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Abstract: In this paper, a few single-step iterative methods, including classical Newton’s method
and Halley’s method, are suggested by applying [1, n]-order Padé approximation of function for
finding the roots of nonlinear equations at first. In order to avoid the operation of high-order
derivatives of function, we modify the presented methods with fourth-order convergence by using
the approximants of the second derivative and third derivative, respectively. Thus, several modified
two-step iterative methods are obtained for solving nonlinear equations, and the convergence of the
variants is then analyzed that they are of the fourth-order convergence. Finally, numerical experiments
are given to illustrate the practicability of the suggested variants. Henceforth, the variants with
fourth-order convergence have been considered as the imperative improvements to find the roots of
nonlinear equations.

Keywords: nonlinear equations; Padé approximation; iterative method; order of convergence;
numerical experiment

1. Introduction

It is well known that a variety of problems in different fields of science and engineering require
to find the solution of the nonlinear equation f (x) = 0 where f : I → D, for an interval I ⊆ R and
D ⊆ R, is a scalar function. In general, iterative methods, such as Newton’s method, Halley’s method,
Cauchy’s method, and so on, are the most used techniques. Hence, iterative algorithms based on these
iterative methods for finding the roots of nonlinear equations are becoming one of the most important
aspects in current researches. We can see the works, for example, [1–22] and references therein. In the
last few years, some iterative methods with high-order convergence have been introduced to solve
a single nonlinear equation. By using various techniques, such as Taylor series, quadrature formulae,
decomposition techniques, continued fraction, Padé approximation, homotopy methods, Hermite
interpolation, and clipping techniques, these iterative methods can be constructed. For instance,
there are many ways of introducing Newton’s method. Among these ways, using Taylor polynomials to
derive Newton’s method is probably the most widely known technique [1,2]. By considering different
quadrature formulae for the computation of the integral, Weerakoon and Fernando derive an implicit
iterative scheme with cubic convergence by the trapezoidal quadrature formulae [4], while Cordero
and Torregrosa develope some variants of Newton’s method based in rules of quadrature of fifth
order [5]. In 2005, Chun [6] have presented a sequence of iterative methods improving Newton’s
method for solving nonlinear equations by applying the Adomian decomposition method. Based
on Thiele’s continued fraction of the function, Li et al. [7] give a fourth-order convergent iterative
method. Using Padé approximation of the function, Li et al. [8] rederive the Halley’s method and
by the divided differences to approximate the derivatives, they arrive at some modifications with
third-order convergence. In [9], Abbasbandy et al. present an efficient numerical algorithm for
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solving nonlinear algebraic equations based on Newton–Raphson method and homotopy analysis
method. Noor and Khan suggest and analyze a new class of iterative methods by using the homotopy
perturbation method in [10]. In 2015, Wang et al. [11] deduce a general family of n-point Newton type
iterative methods for solving nonlinear equations by using direct Hermite interpolation. Moreover, for
a particular class of functions, for instance, if f is a polynomial, there exist some efficient univariate
root-finding algorithms to compute all solutions of the polynomial equation (see [12,13]). In the
literature [13], Barton̆ et al. present an algorithm for computing all roots of univariate polynomial
based on degree reduction, which has the higher convergence rate than Newton’s method. In this
article, we will mainly solve more general nonlinear algebraic equations.

Newton’s method is probably the best known and most widely used iterative algorithm for
root-finding problems. By applying Taylor’s formula for the function f (x), let us recall briefly how to
derive Newton iterative method. Suppose that f (x) ∈ Cn[I], n = 1, 2, 3, . . ., and η ∈ I is a single root
of the nonlinear equation f (x) = 0. For a given guess value x0 ∈ I and a δ ∈ R, assume that f ′(x) 6= 0
for each x belongs to the neighborhood (x0 − δ, x0 + δ). For any x ∈ (x0 − δ, x0 + δ), we expand f (x)
into the following Taylor’s formula about x0:

f (x) = f (x0) + f ′(x0)(x− x0) +
1
2!

f ′′(x0)(x− x0)
2 + · · ·+ 1

k!
(x− x0)

k f (k)(x0) + · · · ,

where k = 0, 1, 2, · · · . Let |η− x0| be sufficiently small. Then the terms involving (η− x0)
k, k = 2, 3, . . . ,

are much smaller. Hence, we think the fact that the first Taylor polynomial is a good approximation to
the function near the point x0 and give that

f (x0) + f ′(x0)(η − x0) ≈ 0.

Notice the fact f ′(x0) 6= 0, and solving the above equation for η yields

η ≈ x0 −
f (x0)

f ′(x0)
,

which follows that we can construct the Newton iterative scheme as below

xk+1 = xk −
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . .

It has been known that Newton iterative method is a celebrated one-step iterative method.
The order of convergence of Newton’s method is quadratic for a simple zero and linear for multiple root.

Motivated by the idea of the above technique, in this paper, we start with using Padé
approximation of a function to construct a few one-step iterative schemes which includes classical
Newton’s method and Halley’s method to find roots of nonlinear equations. In order to avoid
calculating the high-order derivatives of the function, then we employ the approximants of the higher
derivatives to improve the presented iterative method. As a result, we build several two-step iterative
formulae, and some of them do not require the operation of high-order derivatives. Furthermore, it is
shown that these modified iterative methods are all fouth-order convergent for a simple root of the
equation. Finally, we give some numerical experiments and comparison to illustrate the efficiency and
performance of the presented methods.

The rest of this paper is organized as follows. we introduce some basic preliminaries about Padé
approximation and iteration theory for root-finding problem in Section 2. In Section 3, we firstly
construct several one-step iterative schemes based on Padé approximation. Then, we modify the
presented iterative method to obtain a few iterative formulae without calculating the high-order
derivatives. In Section 4, we show that the modified methods have fourth-order convergence at least
for a simple root of the equation. In Section 5 we give numerical examples to show the performance of
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the presented methods and compare them with other high-order methods. At last, we draw conclusions
from the experiment results in Section 6.

2. Preliminaries

In this section, we briefly review some basic definitions and results for Padé approximation of
function and iteration theory for root-finding problem. Some surveys and complete literatures about
iteration theory and Padé approximation could be found in Alfio [1], Burden et al. [2], Wuytack [23],
and Xu et al. [24].

Definition 1. Assume that f (x) is a function whose (n + 1)-st derivative f (n+1)(x), n = 0, 1, 2, . . . , exists
for any x in an interval I. Then for each x ∈ I, we have

f (x) = f (x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n + o[(x− x0)
n], (1)

which is called the Taylor’s formula with Peano remainder term of order n based at x0, and the error o[(x− x0)
n]

is called the Peano remainder term or the Peano truncation error.

Definition 2. If P(x) is a polynomial, the accurate degree of the polynomial is ∂(P), and the order of the
polynomial is ω(P), which is the degree of the first non-zero term of the polynomial.

Definition 3. If it can be found two ploynomials

P(x) =
m

∑
i=0

ai(x− x0)
i and Q(x) =

n

∑
i=0

bi(x− x0)
i

such that
∂(P(x)) ≤ m, ∂(Q(x)) ≤ n, ω( f (x)Q(x)− P(x)) ≥ m + n + 1,

then we have the following incommensurable form of the rational fraction P(x)
Q(x) :

Rm,n(x) =
P0(x)
Q0(x)

=
P(x)
Q(x)

,

which is called [m, n]-order Padé approximation of function f (x).

We give the computational formula of Padé approximation of function f (x) by the use of
determinant, as shown in the following lemma [23,24].

Lemma 1. Assume that Rm,n(x) = P0(x)
Q0(x) is Padé approximation of function f (x). If the matrix

Am,n =


am am−1 · · · am+1−n

am+1 am · · · am+2−n
...

...
. . .

...
am+n−1 am+n−2 · · · am


is nonsingular, that is the determinant |Am,n| = d 6= 0, then P0(x), Q0(x) can be written by the following
determinants
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P0(x) =
1
d

∣∣∣∣∣∣∣∣∣∣
Tm(x) (x− x0)Tm−1(x) · · · (x− x0)

nTm+1−n(x)
am+1 am · · · am+1−n

...
...

. . .
...

am+n am+n−1 · · · am

∣∣∣∣∣∣∣∣∣∣
and

Q0(x) =
1
d

∣∣∣∣∣∣∣∣∣∣
1 (x− x0) · · · (x− x0)

n

am+1 am · · · am+1−n
...

...
. . .

...
am+n am+n−1 · · · am

∣∣∣∣∣∣∣∣∣∣
,

where an = f (n)(x0)
n! , n = 0, 1, 2, . . ., and we appoint that

Tk(x) =


k
∑

i=0
ai(x− x0)

i, f or k ≥ 0,

0, f or k < 0.

Next, we recall the speed of convergence of an iterative scheme. Thus, we give the following
definition and lemma.

Definition 4. Assume that a sequence {xi}∞
i=0 converges to η, with xi 6= η for all i, i = 0, 1, 2, . . .. Let the

error be ei = xi − η. If there exist two positive constants α and β such that

lim
i→∞

|ei+1|
|ei|α

= β,

then {xi}∞
i=0 converges to the constant η of order α. When α = 1, the sequence {xi}∞

i=0 is linearly convergent.
When α > 1, the sequence {xi}∞

i=0 is said to be of higher-order convergence.

For a single-step iterative method, sometimes it is convenient to use the following lemma to judge
the order of convergence of the iterative method.

Lemma 2. Assume that the equation f (x) = 0, x ∈ I, can be rewritten as x = ϕ(x), where f (x) ∈ C[I] and
ϕ(x) ∈ Cγ[I], γ ∈ N+. Let η be a root of the equation f (x) = 0. If the iterative function ϕ(x) satisfies

ϕ(j)(η) = 0, j = 1, 2, . . . , γ− 1, ϕ(γ)(η) 6= 0,

then the order of convergence of the iterative scheme xi+1 = ϕ(xi), i = 0, 1, 2, . . ., is γ.

3. Some Iterative Methods

Let η be a simple real root of the equation f (x) = 0, where f : I → D, I ⊆ R, D ⊆ R. Suppose
that x0 ∈ I is an initial guess value sufficiently close to η, and the function f (x) has n-th derivative
f (n)(x), n = 1, 2, 3, . . . , in the interval I. According to Lemma 1, [m, n]-order Padé approximation of
function f (x) is denoted by the following rational fraction:
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f (x) ≈ Rm,n(x) =

∣∣∣∣∣∣∣∣∣∣
Tm(x) (x− x0)Tm−1(x) · · · (x− x0)

nTm+1−n(x)
am+1 am · · · am+1−n

...
...

. . .
...

am+n am+n−1 · · · am

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 (x− x0) · · · (x− x0)

n

am+1 am · · · am+1−n
...

...
. . .

...
am+n am+n−1 · · · am

∣∣∣∣∣∣∣∣∣∣

. (2)

Recall Newton iterative method derived by Taylor’s series in Section 1. The first Taylor polynomial
is regarded as a good approximation to the function f (x) near the point x0. Solving the linear equation
denoted by f (x0) + f ′(x0)(η − x0) ≈ 0 for η gives us the stage for Newton’s method. Then, we think
whether or not a novel or better linear function is selected to approximate the function f (x) near the
point x0. Maybe Padé approximation can solve this question. In the process of obtaining new iterative
methods based on Padé approximation of function, on the one hand, we consider that the degree of the
numerator of Equation (2) is always taken as 1, which guarantees to obtain the different linear function.
On the other hand, we discuss the equations are mainly nonlinear algebraic equations, which differ
rational equations and have not the poles. Clearly, as n grows, the poles of the denominator of
Equation (2) do not affect the linear functions that we need. These novel linear functions may be able
to set the stage for new methods. Next, let us start to introduce a few iterative methods by using
[1, n]-order Padé approximation of function.

3.1. Iterative Method Based on [1, 0]-Order Padé Approximation

Firstly, when m = 1, n = 0, we consider [1, 0]-order Padé approximation of function f (x).
It follows from the expression (2) that

f (x) ≈ R1,0(x) = T1(x) = a0 + a1(x− x0).

Let R1,0(x) = 0, then we have
a0 + a1(x− x0) = 0. (3)

Due to the determinant |A1,0| 6= 0, i.e., f ′(x0) 6= 0, we obtain the following equation from
Equation (3).

x = x0 −
a0

a1
.

In view of a0 = f (x0), a1 = f ′(x0), we reconstruct the Newton iterative method as below.

Method 1. Assume that the function f : I → D has its first derivative at the point x0 ∈ I. Then we obtain the
following iterative method based on [1, 0]-order Padé approximation of function f (x):

xk+1 = xk −
f (xk)

f ′(xk)
, k = 0, 1, 2, . . . . (4)

Starting with an initial approximation x0 that is sufficiently close to the root η and using the above
scheme (4), we can get the iterative sequence {xi}∞

i=0.

Remark 1. Method 1 is the well-known Newton’s method for solving nonlinear equation [1,2].
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3.2. Iterative Method Based on [1, 1]-Order Padé Approximation

Secondly, when m = 1, n = 1, we think about [1, 1]-order Padé approximation of function f (x).
Similarly, it follows from the expression (2) that

f (x) ≈ R1,1(x) =

∣∣∣∣∣ T1(x) (x− x0)T0(x)
a2 a1

∣∣∣∣∣∣∣∣∣∣ 1 (x− x0)

a2 a1

∣∣∣∣∣
.

Let R1,1(x) = 0, then we get

a0a1 + a2
1(x− x0)− a0a2(x− x0) = 0. (5)

Due to the determinant |A1,1| 6= 0, that is,∣∣∣∣∣ a1 a0

a2 a1

∣∣∣∣∣ =
∣∣∣∣∣ f ′(x0) f (x0)

f ′′(x0)
2 f ′(x0)

∣∣∣∣∣ = f ′2(x0)− f (x0)
f ′′(x0)

2
6= 0.

Thus, we obtain the following equality from Equation (5):

x = x0 −
a0a1

a2
1 − a0a2

.

Combining a0 = f (x0), a1 = f ′(x0), a2 = 1
2 f ′′(x0), gives Halley iterative method as follows.

Method 2. Assume that the function f : I → D has its second derivative at the point x0 ∈ I. Then we obtain
the following iterative method based on [1, 1]-order Padé approximation of function f (x):

xk+1 = xk −
2 f (xk) f ′(xk)

2 f ′2(xk)− f (xk) f ′′(xk)
, k = 0, 1, 2, . . . . (6)

Starting with an initial approximation x0 that is sufficiently close to the root η and applying the above
scheme (6), we can obtain the iterative sequence {xi}∞

i=0.

Remark 2. Method 2 is the classical Halley’s method for finding roots of nonlinear equation [1,2],
which converges cubically.

3.3. Iterative Method Based on [1, 2]-Order Padé Approximation

Thirdly, when m = 1, n = 2, we take into account [1, 2]-order Padé approximation of function
f (x). By the same manner, it follows from the expression (2) that

f (x) ≈ R1,2(x) =

∣∣∣∣∣∣∣
T1(x) (x− x0)T0(x) 0

a2 a1 a0

a3 a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x− x0 (x− x0)

2

a2 a1 a0

a3 a2 a1

∣∣∣∣∣∣∣
.

Let R1,2(x) = 0, then one has

a0a2
1 + a2

0a2 + (a3
1 − 2a0a1a2 + a2

0a3)(x− x0) = 0. (7)
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Due to the determinant |A1,2| 6= 0, that is,∣∣∣∣∣∣∣
a1 a0 0
a2 a1 a0

a3 a2 a1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

f ′(x0) f (x0) 0
f ′′(x0)

2 f ′(x0) f (x0)
f ′′′(x0)

6
f ′′(x0)

2 f ′(x0)

∣∣∣∣∣∣∣ = f ′3(x0)− f (x0) f ′(x0) f ′′(x0) +
f 2(x0) f ′′′(x0)

6
6= 0.

Thus, we gain the following equality from Equation (7):

x = x0 −
a0a2

1 − a2
0a2

a3
1 − 2a0a1a2 + a2

0a3
.

Substituting a0 = f (x0), a1 = f ′(x0), a2 = 1
2 f ′′(x0), and a3 = 1

6 f ′′′(x0) into the above equation
gives a single-step iterative method as follows.

Method 3. Assume that the function f : I → D has its third derivative at the point x0 ∈ I. Then we obtain
the following iterative method based on [1, 2]-order Padé approximation of function f (x):

xk+1 = xk −
3 f (xk)

(
2 f ′2(xk)− f (xk) f ′′(xk)

)
6 f ′3(xk)− 6 f (xk) f ′(xk) f ′′(xk) + f 2(xk) f ′′′(xk)

, k = 0, 1, 2, . . . . (8)

Starting with an initial approximation x0 that is sufficiently close to the root η and applying the above
scheme (8), we can receive the iterative sequence {xi}∞

i=0.

Remark 3. Method 3 could be used to find roots of nonlinear equation. Clearly, for the sake of applying this
iterative method, we must compute the second derivative and the third derivative of the function f (x), which may
generate inconvenience. In order to overcome the drawback, we suggest approximants of the second derivative
and the third derivative, which is a very important idea and plays a significant part in developing some iterative
methods free from calculating the higher derivatives.

3.4. Modified Iterative Method Based on Approximant of the Third Derivative

In fact, we let zk = xk −
f (xk)
f ′(xk)

. Then expanding f (zk) into third Taylor’s series about the point
xk yields

f (zk) ≈ f (xk) + f ′(xk)(zk − xk) +
1
2!

f ′′(xk)(zk − xk)
2 +

1
3!

f ′′′(xk)(zk − xk)
3,

which follows that

f ′′′(xk) ≈
3 f 2(xk) f ′(xk) f ′′(xk)− 6 f (zk) f ′3(xk)

f 3(xk)
. (9)

Substituting (9) into (8), we can have the following iterative method.

Method 4. Assume that the function f : I → D has its second derivative about the point x0 ∈ I. Then we
possess a modified iterative method as below: zk = xk −

f (xk)
f ′(xk)

,

xk+1 = xk − xk−zk
1+2 f (zk) f ′2(xk)L−1(xk)

, k = 0, 1, 2, . . . ,
(10)

where L(xk) = f (xk)
(

f (xk) f ′′(xk)− 2 f ′2(xk)
)
. Starting with an initial approximation x0 that is sufficiently

close to the root η and using the above scheme (10), we can have the iterative sequence {xi}∞
i=0.

Remark 4. Methods 4 is a two-step iterative method free from third derivative of the function.
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3.5. Modified Iterative Method Based on Approximant of the Second Derivative

It is obvious that the iterative method (10) requires the operation of the second derivative of the
function f (x). In order to avoid computing the second derivative, we introduce an approximant of the
second derivative by using Taylor’s series.

Similarly, expanding f (zk) into second Taylor’s series about the point xk yields

f (zk) ≈ f (xk) + (zk − xk) f ′(xk) +
1
2!
(zk − xk)

2 f ′′(xk),

which means

f ′′(xk) ≈
2 f (zk) f ′2(xk)

f 2(xk)
. (11)

Using (11) in (10), we can get the following modified iterative method without computing second
derivative.

Method 5. Assume that the function f : I → D has its first derivative about the point x0 ∈ I. Then we have
a modified iterative method as below: zk = xk −

f (xk)
f ′(xk)

,

xk+1 = xk −
f (xk)− f (zk)

f (xk)−2 f (zk)
(xk − zk), k = 0, 1, 2, . . . .

(12)

Starting with an initial approximation x0 that is sufficiently close to the root η and using the above
scheme (12), we can obtain the iterative sequence {xi}∞

i=0.

Remark 5. Method 5 is another two-step iterative method. It is clear that Method 5 does not require to calculate
the high-order derivative. But more importantly, the characteristic of Method 5 is that per iteration it requires
two evaluations of the function and one of its first-order derivative. The efficiency of this method is better than
that of the well-known other methods involving the second-order derivative of the function.

4. Convergence Analysis of Iterative Methods

Theorem 1. Suppose that f (x) is a function whose n-th derivative f (n)(x), n = 1, 2, 3, . . ., exists in
a neighborhood of its root η with f ′(η) 6= 0. If the initial approximation x0 is sufficiently close to η, then the
Method 3 defined by (8) is fourth-order convergent.

Proof of Theorem 1. By the hypothesis f (η) = 0 and f ′(η) 6= 0, we know that η is an unique single
root of the equation f (x) = 0. So, for each positive integer n ≥ 1, we have that the derivatives of high
orders f (n)(η) 6= 0. Considering the iterative scheme (8) in Method 3, we denote its corresponding
iterative function as shown below:

ϕ(x) = x−
3 f (x)

(
2 f ′2(x)− f (x) f ′′(x)

)
6 f ′3(x)− 6 f (x) f ′(x) f ′′(x) + f 2(x) f ′′′(x)

. (13)

By calculating the first and high-order derivatives of the iterative function ϕ(x) with respect to x
at the point η, we verify that

ϕ′(η) = 0, ϕ′′(η) = 0, ϕ′′′(η) = 0

and

ϕ(4)(η) =
3 f ′′3(η)− 4 f ′(η) f ′′(η) f ′′′(η) + f ′2(η) f (4)(η)

f ′3(η)
6= 0.
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Thus, it follows from Lemma 2 that Method 3 defined by (8) is fourth-order convergent.
This completes the proof.

Theorem 2. Suppose that f (x) is a function whose n-th derivative f (n)(x), n = 1, 2, 3, . . ., exists in
a neighborhood of its root η with f ′(η) 6= 0. If the initial approximation x0 is sufficiently close to η, then the
Method 4 defined by (10) is at least fourth-order convergent with the following error equation

ek+1 = (b3
2 − 2b2b3)e4

k + O(e5
k),

where ek = xk − η, k = 1, 2, 3, . . ., and the constants bn = an
f ′(η) , an = f (n)(η)

n! , n = 1, 2, 3, . . ..

Proof of Theorem 2. By the hypothesis, it is clear to see that η is an unique single root of the equation
f (x) = 0. By expanding f (xk), f ′(xk) and f ′′(xk) into Taylor’s series about η, we obtain

f (xk) = ek f ′(η) + e2
k

2! f ′′(η) + e3
k

3! f ′′′(η) + e4
k

4! f (4)(η) + e5
k

5! f (5)(η) + e6
k

6! f (6)(η) + O(e7
k)

= f ′(η)
(
b1ek + b2e2

k + b3e3
k + b4e4

k + b5e5
k + b6e6

k + O(e7
k)
)

,
(14)

f ′(xk) = f ′(η)
(

b1 + 2b2ek + 3b3e2
k + 4b4e3

k + 5b5e4
k + 6b6e5

k + O(e6
k)
)

(15)

and
f ′′(xk) = f ′(η)

(
2b2 + 6b3ek + 12b4e2

k + 20b5e3
k + 30b6e4

k + O(e5
k)
)

, (16)

where bn = 1
n!

f (n)(η)
f ′(η) , n = 1, 2, · · · . Clearly, b1 = 1. Dividing (14) by (15) directly, gives us

f (xk)
f ′(xk)

= xk − zk = ek − b2e2
k − 2(b3 − b2

2)e
3
k − (4b3

2 + 3b4 − 7b2b3)e4
k

−2(10b2
2b3 − 2b5 + 5b2b4 + 4b4

2 + 3b2
3)e

5
k

−(16b5
2 + 28b2

2b4 + 33b2b2
3 + 5b6 − 52b3

2b3 − 17b3b4 − 13b2b5)e6
k + O(e7

k).

(17)

By substituting (17) into (10) in Method 4, one has

zk = η + b2e2
k + 2(b3 − b2

2)e
3
k + (4b3

2 + 3b4 − 7b2b3)e4
k

+2(10b2
2b3 − 2b5 + 5b2b4 + 4b4

2 + 3b2
3)e

5
k

+(16b5
2 + 28b2

2b4 + 33b2b2
3 + 5b6 − 52b3

2b3 − 17b3b4 − 13b2b5)e6
k + O(e7

k).

(18)

Again, expanding f (zk) by Taylor’s series about η, we have

f (zk) = f ′(η)
(
b2e2

k − 2(b2
2 − b3)e3

k − (7b2b3 − 5b3
2 − 3b4)e4

k

−2(5b2b4 + 6b4
2 + 3b2

3 − 12b2
2b3 − 2b5)e5

k

+ (28b5
2 + 34b2

2b4 + 37b2b2
3 + 5b6 − 73b3

2b3 − 17b3b4 − 13b2b5)e6
k + O(e7

k)
)

.

(19)

Hence, from (15) and (19), we have

f (zk) f ′2(xk) = f ′3(η)
(
b2e2

k + 2(b2
2 + b3)e3

k + (7b2b3 + b3
2 + 3b4)e4

k + 2(5b2b4 + 2b2
2b3 + 3b2

3 + 2b5)e5
k

+ (4b2b2
3 + 6b2

2b4 + b3
2b3 + 13b2b5 + 17b3b4 + 5b6)e6

k + O(e7
k)
)

.
(20)
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Also, from (14), (15), and (16), one has

L(xk) = −2 f ′3(η)
(
ek + 4b2e2

k + 2(3b2
2 + 2b3)e3

k + (14b2b3 + 3b3
2 + 3b4)e4

k

+(14b2b4 + 11b2
2b3 + 9b2

3 + b5)e5
k

+ 2(7b2b2
3 + 6b2

2b4 + 6b2b5 + 10b3b4 + b6)e6
k + O(e7

k)
)

.

(21)

Therefore, combining (20) and (21), one can have

2 f (zk) f ′2(xk)
L(xk)

= −b2ek − 2(b3 − b2
2)e

2
k − (3b3

2 + 3b4 − 5b2b3)e3
k

−(6b2
2b3 + 4b5 − 5b2b4 − 3b4

2 − 2b2
3)e

4
k + O(e5

k).
(22)

Furthermore, from (17) and (22), we get

xk − yk
1 + 2 f (zk) f ′2(xk)L−1(xk)

= ek − (b3
2 − 2b2b3)e4

k − (12b2
2b3 − 5b2b4 − 4b4

2 − 4b2
3)e

5
k + O(e6

k). (23)

So, substituting (23) into (10) in Method 4, one obtains

xk+1 = η + (b3
2 − 2b2b3)e4

k + O(e5
k). (24)

Noticing that the (k + 1)-st error ek+1 = xk+1 − η, from (24) we have the following error equation

ek+1 = (b3
2 − 2b2b3)e4

k + O(e5
k), (25)

which shows that Method 4 defined by (10) is at least fourth-order convergent according to Definition 4.
We have shown Theorem 2.

Theorem 3. Suppose that f (x) is a function whose n-th derivative f (n)(x), n = 1, 2, 3, . . ., exists in
a neighborhood of its root η with f ′(η) 6= 0. If the initial approximation x0 is sufficiently close to η, then the
Method 5 defined by (12) is also at least fourth-order convergent with the following error equation

ek+1 = (b3
2 − b2b3)e4

k + O(e5
k),

where ek = xk − η, k = 1, 2, 3, . . ., and the constants bn = an
f ′(η) , an = f (n)(η)

n! , n = 1, 2, 3, . . ..

Proof of Theorem 3. Referring to (14) and (19) in the proof of Theorem 2, then, dividing f (zk) by
f (xk)− f (zk) we see that

f (zk)
f (xk)− f (zk)

= b2ek − 2(b2
2 − b3)e2

k − 3(2b2b3 − b3
2 − b4)e3

k − (3b4
2 + 4b2

3 + 8b2b4 − 11b2
2b3 − 4b5)e4

k

−(10b3
2b3 + 10b3b4 + 10b2b5 − 11b2b2

3 − 14b2
2b4 − 5b6)e5

k

−(221b4
2b3 + 16b3

3 + 78b2b3b4 + 27b2
2b5 − 73b6

2

−158b2
2b2

3 − 91b3
2b4 − 6b2

4 − 10b3b5 − 4b2b6)e6
k + O(e7

k).

(26)

From (26), we obtain

f (xk)− f (zk)
f (xk)−2 f (zk)

= 1
1− f (zk)

f (xk)− f (zk)

= 1 + b2ek + (2b3 − b2
2)e

2
k + (3b4 − 2b2b3)e3

k

+(2b4
2 + 4b5 − 3b2

2b3 − 2b2b4)e4
k + (14b3

2b3 + 2b3b4 + 5b6 − 5b5
2

−9b2b2
3 − 5b2

2b4 − 2b2b5)e5
k + (77b6

2 + 192b2
2b2

3 + 121b3
2b4 + 15b2

4

+26b3b5 + 14b2b6 − 240b4
2b3 − 24b3

3 − 130b2b3b4 − 51b2
2b5)e6

k + O(e7
k).

(27)
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Multiplying (27) by (17) yields that

f (xk)− f (yk)

f (xk)− 2 f (yk)
(xk − zk) = ek − (b3

2 − b2b3)e4
k + 2(2b4

2 − 4b2
2b3 + b2

3 + b2b4)e5
k + O(e6

k). (28)

Consequently, from (12) and the above Equation (28), and noticing the error ek+1 = xk+1 − η,
we get the error equation as below:

ek+1 = (b3
2 − b2b3)e4

k + O(e5
k). (29)

Thus, according to Definition 4, we have shown that Method 5 defined by (12) has fourth-order
convergence at least. This completes the proof of Theorem 3.

Remark 6. Per iteration, Method 5 requires two evaluations of the function and one of its first-order derivative.
If we consider the definition of efficiency index [3] as τ

√
λ, where λ is the order of convergence of the method

and τ is the total number of new function evaluations (i.e., the values of f and its derivatives) per iteration,
then Method 5 has the efficiency index equal to 3

√
4 ≈ 1.5874, which is better than the ones of Halley iterative

method 3
√

3 ≈ 1.4423 and Newton iterative method
√

2 ≈ 1.4142.

5. Numerical Results

In this section, we present the results of numerical calculations to compare the efficiency of
the proposed iterative methods (Methods 3–5) with Newton iterative method (Method 1, NIM for
short), Halley iterative method (Method 2, HIM for short) and a few classical variants defined in
literatures [19–22], such as the next iterative schemes with fourth-order convergence:

(i) Kou iterative method (KIM for short) [19].

xk+1 = xk −
2

1 +
√

1− 2L̄ f (xk)

f (xk)

f ′(xk)
, k = 0, 1, 2, . . . ,

where L̄ f (xk) is defined by the equation as follows:

L̄ f (xk) =
f ′′ (xk − f (xk)/ (3 f ′(xk))) f (xk)

f ′2(xk)
.

(ii) Double-Newton iterative method (DNIM for short) [20]. zk = xk −
f (xk)
f ′(xk)

,

xk+1 = xk −
f (xk)
f ′(xk)

− f (zk)
f ′(zk)

, k = 0, 1, 2, . . . .

(iii) Chun iterative method (CIM for short) [21]. zk = xk −
f (xk)
f ′(xk)

,

xk+1 = xk −
f (xk)
f ′(xk)

−
(

1 + 2 f (zk)
f (xk)

+ f 2(zk)
f 2(xk)

)
f (zk)
f ′(xk)

, k = 0, 1, 2, . . . .

(iv) Jarratt-type iterative method (JIM for short) [22].
zk = xk − 2

3
f (xk)
f ′(xk)

,

xk+1 = xk −
4 f (xk)

f ′(xk)+3 f ′(zk)

(
1 + 9

16

(
f ′(zk)
f ′(xk)

− 1
)2
)

, k = 0, 1, 2, . . . .
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In iterative process, we use the following stopping criteria for computer programs:

|xk+1 − xk| < ε and | f (xk+1)| < ε,

where the fixed tolerance ε is taken as 10−14. When the stopping criteria are satisfied, xk+1 can be
regarded as the exact root η of the equation. Numerical experiments are performed in Mathematica
10 environment with 64 digit floating point arithmetics (Digits: =64). Different test equations fi = 0,
i = 1, 2, . . . , 5, the initial guess value x0, the number of iterations k + 1, the approximate root xk+1,
the values of |xk+1 − xk| and | f (xk+1)| are given in Table 1. The following test equations are used in
the numerical results:

f1(x) = x3 − 11 = 0,

f2(x) = cos x− x = 0,

f3(x) = x3 + 4x2 − 25 = 0,

f4(x) = x2 − ex − 3x + 2 = 0,

f5(x) = (x + 2)ex − 1 = 0.

Table 1. Numerical results and comparison of various iterative methods.

Methods Equation x0 k + 1 xk+1 |xk+1− xk| | f (xk+1)|

NIM f1 = 0 1.5 7 2.22398009056931552116536337672215719652 1.1× 10−25 4.1× 10−47

HIM f1 = 0 1.5 5 2.22398009056931552116536337672215719652 1.7× 10−41 1.0× 10−46

Method 3 f1 = 0 1.5 4 2.22398009056931552116536337672215719652 8.3× 10−40 1.6× 10−48

Method 4 f1 = 0 1.5 4 2.22398009056931552116536337672215719652 8.3× 10−22 1.9× 10−47

Method 5 f1 = 0 1.5 4 2.22398009056931552116536337672215719652 7.5× 10−30 7.4× 10−45

KIM f1 = 0 1.5 4 2.22398009056931552116536337672215719652 8.5× 10−38 3.9× 10−48

DNIM f1 = 0 1.5 4 2.22398009056931552116536337672215719652 1.1× 10−25 1.1× 10−47

CIM f1 = 0 1.5 5 2.22398009056931552116536337672215719652 1.5× 10−41 6.6× 10−45

JIM f1 = 0 1.5 5 2.22398009056931552116536337672215719652 1.2× 10−45 4.3× 10−47

NIM f2 = 0 1 5 0.73908513321516064165531208767387340401 6.4× 10−21 1.5× 10−41

HIM f2 = 0 1 4 0.73908513321516064165531208767387340401 3.4× 10−29 5.1× 10−49

Method 3 f2 = 0 1 3 0.73908513321516064165531208767387340401 8.2× 10−19 7.5× 10−49

Method 4 f2 = 0 1 3 0.73908513321516064165531208767387340401 1.4× 10−17 9.4× 10−48

Method 5 f2 = 0 1 3 0.73908513321516064165531208767387340401 1.1× 10−18 7.5× 10−47

KIM f2 = 0 1 3 0.73908513321516064165531208767387340401 1.5× 10−20 8.3× 10−49

DNIM f2 = 0 1 3 0.73908513321516064165531208767387340401 6.4× 10−21 9.5× 10−48

CIM f2 = 0 1 3 0.73908513321516064165531208767387340401 2.2× 10−17 9.4× 10−48

JIM f2 = 0 1 3 0.73908513321516064165531208767387340401 7.4× 10−18 8.3× 10−49

NIM f3 = 0 3.5 7 2.03526848118195915354755041547361249916 6.4× 10−28 2.9× 10−47

HIM f3 = 0 3.5 5 2.03526848118195915354755041547361249916 2.0× 10−39 5.8× 10−47

Method 3 f3 = 0 3.5 4 2.03526848118195915354755041547361249916 2.0× 10−33 6.0× 10−47

Method 4 f3 = 0 3.5 4 2.03526848118195915354755041547361249916 2.0× 10−33 8.0× 10−46

Method 5 f3 = 0 3.5 4 2.03526848118195915354755041547361249916 3.4× 10−30 3.1× 10−45

KIM f3 = 0 3.5 4 2.03526848118195915354755041547361249916 4.3× 10−33 8.6× 10−47

DNIM f3 = 0 3.5 4 2.03526848118195915354755041547361249916 6.4× 10−28 9.9× 10−46

CIM f3 = 0 3.5 4 2.03526848118195915354755041547361249916 1.1× 10−20 9.6× 10−46

JIM f3 = 0 3.5 4 2.03526848118195915354755041547361249916 1.9× 10−22 1.1× 10−49
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Table 1. Cont.

Methods Equation x0 k + 1 xk+1 |xk+1− xk| | f (xk+1)|

NIM f4 = 0 3.6 8 0.25753028543986076045536730493724178138 6.5× 10−29 3.5× 10−46

HIM f4 = 0 3.6 6 0.25753028543986076045536730493724178138 4.8× 10−37 1.6× 10−46

Method 3 f4 = 0 3.6 4 0.25753028543986076045536730493724178138 9.6× 10−14 2.7× 10−46

Method 4 f4 = 0 3.6 5 0.25753028543986076045536730493724178138 1.1× 10−36 3.3× 10−44

Method 5 f4 = 0 3.6 4 0.25753028543986076045536730493724178138 2.5× 10−19 4.9× 10−44

KIM f4 = 0 3.6 5 0.25753028543986076045536730493724178138 2.1× 10−14 8.9× 10−44

DNIM f4 = 0 3.6 4 0.25753028543986076045536730493724178138 2.6× 10−14 3.5× 10−46

CIM f4 = 0 3.6 4 0.25753028543986076045536730493724178138 2.8× 10−12 2.8× 10−46

JIM f4 = 0 3.6 5 0.25753028543986076045536730493724178138 9.7× 10−38 9.7× 10−46

NIM f5 = 0 3.5 11 −0.44285440100238858314132799999933681972 8.2× 10−22 7.7× 10−43

HIM f5 = 0 3.5 7 −0.44285440100238858314132799999933681972 2.2× 10−37 6.1× 10−45

Method 3 f5 = 0 3.5 5 −0.44285440100238858314132799999933681972 1.8× 10−24 3.4× 10−45

Method 4 f5 = 0 3.5 5 −0.44285440100238858314132799999933681972 5.3× 10−37 7.9× 10−44

Method 5 f5 = 0 3.5 6 −0.44285440100238858314132799999933681972 2.0× 10−42 3.9× 10−42

KIM f5 = 0 3.5 7 −0.44285440100238858314132799999933681972 3.6× 10−23 2.7× 10−42

DNIM f5 = 0 3.5 6 −0.44285440100238858314132799999933681972 8.2× 10−22 4.9× 10−45

CIM f5 = 0 3.5 7 −0.44285440100238858314132799999933681972 3.3× 10−37 8.6× 10−44

JIM f5 = 0 3.5 6 −0.44285440100238858314132799999933681972 9.3× 10−13 6.6× 10−46

6. Conclusions

In Section 3 of the paper, it is evident that we have obtained a few single-step iterative methods
including classical Newton’s method and Halley’s method, based on [1, n]-order Padé approximation
of a function for finding a simple root of nonlinear equations. In order to avoid calculating the higher
derivatives of the function, we have tried to improve the proposed iterative method by applying
approximants of the second derivative and the third derivative. Hence, we have gotten a few modified
two-step iterative methods free from the higher derivatives of the function. In Section 4, we have
given theoretical proofs of the several methods. It is seen that any modified iterative method reaches
the convergence order 4. However, it is worth mentioning that Method 5 is free from second order
derivative and its efficiency index is 1.5874. Furthermore, in Section 5, numerical examples are
employed to illustrate the practicability of the suggested variants for finding the approximate roots of
some nonlinear scalar equations. The computational results presented in Table 1 show that in almost
all of the cases the presented variants converge more rapidly than Newton iterative method and Halley
iterative method, so that they can compete with Newton iterative method and Halley iterative method.
Finally, for more nonlinear equations we tested, the presented variants have at least equal performance
compared to the other existing iterative methods that are of the same order.
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