Article

A Refinement of Schwarz-Pick Lemma for Higher Derivatives

Ern Gun Kwon ${ }^{1}$, Jinkee Lee ${ }^{2, *}$, Gun Kwon ${ }^{3}$ and Mi Hui Kim ${ }^{4}$
1 Department of Mathematics Education, Andong National University, Andong 36729, Korea; egkwon@anu.ac.kr
2 Department of Mathematics, Pusan National University, Busan 46241, Korea
3 Department of Mechanical Engineering, Graduate School, Yeungnam University, Gyeongsan 38541, Korea; gunbbang80kg@gmail.com
4 Department of Mathematics, Graduate School, Andong National University, Andong 36729, Korea; mihezzang@naver.com
* Correspondence: jklee235@pusan.ac.kr

Received: 23 November 2018; Accepted: 10 January 2019; Published: 13 January 2019
Abstract: In this paper, a Schwarz-Pick estimate of a holomorphic self map f of the unit disc D having the expansion $f(w)=c_{0}+c_{n}(w-z)^{n}+\ldots$ in a neighborhood of some z in D is given. This result is a refinement of the Schwarz-Pick lemma, which improves a previous result of Shinji Yamashita.

Keywords: Schwarz Lemma; maximum principle; Littlewood inequality
MSC: 30C80

1. Introduction

For the open unit disc D of the complex plane and the boundary ∂D of D, the following Schwarz-Pick lemma(see [1], Lemma 1.2) is well-known.

Theorem 1. Let $f: D \longrightarrow D$ be holomorphic and $z_{0} \in D$. Then,

$$
\begin{equation*}
\left|\frac{f(z)-f\left(z_{0}\right)}{1-\overline{f\left(z_{0}\right)} f(z)}\right| \leq\left|\frac{z-z_{0}}{1-\overline{z_{0}} z}\right|, \quad z \in D, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left|f^{\prime}\left(z_{0}\right)\right|}{1-\left|f\left(z_{0}\right)\right|^{2}} \leq \frac{1}{1-\left|z_{0}\right|^{2}} . \tag{2}
\end{equation*}
$$

Equality in (1) holds at some point $z \neq z_{0}$ or equality in (2) holds if and only if

$$
\begin{equation*}
f(z)=c \frac{z-a}{1-\bar{a} z}, \quad z \in D \tag{3}
\end{equation*}
$$

for some $c \in \partial D$ and $a \in D$.
Among those interesting extensions of (2), there is a result of Shinji Yamashita(see [2], Theorem 1):
Theorem 2. Let f be a function holomorphic and bounded, $|f|<1$, in D, and let $z \in D$. Suppose that

$$
f(w)=c_{0}+c_{n}(w-z)^{n}+c_{n+1}(w-z)^{n+1}+\ldots
$$

in a neighborhood of z, where $n \geq 1$ depends on z and $c_{n}=0$ is possible. Then,

$$
\begin{equation*}
\frac{\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right|}{n!\left(1-|f(z)|^{2}\right)} \leq 1 \tag{4}
\end{equation*}
$$

The inequality (4) is sharp in the sense that equality holds for the function

$$
f(w)=e^{i \alpha}\left(\frac{w-z}{1-\bar{z} w}\right)^{n}(\alpha ; \text { a real constant })
$$

of w.
For f holomorphic in $D, 0 \leq r<1$, and $0 \leq p \leq \infty$, as it is commonly used we denote $M_{p}(r, f)$ by the p-mean of f on ∂D, that is,

$$
M_{p}(r, f)= \begin{cases}\exp \left(\int_{-\pi}^{\pi} \log \left|f\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}\right) & \text { if } \quad p=0 \\ \left(\int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}\right)^{\frac{1}{p}} & \text { if } \quad 0<p<\infty \\ \sup _{|z|=r}|f(z)| & \text { if } \quad p=\infty\end{cases}
$$

If f is holomorphic, then $M_{p}(r, f)$ is an increasing function of $p: 0 \leq p \leq \infty$ as well as an increasing function of $r: 0 \leq r<1$ (see [3]).

For $a \in D$, let φ_{a} be defined by

$$
\varphi_{a}(z)=\frac{z+a}{1+\bar{a} z}, \quad z \in D
$$

φ_{a} satisfies $\varphi_{a}\left(\varphi_{-a}(z)\right)=z$ for all $z \in D$. It is well-known that $\varphi_{a}(\partial D)=\partial D$ and that the set of automorphisms, i.e., bijective biholomorphic mappings, of D consists of the mappings of the form $\alpha \varphi_{a}(z)$, where $a \in D$ and $|\alpha|=1$.

Extending (2) in terms of $M_{p}(r, f)$, there is another result of Shinji Yamashita(see [4], Theorem 2):
Theorem 3. Let f be a function holomorphic and bounded, $|f|<1$, in D and let $0 \leq p \leq \infty$. Then

$$
\begin{equation*}
\frac{\left(1-|w|^{2}\right)\left|f^{\prime}(w)\right|}{1-|f(w)|^{2}} \leq \frac{1}{r} M_{p}\left(r, f_{w}\right) \leq 1 \tag{5}
\end{equation*}
$$

for all $w \in D$ and $r: 0<r<1$, where

$$
f_{w}(z)=\frac{f\left(\frac{z+w}{1+\bar{w} z}\right)-f(w)}{1-\overline{f(w)} f\left(\frac{z+w}{1+\bar{w} z}\right)}, \quad z \in D
$$

If the equality $r^{-1} M_{p}\left(r, f_{w}\right)=1$ holds in (5) for $w \in D$ and $0<r<1$, then f is of the form (3).
Note that $n=1$ in (4) reduces to (2) and that (5) refines (2). As the same manner, it is expected that there might be a refinement of Theorem 2 which reduces to Theorem 3 when $n=1$. This is our objective of this note.

2. Result

The following is our corresponding result:

Theorem 4. Let f be a function holomorphic and bounded, $|f|<1$, in D and let $z \in D$. If

$$
\begin{equation*}
f(w)=c_{0}+c_{n}(w-z)^{n}+c_{n+1}(w-z)^{n+1}+\ldots \tag{6}
\end{equation*}
$$

in a neighborhood of z, then

$$
\begin{equation*}
\left|\frac{f(w)-f(z)}{1-\overline{f(z)} f(w)}\right| \leq\left|\frac{w-z}{1-\bar{z} w}\right|^{n}, \quad w \in D \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right|}{n!\left(1-|f(z)|^{2}\right)} \leq \frac{1}{r^{n}} M_{p}\left(r, f_{z}\right) \leq 1 \tag{8}
\end{equation*}
$$

for all $r: 0<r<1$, and for all $p: 0 \leq p \leq \infty$, where

$$
\begin{equation*}
f_{z}(w)=\frac{f \circ \varphi_{z}(w)-f(z)}{1-\overline{f(z)} f \circ \varphi_{z}(w)}, \quad w \in D . \tag{9}
\end{equation*}
$$

Equality in (7) holds at some point $w \in D, w \neq z$ if and only if

$$
\begin{equation*}
f(w)=\frac{\alpha\left(\varphi_{-z}(w)\right)^{n}+c_{0}}{1+\alpha \overline{c_{0}}\left(\varphi_{-z}(w)\right)^{n}}, \quad w \in D \tag{10}
\end{equation*}
$$

with $|\alpha|=1$.
Equality in the first inequality or in the second inequality of (8) holds for some r : $0<r<1$ and $p: 0<p \leq \infty$ if and only if f is of the form (10) (with $|\alpha| \leq 1$ or $|\alpha|=1$, respectively).

Remark 1. (1) The case $n=1$ of Theorem 4 should reduce to Theorem 1. Comparing (3) and (10), there should exist $z^{\prime} \in D$ and $\beta:|\beta|=1$ for which

$$
\begin{equation*}
\frac{\alpha \varphi_{-z}(w)+c_{0}}{1+\alpha \overline{c_{0}} \varphi_{-z}(w)}=\beta \frac{w-z^{\prime}}{1-\overline{z^{\prime}} w} \tag{11}
\end{equation*}
$$

for all $w \in D$. This can be verified as follows:
Since any automorphism, i.e., bijective holomorphic mapping, of D is of the form of the right-hand side of (11), it suffices to show that the left-hand side of (11), denote $\Phi(w)$, is an automorphism of D. That $\Phi(w)$ is holomorphic and into D is obvious. We show $\Phi(w)$ is bijective: If $\Phi\left(w_{1}\right)=\Phi\left(w_{2}\right)$, then $\varphi_{-z}\left(w_{1}\right)=\varphi_{-z}\left(w_{2}\right)$, and the injectivity of φ_{-z} shows $w_{1}=w_{2}$. Thus, $\Phi(w)$ is injective. Next, for any $\zeta \in D$, by the surjectivity of $\varphi_{c_{0}}$, there exists $\eta \in D$ such that

$$
\frac{\alpha \eta+c_{0}}{1+\alpha \overline{c_{0} \eta}}=\zeta .
$$

For this η, there is $\xi \in D$ such that $\eta=\varphi_{-z}(\xi)$, whence $\Phi(w)$ is surjective.
(2) Fix $z \in D$ and self-map f of D. Then, applying Littlewood's inequality (see [3,5,6]), it follows that

$$
\begin{equation*}
\left|\frac{f(w)-f(z)}{1-\overline{f(z)} f(w)}\right| \leq \Pi_{j}\left\{\left|z_{j}\right|: f\left(\frac{w+z_{j}}{1+\bar{z}_{j} w}\right)=f(z)\right\}=\prod_{f\left(z_{j}\right)=f(z)}\left|\frac{w-z_{j}}{1-\bar{z} j w}\right| \tag{12}
\end{equation*}
$$

with equality holding only if f is an inner function. Equation (7) follows directly from (12).
In addition, the inequality

$$
\frac{\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right|}{n!\left(1-|f(z)|^{2}\right)} \leq 1
$$

of (8) can be obtained as a one stroke limit from (7):

$$
\begin{aligned}
1 \geq\left|\frac{f(w)-f(z)}{1-\overline{f(z)} f(w)}\right| /\left|\frac{w-z}{1-\bar{z} w}\right|^{n} & =\left|\frac{f(w)-f(z)}{(w-z)^{n}}\right|\left|\frac{(1-\bar{z} w)^{n}}{1-\overline{f(z)} f(w)}\right| \\
& \longrightarrow \frac{\left|f^{(n)}(z)\right|\left(1-|z|^{2}\right)^{n}}{n!\left(1-|f(z)|^{2}\right)}
\end{aligned}
$$

as $w \rightarrow z$ (by applying L'Hospital's rule).
The point of Theorem 4 lies in its connection with $M_{p}(r, \cdot)$ and in clarifying the condition of equality to make Yamashita type theorem complete.

After proving Theorem 4 in Section 3, applications of Theorem 4 to some coefficient problems will be given in Section 4.

3. Proof of Theorem 4

We may assume $c_{n} \neq 0$. (7) can be expressed as

$$
\left|\varphi_{-f(z)} \circ f(w)\right| \leq\left|\varphi_{-z}(w)\right|^{n}, \quad w \in D
$$

By (6), $f(w)-f(z)$ has a zero of order n at $w=z$ so that

$$
\begin{equation*}
\frac{\varphi_{-f(z)} \circ f(w)}{\varphi_{-z}(w)^{n}}, \quad w \in D \tag{13}
\end{equation*}
$$

is holomorphic in D whose modulus at $w \in \partial D$ is not greater than 1 , so that the maximum principle gives (7).

Next, to verify inequality (8), take $\delta>0$ such that (6) holds for $w:|w-z|<\delta$. Then, by (6),

$$
\begin{align*}
f \circ \varphi_{z}(w)-f(z) & =c_{n}\left(\varphi_{z}(w)-z\right)^{n}+\ldots \\
& =c_{n}\left(\frac{w}{1+\bar{z} w}\right)^{n}\left(1-|z|^{2}\right)^{n}+O\left(w^{n+1}\right) \tag{14}
\end{align*}
$$

for $w:|w|<\frac{\delta}{1+|z|}$. This is because

$$
|w|<\frac{\delta}{1+|z|} \Longrightarrow|w|<\frac{\delta|1+\bar{z} w|}{1-|z|^{2}} \Longrightarrow\left|\varphi_{z}(w)-z\right|<\delta .
$$

Thus, $f_{z}(w)$ defined by (9) has a zero of order n at $w=0$. Hence,

$$
\begin{equation*}
h(w)=\frac{1}{w^{n}} f_{z}(w), \quad w \in D \tag{15}
\end{equation*}
$$

is holomorphic in D. Since $h(0) \neq 0$ in a neighborhood of $0, \log |h|$ is harmonic in the neighborhood, hence there exists r_{0} such that

$$
\begin{equation*}
|h(0)|=\exp \left(\int_{-\pi}^{\pi} \log \left|h\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}\right) \tag{16}
\end{equation*}
$$

for $r: r<r_{0}$.
On the other hand, by (15),

$$
\begin{equation*}
n!h(0)=\left.\frac{d^{n}}{d w^{n}}\left(w^{n} h(w)\right)\right|_{w=0}=\left.\frac{d^{n}}{d w^{n}} f_{z}(w)\right|_{w=0} \tag{17}
\end{equation*}
$$

In order to calculate the final term of (17), let's put $F(w)=f \circ \varphi_{z}(w)-f(z)$ and $G(w)=$ $1-\overline{f(z)} f \circ \varphi_{z}(w)$. Then,

$$
\left.\frac{d^{n}}{d w^{n}} f_{z}(w)\right|_{w=0}=\sum_{j=0}^{n}\binom{n}{j} F^{(j)}(0)\left(G^{-1}\right)^{(n-j)}(0)
$$

By (14),

$$
F^{(j)}(0)=\left\{\begin{array}{cl}
0, & \text { if } j<n \\
c_{n} n!\left(1-|z|^{2}\right)^{n}, & \text { if } j=n
\end{array}\right.
$$

so that

$$
\left.\frac{d^{n}}{d w^{n}} f_{z}(w)\right|_{w=0}=\frac{F^{(n)}(0)}{G(0)}=\frac{c_{n} n!\left(1-|z|^{2}\right)^{n}}{1-|f(z)|^{2}}
$$

whence

$$
\begin{equation*}
h(0)=\frac{c_{n}\left(1-|z|^{2}\right)^{n}}{1-|f(z)|^{2}} \tag{18}
\end{equation*}
$$

Noting from (6) that $c_{n}=\frac{f^{(n)}(z)}{n!}$, we have, by (15), (16) and (18),

$$
\begin{equation*}
\frac{\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right|}{n!\left(1-|f(z)|^{2}\right)}=\exp \left(\int_{-\pi}^{\pi} \log \left|\frac{1}{r^{n}} f_{z}\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}\right)=\frac{1}{r^{n}} M_{0}\left(r, f_{z}\right) \tag{19}
\end{equation*}
$$

for $r<r_{0}$.
Now, the first inequality of (8) follows from the fact that $M_{p}(r, h)$ is an increasing function of $p: 0 \leq p \leq \infty$ and also an increasing function of $r: 0<r<1$.

In addition, since $M_{p}(r, h) \leq M_{\infty}(r, h)$ and $|h|<1$ by the maximum principle, the second inequality of (8) follows.

We next check the conditions of equality. Elementary calculation shows that

$$
\begin{equation*}
\frac{\varphi_{-f(z)} \circ f(w)}{\varphi_{-z}(w)^{n}}=\alpha \Longleftrightarrow f(w)=\frac{\alpha\left(\varphi_{-z}(w)\right)^{n}+c_{0}}{1+\alpha \overline{c_{0}}\left(\varphi_{-z}(w)\right)^{n}} \Longleftrightarrow f_{z}(w)=\alpha w^{n} \tag{20}
\end{equation*}
$$

Thus, if equality in (7) holds, at some point $w \in D, w \neq z$; then, (13) is a constant function of modulus 1 by virtue of the maximum principle, which gives (10) with $|\alpha|=1$ by (20). To see that $f(w)$ of (10) with $|\alpha|=1$ gives the equality in (7) is straightforward also by (20).

If, for some $p, 0<p \leq \infty$, and for some $r: 0<r<1$ the first inequality of (8) becomes equality, then, by (19), $M_{0}(r, h)=M_{q}(r, h)$ for $0 \leq q \leq p$, so that $|h(r \zeta)|=$ constant, a.e. $\zeta \in \partial D$. Since h is holomorphic and $|h(0)|=|h(\rho \zeta)|=$ constant, a.e. $\zeta \in \partial D$ for $\rho \leq r$, it follows that h is a constant function. Letting $h=\alpha$ with $|\alpha| \leq 1$ and solving this, as in (20), gives (10).

Finally, suppose the second inequality of (8) becomes equal for some $\rho_{0}: 0<\rho_{0}<1$ so that $M_{p}\left(\rho_{0}, h\right)=\frac{1}{\rho^{n}} M_{p}\left(\rho_{0}, f_{z}\right)=1$. Then, $M_{p}(\rho, h)=1$ for $\rho: \rho_{0} \leq \rho<1$. Since $\log M_{p}(\rho, h)$ is a convex function of ρ (see [3]) and $\log M_{p}(\rho, h)=0$ for $\rho_{0} \leq \rho<1$, it follows that $\log M_{p}(\rho, h) \geq 0$ for $\rho \leq \rho_{0}$ whence $\log M_{p}(\rho, h)=0$ for all $\rho: 0<\rho<1$. Thus,

$$
h(0)=\lim _{p \rightarrow 0} M_{p}(\rho, f)=\lim _{p \rightarrow 0} e^{\log M_{p}(\rho, h)}=1
$$

Since h maps D into D, this forces, by the maximum principle, that $h(w)$ is a constant, $h(w)=\alpha$, with $|\alpha|=1$. Hence, (20) gives (10).

Conversely, by (20), $f(w)$ of (10) with $|\alpha| \leq 1$ makes h in (15) constant, so that the two inequalities in (8) become equalities.

4. Applications

Theorem 4 immediately gives the following estimate:
Corollary 1. Let f be a function holomorphic and bounded, $|f|<1$, in D and let $z \in D$. If

$$
f(w)=c_{0}+c_{n}(w-z)^{n}+c_{n+1}(w-z)^{n+1}+\ldots
$$

in a neighborhood of z, then

$$
\begin{equation*}
\left|c_{n}\right| \leq \frac{1-\left|c_{0}\right|^{2}}{r^{n}\left(1-|z|^{2}\right)^{n}} M_{p}\left(r, f_{z}\right) \leq \frac{1-\left|c_{0}\right|^{2}}{\left(1-|z|^{2}\right)^{n}} \tag{21}
\end{equation*}
$$

for all $r: 0<r<1$, and for all $p: 0 \leq p \leq \infty$, where f_{z} is defined by (9).
Equality in the first inequality or in the second inequality of (21) holds for some $r: 0<r<1$ and $p: 0<p \leq \infty$ if and only if f is of the form (10) (with $|\alpha| \leq 1$ or $|\alpha|=1$, respectively).

For the case $z=0$, we can also obtain
Corollary 2. Let f be a function holomorphic and bounded, $|f|<1$, in D and let $z \in D$. If

$$
f(w)=c_{0}+c_{1} w+c_{2} w^{2}+\cdots+c_{n} w^{n}+\cdots, \quad w \in D
$$

then

$$
\begin{equation*}
\left|c_{n}\right| \leq\left(1-\left|c_{0}\right|^{2}\right) \frac{M_{p}\left(r, g_{0}\right)}{r^{n}} \leq 1-\left|c_{0}\right|^{2} \tag{22}
\end{equation*}
$$

for all $r: 0<r<1$, and for all $p: 0 \leq p \leq \infty$, where

$$
g_{0}(w)=\frac{g(w)-g(0)}{1-\overline{g(0)} g(w)}, \quad w \in D
$$

with

$$
g(w)=\frac{1}{n} \sum_{k=1}^{n} f\left(e^{i 2 \pi k / n} w\right), \quad w \in D
$$

Equality in the first inequality or in the second inequality of (22) holds for some r : $0<r<1$ and $p: 0<p \leq \infty$ if and only if g is of the form

$$
\begin{equation*}
g(w)=\frac{\alpha w^{n}+c_{0}}{1+\alpha \overline{c_{0}} w^{n}}, \quad w \in D \tag{23}
\end{equation*}
$$

(with $|\alpha| \leq 1$ or $|\alpha|=1$, respectively).
Proof of Corollary 2. As was frequently used (see [7] for example), we make use of the facts that $\sum_{k=1}^{n} e^{i 2 \pi j k / n}=n$ if j is a multiple of n, and 0 if j is otherwise. Noting that

$$
g(w)=\frac{1}{n} \sum_{k=1}^{n} f\left(e^{i 2 \pi k / n} w\right)=c_{0}+c_{n} w^{n}+c_{2 n} w^{2 n}+\cdots, \quad w \in D
$$

is holomorphic and $|g|<1$ in D, by Corollary 1 with $z=0$, we have

$$
\left|c_{n}\right| \leq \frac{1-\left|c_{0}\right|^{2}}{r^{n}} M_{p}\left(r, g_{0}\right) \leq 1-\left|c_{0}\right|^{2}
$$

for all $r: 0<r<1$, and for all $p: 0 \leq p \leq \infty$.

In addition, by Corollary 1, equality in the first inequality or in the second inequality of (22) holds for some $r: 0<r<1$ and $p: 0<p \leq \infty$ if and only if g is of the form (23) (with $|\alpha| \leq 1$ or $|\alpha|=1$, respectively).

5. Conclusions

With imperative applications to particular situations, various forms of Schwarz Lemma have been called for. In this paper, we presented Schwarz-Pick Lemma for higher derivatives in connection with p-mean $M_{p}(r, f)$ (see Theorem 4). It refined a previous result of Shinji Yamashita and clarified the condition of equality. As an immediate consequence, the result could be applied to refine well-known estimates for n-th Taylor coefficient of holomorphic self maps of D (see Corollary 1 and 2). We are expecting its further extensions and applications.

Author Contributions: Supervision, E.G.K.; funding acquisition, J.L. All authors contributed to each section. All the authors read and approved the final manuscript.

Funding: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017R1E1A1A03070738).

Acknowledgments: The authors would like to thank the anonymous reviewers for their helpful comments.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Garnett, J.B. Bounded Analytic Functions; Academic Press, Inc.: San Diego, CA, USA, 1981.
2. Yamashita, S. The higher derivatives of functions bounded in various senses. Bull. Aust. Math. Soc. 1986, 34, 321-334. [CrossRef]
3. Duren, P.L. Theory of H^{p} Spaces; Academic Press: New York, NY, USA, 1970.
4. Yamashita, S. Sur le lemme de Schwarz. Can. Math. Bull. 1985, 28, 233-236. [CrossRef]
5. Cowen, C.C.; Maccluer, B.D. Composition Operators on Spaces of Analytic Functions; CRC Press: Boca Raton, FL, USA, 1994.
6. Littlewood, J.E. Lectures on the Theory of Functions; Oxford University Press: Oxford, UK, 1944.
7. Dai, S.; Pan, Y. Note on Schwarz-Pick estimates for bounded and positive real part analytic functions. Proc. Am. Math. Soc. 2007, 136, 635-640. [CrossRef]
