (15), (16) and (18),

$$\frac{(1-|z|^2)^n \left| f^{(n)}(z) \right|}{n!(1-|f(z)|^2)} = \exp\left(\int_{-\pi}^{\pi} \log \left| \frac{1}{r^n} f_z(re^{i\theta}) \right| \frac{d\theta}{2\pi} \right) = \frac{1}{r^n} M_0(r, f_z)$$
(19)

for $r < r_0$.

Now, the first inequality of (8) follows from the fact that $M_p(r,h)$ is an increasing function of $p: 0 \le p \le \infty$ and also an increasing function of r: 0 < r < 1.

In addition, since $M_p(r,h) \leq M_{\infty}(r,h)$ and |h| < 1 by the maximum principle, the second inequality of (8) follows.

We next check the conditions of equality. Elementary calculation shows that

$$\frac{\varphi_{-f(z)} \circ f(w)}{\varphi_{-z}(w)^n} = \alpha \iff f(w) = \frac{\alpha \left(\varphi_{-z}(w)\right)^n + c_0}{1 + \alpha \overline{c_0} \left(\varphi_{-z}(w)\right)^n} \iff f_z(w) = \alpha w^n.$$
(20)

Thus, if equality in (7) holds, at some point $w \in D$, $w \neq z$; then, (13) is a constant function of modulus 1 by virtue of the maximum principle, which gives (10) with $|\alpha| = 1$ by (20). To see that f(w) of (10) with $|\alpha| = 1$ gives the equality in (7) is straightforward also by (20).

If, for some p, 0 , and for some <math>r : 0 < r < 1 the first inequality of (8) becomes equality, then, by (19), $M_0(r,h) = M_q(r,h)$ for $0 \le q \le p$, so that $|h(r\zeta)|$ =constant, a.e. $\zeta \in \partial D$. Since h is holomorphic and $|h(0)| = |h(\rho\zeta)|$ =constant, a.e. $\zeta \in \partial D$ for $\rho \le r$, it follows that h is a constant function. Letting $h = \alpha$ with $|\alpha| \le 1$ and solving this, as in (20), gives (10).

Finally, suppose the second inequality of (8) becomes equal for some $\rho_0 : 0 < \rho_0 < 1$ so that $M_p(\rho_0, h) = \frac{1}{\rho^n} M_p(\rho_0, f_z) = 1$. Then, $M_p(\rho, h) = 1$ for $\rho : \rho_0 \le \rho < 1$. Since $\log M_p(\rho, h)$ is a convex function of ρ (see [3]) and $\log M_p(\rho, h) = 0$ for $\rho_0 \le \rho < 1$, it follows that $\log M_p(\rho, h) \ge 0$ for $\rho \le \rho_0$ whence $\log M_p(\rho, h) = 0$ for all $\rho : 0 < \rho < 1$. Thus,

$$h(0) = \lim_{p \to 0} M_p(\rho, f) = \lim_{p \to 0} e^{\log M_p(\rho, h)} = 1.$$

Since *h* maps *D* into *D*, this forces, by the maximum principle, that h(w) is a constant, $h(w) = \alpha$, with $|\alpha| = 1$. Hence, (20) gives (10).

Conversely, by (20), f(w) of (10) with $|\alpha| \le 1$ makes h in (15) constant, so that the two inequalities in (8) become equalities.

4. Applications

Theorem 4 immediately gives the following estimate:

Corollary 1. Let f be a function holomorphic and bounded, |f| < 1, in D and let $z \in D$. If

$$f(w) = c_0 + c_n (w - z)^n + c_{n+1} (w - z)^{n+1} + \dots$$

in a neighborhood of z, then

$$|c_n| \leq \frac{1 - |c_0|^2}{r^n (1 - |z|^2)^n} M_p(r, f_z) \leq \frac{1 - |c_0|^2}{(1 - |z|^2)^n}$$
(21)

for all r : 0 < r < 1, and for all $p : 0 \le p \le \infty$, where f_z is defined by (9).

Equality in the first inequality or in the second inequality of (21) holds for some r : 0 < r < 1 and p: 0 if and only if <math>f is of the form (10) (with $|\alpha| \le 1$ or $|\alpha| = 1$, respectively).

For the case z = 0, we can also obtain

Corollary 2. Let f be a function holomorphic and bounded, |f| < 1, in D and let $z \in D$. If

$$f(w) = c_0 + c_1 w + c_2 w^2 + \dots + c_n w^n + \dots, \quad w \in D,$$

then

$$|c_n| \leq (1 - |c_0|^2) \frac{M_p(r, g_0)}{r^n} \leq 1 - |c_0|^2$$
 (22)

for all r : 0 < r < 1, and for all $p : 0 \le p \le \infty$, where

$$g_0(w) = \frac{g(w) - g(0)}{1 - \overline{g(0)}g(w)}, \quad w \in D$$

with

$$g(w) = \frac{1}{n} \sum_{k=1}^{n} f(e^{i2\pi k/n}w), \quad w \in D.$$

Equality in the first inequality or in the second inequality of (22) holds for some r : 0 < r < 1 and p : 0 if and only if g is of the form

$$g(w) = \frac{\alpha w^n + c_0}{1 + \alpha \overline{c_0} w^n}, \quad w \in D$$
(23)

(with $|\alpha| \leq 1$ or $|\alpha| = 1$, respectively).

Proof of Corollary 2. As was frequently used (see [7] for example), we make use of the facts that $\sum_{k=1}^{n} e^{i2\pi jk/n} = n$ if *j* is a multiple of *n*, and 0 if *j* is otherwise. Noting that

$$g(w) = \frac{1}{n} \sum_{k=1}^{n} f(e^{i2\pi k/n} w) = c_0 + c_n w^n + c_{2n} w^{2n} + \cdots, \quad w \in D$$

is holomorphic and |g| < 1 in *D*, by Corollary 1 with z = 0, we have

$$|c_n| \leq \frac{1-|c_0|^2}{r^n} M_p(r,g_0) \leq 1-|c_0|^2$$

for all r : 0 < r < 1, and for all $p : 0 \le p \le \infty$.

In addition, by Corollary 1, equality in the first inequality or in the second inequality of (22) holds for some r : 0 < r < 1 and p : 0 if and only if <math>g is of the form (23) (with $|\alpha| \le 1$ or $|\alpha| = 1$, respectively). \Box

5. Conclusions

With imperative applications to particular situations, various forms of Schwarz Lemma have been called for. In this paper, we presented Schwarz-Pick Lemma for higher derivatives in connection with p-mean $M_p(r, f)$ (see Theorem 4). It refined a previous result of Shinji Yamashita and clarified the condition of equality. As an immediate consequence, the result could be applied to refine well-known estimates for *n*-th Taylor coefficient of holomorphic self maps of *D* (see Corollary 1 and 2). We are expecting its further extensions and applications.

Author Contributions: Supervision, E.G.K.; funding acquisition, J.L. All authors contributed to each section. All the authors read and approved the final manuscript.

Funding: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017R1E1A1A03070738).

Acknowledgments: The authors would like to thank the anonymous reviewers for their helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Garnett, J.B. Bounded Analytic Functions; Academic Press, Inc.: San Diego, CA, USA, 1981.
- Yamashita, S. The higher derivatives of functions bounded in various senses. *Bull. Aust. Math. Soc.* 1986, 34, 321–334. [CrossRef]
- 3. Duren, P.L. *Theory of H^p Spaces*; Academic Press: New York, NY, USA, 1970.
- 4. Yamashita, S. Sur le lemme de Schwarz. Can. Math. Bull. 1985, 28, 233–236. [CrossRef]
- Cowen, C.C.; Maccluer, B.D. Composition Operators on Spaces of Analytic Functions; CRC Press: Boca Raton, FL, USA, 1994.
- 6. Littlewood, J.E. Lectures on the Theory of Functions; Oxford University Press: Oxford, UK, 1944.
- 7. Dai, S.; Pan, Y. Note on Schwarz–Pick estimates for bounded and positive real part analytic functions. *Proc. Am. Math. Soc.* **2007**, 136, 635–640. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).