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Abstract: In order to solve all or some eigenvalues lied in a cluster, we propose a weighted block
Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem. Error bounds of the
approximations to an eigenvalue cluster, as well as their corresponding eigenspace, are established
and show the advantages. A practical thick-restart strategy is applied to the block algorithm to
eliminate the increasing computational and memory costs, and the numerical instability. Numerical
examples illustrate the effectiveness of our new algorithms.
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1. Introduction

In this paper, we are interested in solving the linear response eigenvalue problem (LREP):

Hz :=

[
0 M
K 0

] [
u
v

]
= λ

[
u
v

]
= λz,

where K and M are N × N real symmetric positive definite matrices. Such a problem arises from
studying the excitation energy of many particle systems in computational quantum chemistry and
physics [1–3]. It also known as the Bethe-Salpeter (BS) eigenvalue-problem [4] or the random phase
approximation (RPA) eigenvalue problem [5]. There has immense past and recent work in developing
efficient numerical algorithms and attractive theories for LREP [6–15].

Since all the eigenvalues of H are real nonzero and appear in pairs {λ,−λ} [6], thus we order the
eigenvalues in ascending order, i.e.,

−λ1 ≤ · · · ≤ −λN < λN ≤ · · · ≤ λ1.

In this paper, we focus on a small portion of the positive eigenvalues for LREP, i.e., λi,
i = k, k + 1, · · · , ` with 1 ≤ k ≤ ` ≤ N and `− k + 1 � N, and their corresponding eigenvectors.
We only consider the real case, all the results can be easily applied to the complex case.

The weighted Golub-Kahan-Lanczos method (wGKL) for LREP was introduced in [16].

It produces recursively a much small projection Bj =

[
0 Bj

BT
j 0

]
of H at j-th iteration, where Bj ∈ Rj×j
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is upper bidiagonal. Afterwards, the eigenpairs of H can be constructed by the singular value
decomposition of Bj. The convergence analysis performs that running k iterations of wGKL is
equivalently running 2k iterations of a weighted Lanczos algorithm for H [16]. Actually, Bj can
be also a lower bidiagonal matrix, and the same discussion can be taken place as in the case of Bj is
upper bidiagonal. In the following, we only consider the upper bidiagonal case.

It is well known that the single-vector Lanczos method is widely used for searching a small
number of extreme eigenvalues, and it may encounter very slow convergence when the wanted
eigenvalues stay in a cluster [17]. Instead, a block Lanczos method with a suitable block size is capable
of computing a cluster of eigenvalues including multiple eigenvalues very quickly. Motivated by this
idea, we are going to develop a block version of wGKL in [16] in order to find efficiently all or some
positive eigenvalues within a cluster for LREP. Based on the standard block Lanczos convergence theory
in [17], the error bounds of approximation to an eigenvalue cluster, as well as their corresponding
eigenspace are established to illustrate the advantage of our weighted block Golub-Kahan-Lanczos
algorithm (wbGKL).

As the increasing size of the Krylov subspace, the storage demands, computational costs, and
numerical stability of a simple version of a block Lanczos method may be affected [18]. Several kinds of
efficiently restarting strategies to eliminate these effects are developed for the classic Lanczos method,
such as, implicitly restart method [19], thick restart method [20]. In order to make our block method
more practical, and using the special structure of LREP, we consider the thick restart strategy to our
block method.

The rest of this paper is organized as follows. Section 2 gives some necessary preliminaries for
our later use. In Section 3, the weighted block Golub-Kahan-Lanczos algorithm (wbGKL) for LREP is
presented, and its convergence analysis is discussed. Section 4 proposed the thick restart weighted
block Golub-Kahan-Lanczos algorithm (wbGKL-TR). The numerical examples are tested in Section 5
to illustrate the efficiency of our new algorithms. Finally, some conclusions are given in Section 6.

Throughout this paper, Rm×n is the set of all m× n real matrices, Rn = Rn×1, and R = R1. In (or
simply I if its dimension is clear from the context) is the n× n identity matrix, and 0m×n is an m× n
matrix of zero. The superscript “T” denotes transpose. ‖ · ‖F denotes the Frobenius norm of a matrix,
and ‖ · ‖2 denotes the 2-norm of a matrix or a vector. For a matrix X ∈ Rm×n, rank(X) denotes the
rank of X, andR(X) = span(X) denotes the column space of X; the submatrices Xi:j,: and X:,k:` of X
composed by the intersections of row i to row j and column k to column `, respectively. For matrices
or scalars Xi, diag(X1, · · · , Xk) denotes the block diagonal matrix with the i-th diagonal block Xi.

2. Preliminaries

For a symmetric positive definite matrix W ∈ RN×N , the W-inner product is defined as following

〈x, y〉W := yTWx, ∀x, y ∈ RN .

If 〈x, y〉W = 0, then we denote it by x ⊥W y, and call it with x and y are W-orthogonal.
The projector ΠW is called the W-orthogonal projector onto Y if for any y ∈ RN ,

ΠWy ∈ Y , (I −ΠW)y ⊥W Y .

For two subspaces X ,Y ⊆ RN , and suppose k = dim(X ) ≤ dim(Y) = `, if X ∈ RN×k and
Y ∈ RN×` are W-orthonormal basis of X and Y , respectively, i.e.,

XTWX = Ik, X = R(X) and YTWY = I`, Y = R(Y),
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and νj for j = 1, · · · , k with ν1 ≤ · · · ≤ νk are the singular values of YTWX, then the W-canonical

angles θ
(j)
W (X ,Y) from X to Y are defined by

0 ≤ θ
(j)
W (X ,Y) = arccos νj ≤ π/2, for j = 1, · · · , k.

If k = `, these angles can be said between X and Y . Obviously, θ
(1)
W (X ,Y) ≥ · · · ≥ θ

(k)
W (X ,Y). Set

ΘW(X ,Y) = diag(θ(1)W (X ,Y), · · · , θ
(k)
W (X ,Y)).

Especially, if k = 1, X is a vector, there is only one W-canonical angle fromX to Y . In the following,
we may use a matrix in one or both arguments of ΘW(·, ·), i.e., ΘW(X, Y) with the understanding that
it means the subspace spanned by the columns of the matrix argument.

The following two lemmas are important to our later analysis, and for proofs and more details,
the reader is referred to [12,16].

Lemma 1. ([12] Lemma 3.2). Let X and Y be two subspaces in RN with equal dimensional dim(X ) =

dim(Y) = k. Suppose θ
(1)
W (X ,Y) < π/2. Then, for any set y1, y2, · · · , yk1 of the basis vectors in Y where

1 ≤ k1 ≤ k, there is a set x1, x2, · · · , xk1 of linearly independent vectors in X such that ΠW xj = yj for
1 ≤ j ≤ k1, where ΠW is the W-orthogonal projector onto Y .

Lemma 2. ([16] Proposition 3.1). The matrix MK has N position eigenvalues λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
N with

λj > 0. The corresponding right eigenvectors ξ1, · · · , ξN can be chosen K-orthonormal, and the corresponding
left eigenvectors η1, · · · , ηN can be chosen M-orthonormal. In particular, for given {ξ j}, one can choose
ηj = λ−1

j Kξ j, and for given {ηj}, ξ j = λ−1
j Mηj, for j = 1, · · · , N.

3. Weighted Block Golub-Kahan-Lanczos Algorithm

3.1. Weighted Block Golub-Kahan-Lanczos Algorithm

In this section, we plan to introduce the weighted block Golub-Kahan-Lanczos algorithm
(wbGKL) for LREP, which is a block version of the weighted Golub-Kahan-Lanczos algorithm [16].
Algorithm 1 gives the process of recursively generating the M-orthonormal matrix Xn,
the K-orthonormal matrix Yn, and the block bidiagonal matrix Bn. Giving Y1 ∈ Rn×nb with
YT

1 KY1 = Inb , denoting ET
n = [0nb×(n−1)nb

, Inb ], and

Xn = [X1, · · · , Xn], Yn = [Y1, · · · , Yn], Bn =


A1 B1

A2
. . .
. . . Bn−1

An

 ,

then we have the relation from Algorithm 1:

KYn = XnBn, MXn = YnBT
n + Yn+1BT

n ET
n , (1)

and
X T

n MXn = Innb = Y
T
n KYn.

Remark 1. In Algorithm 1, we only consider the case that rank(X̃j) = rank(Ỹj+1) = nb, no further treatment
is provided for the cases rank(X̃j) < nb or rank(Ỹj+1) < nb. Because K and M are both symmetric positive
definite, thus the two W in Step 2 are both reversible.
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Algorithm 1: wbGKL

1. Choose Y1 satisfying YT
1 KY1 = Inb , and set W = Inb , B0 = Inb , X0 = 0n×nb . Compute

F = KY1.
2. For j = 1, 2, · · · , n

X̃j = FW − Xj−1Bj−1

F = MX̃j

Do Cholesky decomposition X̃T
j F = WTW

Aj = W, W = inv(W), Xj = X̃jW %W = inv(W) means W = W−1

Ỹj+1 = FW −Yj AT
j

F = KỸj+1

Do Cholesky decomposition ỸT
j+1F = WTW

Bj = WT , W = inv(W), Yj+1 = Ỹj+1W
End

Remark 2. With j increasing in Step 2, the M-orthogonality of Xj and the K-orthogonality of Yj will slowly
lose. Thus, in practice, we can add a re-orthogonalization process in each iteration to eliminate the defect.
The same strategy is executed in the following algorithms.

From (1), we have[
0 M
K 0

] [
Yn 0
0 Xn

]
=

[
Yn 0
0 Xn

] [
0 BT

n
Bn 0

]
+

[
Yn+1

0

]
BT

n ET
2n

with ET
2n = [0nb×(2n−1)nb

, Inb ]. Then, the approximate eigenpairs of H can be obtained by solving a

small eigenvalue problem of
[

0 BT
n

Bn 0

]
. Suppose Bn has an singular value decomposition

Bn = ΦΣnΨT , (2)

where Φ = [φ1, φ2, · · · , φnnb ], Ψ = [ψ1, ψ2, · · · , ψnnb ], Σn = [σ1, σ2, · · · , σnnb ] with σ1 ≥ · · · ≥ σnnb > 0.
Thus, we can take ±σj(1 ≤ j ≤ nnb) as the Ritz values of H and

z̃j =
1√
2

[
Ynψj
±Xnφj

]
, 1 ≤ j ≤ nnb,

as the corresponding K-orthonormal Ritz vectors, where K =
[ K 0

0 M
]
.

3.2. Convergence Analysis

In this section, we first consider the convergence analysis when using the first few σj as
approximations to the first few λj. Then, the similar theories are presented if using the last few
σj as approximations to the last few λj. Since a block Lanczos method with a suitable block size which
is not smaller than the size of an eigenvalue cluster can compute all eigenvalues in the cluster. Now,
we are considering the i-th to (i + nb − 1)-st eigenpairs of LREP, in which the k-th to `-th eigenvalues
form a cluster as in the following figure with 1 ≤ i ≤ k ≤ ` ≤ i + nb − 1 ≤ nnb and k ≤ n.

λ2
N λ2

i+nb−1 λ2
` λ2

k λ2
i λ2

1

cluster

Here, the squares of the eigenvalues for LREP are listed. Hence, motivated by [12,17], we analyze
the convergence of the cluster eigenvalues and their corresponding eigenspace, and give the error



Mathematics 2019, 7, 53 5 of 15

bounds of the approximate eigenpairs belonging to eigenvalue cluster together, instead of separately
for each individual eigenpair.

We first give some notations and equations, which are critical in our main theorem. Note that
from (1), we get

MKYn = YnBT
nBn + Yn+1BT

n AnET
n . (3)

Since (2) is the singular value decomposition of Bn, thus the eigenvalues of BT
nBn are σ2

j with the
associated eigenvectors ψj for 1 ≤ j ≤ nnb.

From Lemma 2, if we let Ξ = [ξ1, · · · , ξN ], and Γ = [η1, · · · , ηN ], then Γ = KΞΛ−1, and

MKΞ = ΞΛ2. (4)

Write Ξ and Λ2 as

i− 1 nb N − nb − i + 1[ ]
Ξ = Ξ1 Ξ2 Ξ3 ,

i− 1 nb N − nb − i + 1 i− 1 Λ2
1

Λ2 = nb Λ2
2

N − nb − i + 1 Λ2
3

.

Let Ξ̌2 = Ξ(:,k:`) and Λ̌2
2 = diag(λ2

k , · · · , λ2
`). Denote Cj the first kind Chebyshev polynomial with

j-th degree, and 0 ≤ j ≤ n.
In the following, we assume

θ
(1)
K (Y1, Ξ2) < π/2, (5)

i.e., rank(YT
1 KΞ2) = nb, then from Lemma 1, we have ∃ Z ∈ RN×(`−k+1) withR(Z) ⊆ R(Y1), s.t.,

Ξ2ΞT
2 KZ = Ξ̌2. (6)

Theorem 1. Suppose θ
(1)
K (Y1, Ξ2) < π/2, and Z satisfy (6), then we have

‖diag(λ2
k − σ2

k , · · · , λ2
` − σ2

` )‖F ≤ (λ2
k − λ2

N)
π2

i,k,`

C2
n−k(1 + 2γi,`)

‖ tan2 ΘK(Ξ̌2, Z)‖F (7)

with

γi,` =
λ2
` − λ2

i+nb

λ2
i+nb
− λ2

N
, πi,k,` =

max
i+nb≤j≤N

k−1
∏

m=1
|σ2

m − λ2
j |

min
k≤t≤`

k−1
∏

m=1
|σ2

m − λ2
t |

,

and

‖ sin ΘK(Ξ̌2,YnΨ(:,k:`))‖F ≤
πi,k

√
1 + c2‖AT

n Bn‖2
2/δ2

Cn−i(1 + 2γi,`)
‖ tan ΘK(Ξ̌2, Z)‖F (8)

with constant c lies between 1 and π/2, and c = 1 if k = `, and

δ = min
k ≤ j ≤ `

p < k or p > `

|λ2
j − σ2

p |, πi,k =
i−1

∏
j=1

λ2
j − λ2

N

λ2
j − λ2

k
.

Particularly if σ2
k−1 ≥ λ2

k , then

πi,k,` =
k−1

∏
m=1

|σ2
m − λ2

N |
|σ2

m − λ2
k |

.
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Proof. Multiplying LT from left, (4) can be rewritten as LT ML(LTΞ) = (LTΞ)Λ2, so, (λ2
j , LTξ j) is the

eigenpair of LT ML, for j = 1, · · · , N, and LTξ1, · · · , LTξN are orthonormal. Do the same process to (3),
we have

LT MLVn = VnBT
nBn + Vn+1BT

n AnET
n , (9)

where Vn = LTYn, Vn+1 = LTYn+1, and VT
n Vn = Innb , which can be seen as the relation generalize by

using standard Lanczos process to LT ML. Thus, σ2
1 , · · · , σ2

nnb
are the Ritz values of LT ML, with the

corresponding orthonormal Ritz vectors Vnψ1, · · · ,Vnψnnb .
Premultiplying LT to Equation (6), we have LTΞ2ΞT

2 L(LTZ) = LTΞ̌2. Consequently, the conditions
of the block Lanczos convergence Theorem 4.1 and Theorem 5.1 in [17] are satisfied. Thus, using the
results Theorem 5.1 in [17], one has

‖diag(λ2
k − σ2

k , · · · , λ2
` − σ2

` )‖F ≤ (λ2
k − λ2

N)
π2

i,k,`

C2
n−k(1 + 2γi,`)

‖ tan2 Θ(LTΞ̌2, LTZ)‖F.

Then the bound (7) can be easily got by using ([21] Theorem 4.2)

Θ(LTΞ̌2, LTZ) = ΘK(Ξ̌2, Z). (10)

Let Πn = VnVT
n , then Πn is the orthogonal projection ontoKn(LT ML, LTZ), thus from (9), we have

‖ΠnLT ML(I −Πn)‖2 = ‖VnVT
n LT ML(I − VnVT

n )‖2

= ‖Vn(BT
nBn + En AT

n BnVT
n+1)− VnBT

nBnVT
n ‖2

= ‖Vn AT
n BnVT

n+1‖2

= ‖AT
n Bn‖2.

Consequently, applying the results of Theorem 4.1 in [17], we get

‖ sin Θ(LTΞ̌2,VnΨ(:,k:`))‖F ≤
πi,k

√
1 + ‖ΠnLT ML(I −Πn)‖2

2/δ2

Cn−i(1 + 2γi,`)
‖ tan Θ(LTΞ̌2, LTZ)‖F

=
πi,k

√
1 + ‖AT

n Bn‖2
2/δ2

Cn−i(1 + 2γi,`)
‖ tan Θ(LTΞ̌2, LTZ)‖F.

Then the bound (8) can be derived by using Θ(LTΞ̌2,VnΨ(:,k:`)) = ΘK(Ξ̌2,YnΨ(:,k:`)) and (10).

Theorem 1 is used to bound the errors of the approximate eigenvalues to an eigenvalue cluster
including the multiple eigenvalues. It can be also applied to the single eigenvalue case, the following
corollary is derived by setting k = ` = i, except the left equality of (10), which needs to be proved.

Corollary 1. Suppose θ
(1)
K (Y1, Ξ2) < π/2, then for 1 ≤ i ≤ nnb, there exits a vector y ∈ R(Y1), s.t.,

Ξ2ΞT
2 y = ξi, and

λ2
i − σ2

i ≤ (λ2
i − λ2

N)
π2

i,j

C2
n−i(1 + 2γi)

tan2 θK(ξi, y)

with

γi =
λ2

i − λ2
i+nb

λ2
i+nb
− λ2

N
, πi,j = max

i+nb≤j≤N

i−1

∏
m=1

|σ2
m − λ2

j |
|σ2

m − λ2
i |

,
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and (
(1−

σ2
i

λ2
i
) +

σ2
i

λ2
i

sin2 θM(ηi,Xnφi)

)1/2

= sin θK(ξi,Ynψi) ≤
πi

√
1 + ‖AT

n Bn‖2
2/δ2

Cn−i(1 + 2γi)
tan θK(ξi, y)

(11)

with

δ = min
i 6=j
|λ2

j − σ2
i |, πi =

i−1

∏
j=1

λ2
j − λ2

N

λ2
j − λ2

i
.

Proof. We only proof the left equality of (11). From (4) and Lemma 2, we have Ξ = MKΞΛ−2 =

MΓΛ−1. If we let Z1 = (Ynψi)
TKξi, and Z2 = (Xnφi)

T Mηi, then we can get Z1 = σi
λi

Z2 by using
KYnΨ = XnBnΨ = XnΦΣn. Thus

sin2 θK(ξi,Ynψi) = 1− cos2 θK(ξi,Ynψi)

= 1− ZT
1 Z1

= 1−
σ2

i
λ2

i
ZT

2 Z2

= 1−
σ2

i
λ2

i
cos2 θM(ηi,Xnφi)

= 1−
σ2

i
λ2

i
+

σ2
i

λ2
i

sin2 θM(ηi,Xnφi).

Then,

sin θK(ξi,Ynψi) =

(
1−

σ2
i

λ2
i
+

σ2
i

λ2
i

sin2 θM(ηi,Xnφi)

)1/2

.

Next, we are going to consider the last few σj to approximate as the last few λN−nnb+j,
j = k, · · · , `, and λN−nnb+k to λN−nnb+` form a cluster in λî to λî+nb−1, which is described in the

following figure, where N + 1− nnb ≤ î ≤ k̂ ≤ ˆ̀ ≤ î + nb − 1 ≤ N, nnb − `+ 1 ≤ n, k̂ , N − nnb + k,
and ˆ̀ , N − nnb + `.

λ2
N λ2

î+nb−1
λ2

ˆ̀ λ2
k̂

λ2
î

λ2
1

cluster

Similar to the above discussion for the first few eigenvalues, we can also obtain the error bounds
of the approximate last few eigenpairs belongs to eigenvalue cluster together. We use the same notion,
except Λ̂2

2 = diag(λ2
k̂
, · · · , λ2

ˆ̀ ) and Ξ̂2 = Ξ(:,k̂: ˆ̀). Assuming θ
(1)
K (Y1, Ξ2) < π/2, then from Lemma 1,

there ∃ Ẑ ∈ RN×(`−k+1) withR(Ẑ) ⊆ R(Y1), s.t.,

Ξ2ΞT
2 KẐ = Ξ̂2. (12)
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Theorem 2. Suppose θ
(1)
K (Y1, Ξ2) < π/2 and Ẑ satisfy (12), then we have

‖diag(σ2
k − λ2

k̂ , · · · , σ2
` − λ2

ˆ̀ )‖F

≤(λ2
1 − λ2

ˆ̀ )
π̂2

î,k̂, ˆ̀

C2
n−N+ ˆ̀−1

(1 + 2γ̂î,k̂)
‖ tan2 ΘK(Ξ̂2, Ẑ)‖F

(13)

with

γ̂î, ˆ̀ =
λ2

î−1
− λ2

k̂

λ2
1 − λ2

î−1

, π̂î,k̂, ˆ̀ =

max
1≤j≤î−1

nnb
∏

m=`+1
|σ2

m − λ2
j |

min
k̂≤t≤ ˆ̀

nnb
∏

m=`+1
|σ2

m − λ2
t |

,

and

‖ sin ΘK(Ξ̂2,YnΨ(:,k:`))‖F ≤
π̂î, ˆ̀

√
1 + ĉ2‖AT

n Bn‖2
2/δ̂2

Cn+î+nb−N−2(1 + 2γ̂î,k̂)
‖ tan ΘK(Ξ̂2, Ẑ)‖F (14)

with constant ĉ lies between 1 and π/2, and ĉ = 1 if k = `, and

δ̂ = min
k̂ ≤ j ≤ ˆ̀

p < k or p > `

|λ2
j − σ2

p |, π̂î, ˆ̀ =
N

∏
j=î+nb

λ2
1 − λ2

j

λ2
ˆ̀ − λ2

j
.

Remark 3. Similar to Corollary 1, Theorem 2 can also be applied to the single eigenvalue case, here we omit the detail.

Remark 4. In Theorem 1 and 2, we use the Frobenius norm to estimate the accuracy of eigenpairs
approximations, in fact, any unitary invariant norm can be used to measure.

Remark 5. Compared with the single-vector type of the weighted Golub-Kahan-Lanczos method in [16],
our convergence results show the superiority of the block version. For instance, in Corollary 1, the convergence

rate of the approximate eigenvalues σj is proportional to C−2
n−i(1+ 2γi) with γi =

λ2
i − λ2

i+nb
λ2

i+nb
− λ2

N
, which is obviously

better than C−2
n−i(1 + 2γ̃i) with γ̃i =

λ2
i − λ2

i+1
λ2

i+1 − λ2
N

in ([16] Theorem 3.4). While the additional cost caused from

the block version can be paid by the improvements generated by γi, especially when the desired eigenvalues lie in
a well-separated cluster [12].

4. Thick Restart

As the number of iterations increases, Algorithm 1 may encounter the dilemma that the amount
of calculation and storage increases sharply and the numerical stability gradually weakens. In this
section, we will apply the thick restart strategy [20] to improve the algorithm. After running n
iterations, Algorithm 1 derives the following relations for LREP:{

KYn = XnBn,

MXn = YnBT
n + Yn+1BT

n ET
n ,

(15)

with X T
n MXn = Innb = YT

n KYn.
Recall the SVD (2), let Φk and Ψk be the first knb columns of Φ and Ψ, respectively, i.e.,

Φk = [φ1, φ2, · · · , φknb
], Ψk = [ψ1, ψ2, · · · , ψknb

].

Thus it follows that
BnΨk = ΦkΣk and BT

n Φk = ΨkΣk, (16)
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where Σk = diag(σ1, · · · , σknb
).

By using the approximate eigenvectors of H for thick restart, we post-multiply Ψk and Φk to the
Equation (15), respectively, and get{

KYnΨk = XnBnΨk,

MXnΦk = YnBT
n Φk + Yn+1BT

n ET
n Φk,

(17)

From (16), and let Ŷk = YnΨk, X̂k = XnΦk, B̂k = Σk, Ŷk+1 = Yn+1, UT = ET
n Φk, B̂k = Bn, then (17)

can be rewritten as {
KŶk = X̂kB̂k,

MX̂k = ŶkB̂T
k + Ŷk+1B̂T

k UT ,
(18)

and X̂ T
k MX̂k = Iknb

= ŶT
k KŶk.

Next, X̂k+1 and Ŷk+2 will be generalized. Firstly, we compute

X̃k+1 = KŶk+1 − X̂kX̂ T
k MKŶk+1

= KŶk+1 − X̂kUB̂k.

From the second equation in (18), we know X̃T
k+1MX̂k = 0. Do Cholesky decomposition

X̃T
k+1MX̃k+1 = WTW, and set Âk+1 = W, W = inv(W). Compute X̂k+1 = X̃k+1W, and let

X̂k+1 = [X̂k, X̂k+1], B̂k+1 =

[
B̂k UB̂k
0 Âk+1

]
,

we have
KŶk+1 = X̂k+1B̂k+1 with X̂ T

k+1MX̂k+1 = I(k+1)nb
. (19)

Secondly, from the above equation, we can compute

Ỹk+2 = MX̂k+1 − ŶkŶT
k KMX̂k+1 − Ŷk+1ŶT

k+1KMX̂k+1

= MX̂k+1 − Ŷk+1 ÂT
k+1.

Again using (19), it is easily got that ỸT
k+2KŶk+1 = 0. Similarly, do Cholesky decomposition

ỸT
k+2KỸk+2 = WTW, and let B̂k+1 = WT , W = inv(W). Compute Ŷk+2 = Ỹk+2W, and let Ŷk+1 =

[Ŷk, Ŷk+1], we get

MX̂k+1 = Ŷk+1B̂T
k+1 + Ŷk+2B̂T

k+1ET
k+1 with ŶT

k+1MŶk+1 = I(k+1)nb
.

Continue the same procedure for X̂k+2, · · · , X̂n and Ŷk+3, · · · , Ŷn+1, we can obtain the new
M-orthonormal matrix X̂n ∈ RN×nnb , the new K-orthonormal matrix Ŷn ∈ RN×nnb , and the new
matrix B̂n ∈ Rnnb×nnb , and relations{

KŶn = X̂nB̂n,

MX̂n = ŶnB̂T
n + Ŷn+1B̂T

n ET
n ,

(20)

with X̂ T
n MX̂n = Innb = ŶT

n KŶn, and

B̂n =


B̂k UB̂k

Âk+1 B̂k+1
. . . B̂n−1

Ân

 .
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Note that B̂n is no longer a block bidiagonal matrix. Algorithm 2 is our thick-restart weighted block
Golub-Kahan-Lanczos algorithm for LREP.

Remark 6. Actually, from the construction of B̂n, we can know the procedure for getting X̂k+2, · · · , X̂n and
Ŷk+3, · · · , Ŷn+1 is the same as applying Algorithm 1 to Ŷk+2 for n− k− 1 iterations, thus we use Algorithm 1
directly in restarting Step 2 of the following Algorithm 2.

Algorithm 2: wbGKL-TR

1. Given an initial guess Y1 satisfying YT
1 KY1 = Inb , a tolerance tol, an integer k that the k

blocks approximate eigenvectors we want to add to the solving subspace, an integer n the
block dimension of solving subspace, as well as w` the desired number of eigenpairs;
2. Apply Algorithm 1 from the current point to generate the rest of Xn, Yn+1, and Bn. If it is the
first cycle, the current point is Y1, else Yk+2;
3. Compute an SVD of Bn as in (2), select w`(w` ≤ nnb) wanted singular values σj, and their
associated left singular vectors φj and right singular vectors ψj. Form the approximate
eigenpairs for H, if the stopping criterion is satisfied, then stop, else continue;
4. Generate new X̂k+1, Ŷk+2 and B̂k+1:
Compute Ŷk = YnΨk, X̂k = XnΦk, B̂k = Σk, Ŷk+1 = Yn+1, UT = ET

n Φk, B̂k = Bn;
Compute X̃k+1 = KŶk+1 − X̂kUB̂k, do Cholesky decomposition X̃T

k+1MX̃k+1 = WTW, set
Âk+1 = W, W = inv(W), X̂k+1 = X̃k+1W;

Compute Ỹk+2 = MX̂k+1 − Ŷk+1 ÂT
k+1, do Cholesky decomposition ỸT

k+2KỸk+2 = WTW, set
B̂k+1 = WT , W = inv(W), Ŷk+2 = Ỹk+2W;

Let Xk+1 = X̂k+1 = [X̂k, X̂k+1], Bk+1 = B̂k+1 =

[
B̂k UB̂k
0 Âk+1

]
, Yk+2 = Ŷk+2 = [Ŷk, Ŷk+1, Ŷk+2],

and go to Step 2.

Remark 7. In Step 3, we compute the harmonic Ritz pairs after n iterations. In practice, we do the computation
for each iterations j = 1, · · · , n. When restarting, the information chosen to add to the solving subspaces are
the wanted w` singular values of Bn with their corresponding left and right singular vectors. Actually, we use
MATLAB command “sort” to choose the w` smallest ones or the w` largest ones, and which singular values to
choose depends on the desired eigenvalues of H.

In the end of this section, we list the computational costs in a generic cycle of four
algorithms, which are weighted block Golub-Kahan-Lanczos algorithm, thick-restart weighted block
Golub-Kahan-Lanczos algorithm, block Lanczos algorithm [12], and thick-restart block Lanczos
algorithm [12], and denoted by wbGKL, wbGKL-TR, BLan, and BLan-TR, respectively. The detail
pseudocodes of BLan and BLan-TR are be found in [12].

The comparisons are presented in Tables 1 and 2. Here, we denote “block vector” a N × nb
rectangular matrix, denote “mvb” the product number of a N × N matrix and a block vector. “dpb”
denotes the dot product number of two block vectors X and Y, i.e., XTY. “saxpyb” denotes the number
of adding two block vectors or multiplying a block vector to a nb × nb small matrix. “Ep(2n× 2n)(with
sorting)” means the number of 2n× 2n size eigenvalue problem with sorting eigenvalues and their
corresponding eigenvectors in one cycle. Similarly, “Sp(n × n)” denotes the number of n × n size
singular value decomposition in one cycle. Because wbGKL and BLan are non-restart algorithms, we
just count the first n Lanczos iterations.
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Table 1. Main computational costs per cycle wbGKL and wbGKL-TR.

wbGKL wbGKL-TR wbGKL-TR
(1-st Cycle) (Other Cycle)

mvb 2n + 1 2n + 1 2(n− k)
dpb 2n + 1 2n + 1 2(n− k)

saxpyb 8n 8n 8(n− k) + 2k(2n + 1)
block vector updates 2n + 2 2n + 2 2n + 2

Ep(2n× 2n)(with sorting) 0 0 0
Sp(n× n) 1 1 1

Table 2. Main computational costs per cycle BLan and BLan-TR.

BLan BLan-TR BLan-TR
(1-st Cycle) (Other Cycle)

mvb 2n + 1 2n + 1 2(n− k)
dpb 2n + 1 2n + 1 2(n− k)

saxpyb 6n 6n 6(n− k) + 2k(2n + 1)
block vector updates 2n + 2 2n + 2 2n + 2

Ep(2n× 2n)(with sorting) 1 1 1
Sp(n× n) 0 0 0

5. Numerical Examples

In this section, two numerical experiments are carried out by using MATLAB 8.4 (R2014b) on a
laptop with an Intel Core i5-6200U CPU 2.3 GHz memory 8 GB under the Windows 10 operating system.

Example 1. In this example, we check the bounds established in Theorem 1 and 2. For simplicity, we take
N = 100, the number of weighted block Golub-Kahan-Lanczos steps n = 20, K = M as diagonal matrix
diag(λ1, λ2, · · · , λN), where

λ1 = 11 + ρ, λ2 = 11, λ3 = 11− ρ,

λN−2 = 1 + ρ, λN−1 = 1, λN = 1− ρ,

λj = 5 +
5(N − j + 1)

N − 3
, j = 4, · · · , N − 3,

and i = k = 1, ` = 3, î = k̂ = N − 2, ˆ̀ = N, nb = 3. There are three positive eigenvalue clusters:
{λ1, λ2, λ3}, {λ4, · · · , λN−3}, or {λN−2, λN−1, λN}. Obviously, Ξ = Γ = K−

1
2 .

We seek two groups of the approximate eigenpairs, the first is related to the first cluster, the
second is related to the last cluster, i.e., {σ1, σ2, σ3} approximate {λ1, λ2, λ3}, and {σnnb−2, σnnb−1, σnnb}
approximate {λN−2, λN−1, λN}. In order to see the affect that generated from ρ to the upper bounds
of the approximate eigenpairs errors in weighted block Golub-Kahan-Lanczos method for LREP,
we change the parameter ρ > 0 to overmaster the tightness among eigenvalues within {λ1, λ2, λ3}
and {λN−2, λN−1, λN}. First, we choose the same matrix Y0 as in [12,17], i.e.,

Y0 =



1 0 0
0 1 0
0 0 1
1
N sin1 cos1
...

...
...

N−nb
N sin(N − nb) cos(N − nb)


.
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Obviously, rank(Y0) = nb and rank(YT
0 KΞ(:,1:3)) = nb. Since K symmetric positive definite, thus do

Cholesky decomposition YT
0 KY0 = WTW, let Y1 = Y0W−1, hence, Y1 satisfies (5), i.e., YT

1 KΞ(:,1:3) is singular.
We take Z = Y1(ΞT

(:,1:3)KY1)
−1, then Z satisfies (6). We execute the weighted block Golub-Kahan-Lanczos

method with full re-orthogonalization for LREP in MATLAB, and check the bounds in (7), (8), (13), and (14).
Since the approximate eigenvalues are {σ1, σ2, σ3} and {σnnb−2, σnnb−1, σnnb}, thus πi,k,` = πi,k = π̂î,k̂,ˆ̀ =

π̂î,ˆ̀ = 1, c = ĉ = 1, and we measure the following two groups of errors:

ε11 = ‖diag(λ2
1 − σ2

1 , λ2
2 − σ2

2 , λ2
3 − σ2

3 )‖F,

ε21 =
λ2

1 − λ2
N

C2
n−1(1 + 2γ1,3)

‖ tan2 ΘK(Ξ(:,1:3), Z)‖F,

ε31 = ‖ sin ΘK(Ξ(:,1:3),YnΨ(:,1:3))‖F,

ε41 =

√
1 + ‖AT

n Bn‖2
2/δ2

Cn−1(1 + 2γ1,3)
‖ tan ΘK(Ξ(:,1:3), Z)‖F,

and

ε12 = ‖diag(σ2
N−2 − λ2

N−2, σ2
N−1 − λ2

N−1, σ2
N − λ2

N)‖F,

ε22 =
λ2

1 − λ2
N

C2
n−1(1 + 2γ̂N−2,N)

‖ tan2 ΘK(Ξ(:,N−2:N), Z)‖F,

ε32 = ‖ sin ΘK(Ξ(:,N−2:N),YnΨ(:,nnb−2:nnb)
)‖F,

ε42 =

√
1 + ‖AT

n Bn‖2
2/δ̂2

Cn−i(1 + 2γ̂N−2,N)
‖ tan ΘK(Ξ(:,N−2:N), Z)‖F.

Actually, ε21 and ε41 are upper bounds of ε11 and ε31, and ε22 and ε42 are upper bounds of ε12 and
ε32. Tables 3 and 4 report the results of εij, i = 1, · · · , 4, j = 1, 2 with the parameter ρ goes to 0. From the
two tables, we can see that the bounds for the eigenvalues lie in a cluster and their corresponding
eigenvectors are sharp, and they are not sensitive to ρ when ρ goes to 0.

Table 3. ε11, ε31 together with their upper bounds ε21, ε41 of Example 1.

ρ ε11 ε21 ε31 ε41

10−1 4.0295× 10−13 2.6773× 10−10 1.2491× 10−10 2.6260× 10−6

10−2 5.1238× 10−14 5.4555× 10−11 6.1184× 10−11 1.1407× 10−6

10−3 7.1054× 10−14 4.6711× 10−11 5.7698× 10−11 1.0520× 10−6

10−4 2.4449× 10−13 4.5993× 10−11 5.7370× 10−11 1.0436× 10−6

10−5 2.1552× 10−13 4.5922× 10−11 5.7338× 10−11 1.0427× 10−6

Table 4. ε12, ε32 together with their upper bounds ε22, ε42 of Example 1.

ρ ε11 ε21 ε31 ε41

10−1 7.1089× 10−16 6.0352× 10−11 1.9393× 10−10 8.8823× 10−7

10−2 1.3688× 10−15 3.5913× 10−11 1.9562× 10−10 6.8797× 10−7

10−3 3.9968× 10−15 3.4113× 10−11 1.9580× 10−10 6.7081× 10−7

10−4 4.8495× 10−15 3.3938× 10−11 1.9582× 10−10 6.6912× 10−7

10−5 8.1221× 10−15 3.3920× 10−11 1.9582× 10−10 6.6895× 10−7

Example 2. In this example, we are going to test the effectiveness of our weighted block Golub-Kahan-Lanczos
algorithms. Four algorithms are tested, i.e., wbGKL, wbGKL-TR, BLan, and BLan-TR. We choose 3 test
problems used in [12,13], which are listed in Table 5. All the matrices K and M in the problems are symmetric
positive definite. Specifically, Test 1 and Test 2, which are derived by the turboTDDFT command in QUANTUM
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ESPRESSO [22], are from the linear response research for Na2 and silane (SiH4) compound, respectively.
The matrices K and M in Test 3 are from the University of Florida Sparse Matrix Collection [23], where the
order of K is N = 9604, and M is the leading N × N principal submatrix of f inan512.

Table 5. The matrices K and M in Test 1–3.

Problems N K M

Test 1 1862 Na2 Na2
Test 2 5660 SiH4 SiH4
Test 3 9604 f v1 f inan512

We aim to compute the smallest 5 positive eigenvalues and the largest 5 eigenvalues, i.e., λi for
i = 1, · · · , 5, N − 4, · · · , N, together with their associated eigenvectors. The initial guess is chosen
as V0 = eye(N, nb) with block size nb = 3, where eye is the MATLAB command. The same as in
Example 1, since K is symmetric positive definite, thus do Cholesky decomposition YT

0 KY0 = WTW,
let Y1 = Y0W−1, hence, Y1 satisfies YT

1 KY1 = Inb . In wbGKL-TR and BLan-TR, we select n = 30,
k = 20, i.e., the restart will occur once the dimension of the solving subspace is larger than 90, and
the information of 60 Ritz vectors are kept. For wbGKL and BLan, because there is no restart, then
we compute the approximate eigenpairs when the Lanczos iterations equals to 30 + 10 × (j − 1),
j = 1, 2, · · · , hence, the Lanczos iterations are as the same amount as in wbGKL-TR and BLan-TR. The
following relative eigenvalue error and relative residual 1-norm for each 10 approximate eigenpairs
are calculated:

e(σj) :=


|λj − σj |

λj
, j = 1, · · · , 5,

|λn+j−k − σj |
λn+j−k

, j = nnb − 4, · · · , nnb,

r(σj) :=
‖Hz̃j − σj z̃j‖1

(‖H‖1 + σj)‖z̃j‖1
, j = 1, · · · , 5, nnb − 4, · · · , nnb,

where the “exact” eigenvalues λj are calculated by the MATLAB code eig. The calculated approximate
eigenpair (σj, z̃j) is regarded as converged if r(σj) ≤ tol = 10−8.

Tables 6 and 7 give the number of the Lanczos iterations (denote by iter) and the CPU time in seconds
(denote by CPU) for the four algorithms, and Table 6 is for the smallest 5 positive eigenvalues, Table 7
is for the largest 5 eigenvalues. From Table 6, one can see that, no matter the smallest or the largest
eigenvalues, the iteration number of the four algorithms are competitive, but wbGKL and wbGKL-TR
cost significant less time than BLan and BLan-TR, especially, wbGKL-TR consumes the least amount of
time. Because BLan and BLan-TR need to compute the eigenvalues of

[
0 Tn

Dn 0

]
, which is a nonsymmetric

matrix, thus the two algorithms slower than wbGKL and wbGKL-TR. Due to the saving during the
orthogonalization procedure and solving a much smaller Bn, wbGKL-TR is the faster algorithm.

Table 6. Compute 5 smallest positive eigenvalues for Test 1–3.

Algorithms
Test 1 Test 2 Test 3

CPU iter CPU iter CPU iter

wbGKL 1.5070 149 25.7848 319 15.9308 379
wbGKL-TR 1.0746 179 20.3593 359 5.1302 589

BLan 4.6739 149 87.1670 349 43.9506 379
BLan-TR 2.1243 163 39.1306 393 19.9677 592
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Table 7. Compute 5 largest eigenvalues for Test 1–3.

Algorithms
Test 1 Test 2 Test 3

CPU iter CPU iter CPU iter

wbGKL 0.6387 79 12.4658 179 1.0639 109
wbGKL-TR 0.5284 79 9.9093 179 0.8774 109

BLan 1.4634 79 27.4028 179 6.7574 109
BLan-TR 1.0151 82 18.3415 186 4.1298 113

The accuracy of the last two approximate eigenpairs in Test 1 are shown in Figure 1. From the
figure, we can see that, for the last two eigenpairs, wbGKL and BLan require almost the same
iterations to obtain the same accuracy, and the case of wbGKL-TR and BLan-TR also need almost the
same iterations, which are one or two more restarts than wbGKL and BLan. On one hand, without
solving a nonsymmetric eigenproblem, wbGKL and wbGKL-TR can save much more time than BLan
and BLan-TR. On the other hand, since the dimension of the solving subspace for wbGKL-TR is
bounded by nnb, the savings in the process of orthogonalization and a much smaller singular value
decomposition problem is sufficient to cover the additional restart steps.

restart
1 2 3 4 5 6 7 8 9

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
relative eigenvalue error

e(σnnb
) by wbGKL

e(σnnb
) by wbGKL-TR

e(σnnb
) by BLan

e(σnnb
) by BLan-TR

restart
0 2 4 6 8 10 12

10-9

10-8

10-7

10-6

10-5

10-4

10-3
relative residual norm

r(σnnb
) by wbGKL

r(σnnb
) by wbGKL-TR

r(σnnb
) by BLan

r(σnnb
) by BLan-TR

Figure 1. Errors and residuals of the 2 smallest positive eigenvalues for Test 1 in Example 2.

6. Conclusions

In this paper, we present a weighted block Golub-Kahan-Lanczos algorithm to solve the desired
small portion of smallest or largest positive eigenvalues which are in a cluster. Convergence
analysis is established in Theorems 1 and 2, and bound the errors of the eigenvalue and eigenvector
approximations belonging to an eigenvalue cluster. These results also show the advantages of the block
algorithm over the single-vector version. To make the new algorithm more practical, we introduced a
thick-restart strategy to eliminate the numerical difficulties caused by the block method. Numerical
examples are executed to demonstrate the efficiency of our new restart algorithm.
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