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Abstract: Graph invariants are the properties of graphs that do not change under graph isomorphisms,
the independent set decision problem, vertex covering problem, and matching number problem are
known to be NP-Hard, and hence it is not believed that there are efficient algorithms for solving them.
In this paper, the graph invariants matching number, vertex covering number, and independence number
for the zero-divisor graph over the rings Zpk and Zpkqr are determined in terms of the sets Spi and Spiqj

respectively. Accordingly, a formula in terms of p, q, k, and r, with n = pk, n = pkqr is provided.
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1. Introduction

The independent set decision problem, vertex covering problem, and matching number problem
are known to be classical optimization problems in computer science and are typical examples of
NP-Hard problems [1–3], and hence it is not believed that there are efficient algorithms for solving
them but rather have approximation algorithms. In this paper, the graph invariants matching number,
vertex covering number, and independence number for the zero-divisor graph over the rings Zpk and
Zpkqr are determined in terms of the sets Spi and Spiqj . Zero-divisor graphs were initially introduced
by Beck [4]. Beck was mainly interested in graph coloring. He defined the vertices of the graph
as the elements of a commutative ring R and two different vertices x and y are adjacent if xy = 0.
In later work, Anderson and Livingston introduced the zero-divisor graph of a commutative ring R [5].
They defined the set of vertices of the graph to be the nonzero zero-divisors of R and two different
vertices x and y are adjacent if xy = 0. The set of zero-divisors of R is usually denoted by Z(R) and
Z∗(R) = Z(R)− {0} denotes the nonzero zero-divisors of R. The zero-divisor graph of R, denoted by
Γ(Z∗(R)), is written as Γ(R) usually. The most common definition in the literature of the zero-divisor
graph is that given by Anderson and Livingston [5]. Zero-divisor graph has many applications in
algebra, in fact it can be used to study many properties in ring and number theory. On the other side
we can use ring theory to study many geometric properties of graph theory such as cliques, chromatic
number, and the independence number, for example Akbari et al. [6] studied many properties of
matrix algebra using graph theory and vice versa.

Anderson, Frazier, Lauve, Levy, Livingston, and Shapiro [5,7,8] have studied zero-divisor graph
of a commutative ring extensively. Redmond [9] extended the idea of zero-divisor graph over
commutative ring to non-commutative rings.
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For a graph G with X ⊂ V, G[X] denotes the induced subgraph by a set X. The neighborhood of
a vertex v ∈ V is the set N(v) = {u : u ∈ V and vu ∈ E}, and N(A) = ∪{N(v) : v ∈ A}, for A ⊂ V.

For any graph G, the graph theoretic invariant µ(G), β(G), and α(G) are widely studied because
of their importance in characterizing graphs. Our aim is to characterize these invariants for certain
families of zero-divisor graphs.

Through this paper, we find the matching number, vertex covering number, and the independence
number of zero-divisor graphs of Zn, where the set V(Γ(Zn)) = {x : x ∈ Z∗n and gcd(x, n) 6= 1}.
Let G = (V, E) be a simple graph with V = V(G) and E = E(G), then a set M of nonadjacent edges of
G is called a matching and the matching number, denoted by µ(G), is the maximum size of a matching
in G. We say that G contains a perfect matching, if µ(G) = |V|

2 . Moreover, for a graph G, S ⊂ V is
called vertex cover if every edge in G has an endpoint in S. The minimum cardinality of a vertex cover
is called the vertex covering number, denoted by β(G). According to the definition of vertex covering
number, it is clear that µ(G) ≤ β(G).

An independent set in a graph G is a set of pairwise nonadjacent vertices. The independence
number of G is the maximum size of an independent set in G and is denoted by α(G).

2. Preliminaries

In this section we introduce some preliminary results and elaborate on some known algorithms
that compute the zero-divisor graph of Zn. Some of these algorithms have been developed by Joan
Krone [10]. Moreover, the characterization of independence number in special cases was given
in [11,12], we generalize their work.

For n = pk where p is some prime and k is positive integer, we can find the zero-divisors of
Zpk by taking the numbers 1, 2, . . . , pk−1 − 1 then multiplying those numbers by p. The zero-divisors
can be divided into k− 1 sets according to how many factors of p each divisor has. These sets are
Spi = {spi : gcd(s, p) = 1 and spi < n}, where i ∈ {1, 2, . . . , k− 1}. To build the zero-divisor graph of
Zpk , connect the vertices of the set Spi to the vertices of the set Spj when i + j ≥ k. Using the Euler’s

phi-function we can get the sizes of the Spi , that is |Spi | = pk−i − pk−(i+1).
For n = pkqr where p and q are distinct primes, k and r are positive integers. We can divide the

zero-divisors into three families, Spi , Sqj , and Spiqj where Spi = {spi : gcd(s, pk−i) = 1, gcd(s, q) =

1 and spi < n}, i ∈ {1, 2, . . . , k}, similarly for Sqj . Spiqj = {spiqj : gcd(s, pk−i) = 1, gcd(s, qr−j) =

1, and spiqj < n}, i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , r} excluding the case when both i = k and j = r.
Connect the vertices of Spi to the vertices of Spvqr if i + v ≥ k. Similarly, connect elements of Sqj to
elements of Spkqu if j + u ≥ r. Connect elements of elements of Spiqj to elements of Spvqu if i + v ≥ k
and j + u ≥ r.

AbdAlJawad and Al-Ezeh [12] calculated the size of these sets as shown below.

Lemma 1. [12] For n = pkqr,

1. |Spi | =
{

qr−1 pk−i−1(p− 1)(q− 1), i ∈ {1, . . . , k− 1},
qr−1(q− 1), i = k

2. |Sqj | =
{

pk−1qr−j−1(q− 1)(p− 1), j ∈ {1, . . . , r− 1},
pk−1(p− 1), j = r.

3. |Spiqj | =


pk−i−1qr−j−1(p− 1)(q− 1), i ∈ {1, . . . , k− 1}

and j ∈ {1, . . . , r− 1},
qr−j−1(q− 1), i = k,

pk−i−1(p− 1), j = r.
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The graph of Γ(Zp2) is isomorphic to the complete graph Kp−1. Hence, the independent number,
the matching number, and the vertex covering number are presented in the following Lemma.

Lemma 2. [12] For a graph Γ(Zp2), we have:

1. µ(Γ(Zp2)) =
⌊

p−1
2

⌋
.

2. β(Γ(Zp2)) = p− 2.
3. α(Γ(Zp2)) = 1.

We omit the proof of previous Lemma, since it is clear. We can deduce that the zero-divisor graph
has a perfect matching if p is odd.

Recall that a bipartite graph is a graph where its vertices can be divided into two disjoint sets
of vertices such that every edge of the graph connects a vertex from one set to the other. Hall’s
Theorem [13] guarantees that the maximum matching set could be saturated by X or Y.

Theorem 1. (Hall 1935) [13]. Let G = ((A, B), E) be a bipartite graph. G has a matching saturating A if and
only if |N(S)| ≥ |S| for all S ⊆ A.

From Hall’s Theorem, one can conclude that if G = Kn1,n2 is a complete bipartite graph, then
µ(G) = min{|X|, |Y|}.

3. Matching Number, Vertex Covering Number, and Independence Number of Zero-Divisor
Graph Γ(Zpk), Where p Is Prime and k > 2

In this section we compute the matching number, vertex covering number, and the independence
number of Γ(Zn), for n = pk, k > 2.

First we give an example to clarify our calculations, consider Γ(Z24), the zero divisor set of Z24 is
{2, 4, 6, 8, 10, 12, 14}. In Γ(Z24), S2 = {2, 6, 10, 14}, S22 = {4, 12}, S23 = {8}, and the graph is shown
in Figure 1. The induced subgraph of Γ(Z24) over the set of vertices S2 and S22 are the empty graph
and complete graph respectively, moreover for each vertex x ∈ S2 and y ∈ S23 , xy ∈ E(Γ(Z24)). Since
|S23 | = 1, any edge in the induced subgraph of Γ(Z24) over the vertex set S2 ∪ S23 will form a maximum
matching number of this subgraph. On the other hand the induced subgraph over the vertex set S22 is

the complete graph, so the maximum matching set of this subgraph is
⌊
|S22 |

2

⌋
.

12

4
2

6

8

10
14

Figure 1. Γ(Z16).
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Finally, since for each x ∈ S22 and y ∈ S23 , xy ∈ E(Γ(Z24)) we have

µ(Γ(Z24)) = |S2|+
⌊
|S22 |

2

⌋
.

For the vertex covering number, since for each vertex x ∈ S2 and y ∈ S23 , xy ∈ E(Γ(Z24)),
the vertex set S23 can be considered to be minimum vertex cover of the induced subgraph over the
vertex set S2 ∪ S23 . On the other hand, the induced subgraph over the vertex set S22 is the complete
graph, so the vertex cover number of this subgraph is |S22 | − 1, therefore

β(Γ(Z24)) = |S23 |+ |S22 | − 1.

Theorem 2. For a graph Γ(Zpk ), k ≥ 3 and p is a prime number, then:

1. µ(Γ(Zpk )) =



k−1
∑

i= k+1
2

|Spi |, k is odd,
∣∣∣∣∣Sp

k
2

∣∣∣∣∣
2

+
k−1
∑

i= k
2+1
|Spi |, k is even,

2. β(Γ(Zpk )) =


k−1
∑

i= k+1
2

|Spi |, k is odd,∣∣∣∣Sp
k
2

∣∣∣∣− 1 +
k−1
∑

i= k
2+1
|Spi |, k is even.

Proof. Consider the set Spi , Spk−i for some i > k
2 . Since i > k

2 we have |Spi | < |Spk−i |, so we can define
a one to one function fi : Spi −→ Spk−i . Since i + k− i = k we have for each x ∈ Spi and y ∈ Spk−i ,
xy ∈ E(Γ(Zpk )), therefore

Mi = {x fi(x) : x ∈ Spi} ⊂ E(Γ(Zpk )).

Moreover, since fi is one to one function, this guaranties that Mi is a matching set.

Case 1. k is odd number and k ≥ 3.
Since k+1

2 ≤ i < k, Spi induces a complete subgraph, so for the induce subgraph over the vertex set

Spi ∪ Spk−i , Mi forms a maximum matching set, and hence ∪k−1
i= k+1

2
Mi form a maximum matching set of

Γ(Zpk ), therefore

µ(Γ(Zpk )) =
k−1

∑
i= k+1

2

|Spi |.

Regarding the vertex covering number, observing that for every edge xy ∈ E(Γ(Zpk )) either x ∈ Spi or

y ∈ Spi for some i > k
2 , we have ∪k−1

i= k+1
2

Spi form a vertex cover set, the minimality of this vertex cover set can

be obtained from the fact that whenever i > k
2 we have |Spi | < |Spk−i |.

Case 2. k is even number In addition to scenario in case 1, S
p

k
2

induces a complete subgraph of Γ(Zpk ),

observing that the maximum matching set of a complete graph Km is
⌊m

2
⌋

we have

µ(Γ(Zpk )) =
k−1

∑
i= k

2+1

|Spi |+

 |Sp
k
2
|

2
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For this case of the vertex covering number, since the induced subgraph over the vertex set S
p

k
2

is the complete

subgraph, the edges of this subgraph have no end points in ∪k−1
i= k

2+1
Spi . So, the vertex cover number of Γ(Zpk ) is

β(Γ(Zpk )) = |S
p

k
2
| − 1 +

k−1

∑
i= k

2+1

|Spi |

Using Lemma 1 and the above Theorem, we have:

Corollary 1. If n = pk, for prime p and positive integer k:

1. µ(Γ(Zpk )) =

p
k−1

2 − 1, k is odd,

p
k
2 +p

k
2−1

2 − 1, k is even.

2. β(Γ(Zpk )) =

{
p

k−1
2 − 1, k is odd,

p
k
2 − p− 1, k is even.

In [12], the independence number of Γ(Zpk ) was calculated as follows:

Theorem 3. [12] For a graph Γ(Zpk ), k ≥ 3 and p is a prime number, then:

α(Γ(Zpk )) =


k−1

2
∑

i=1
|Spi |, k is odd,

1 +
k
2−1
∑

i=1
|Spi |, k is even.

Using Lemma 1 and the above Theorem, we have:

Corollary 2. If n = pk, for prime p and positive integer k:

α(Γ(Zpk )) =


1, k = 2,

pk−1 − p
k−1

2 , k is odd,

1 + p
k
2 − p

k
2 , k is even.

4. Γ(Zn), n = pkqr , Where p, q Are Prime Numbers and r, k > 2

Now, we will evaluate the matching number, covering vertex number, and the independence
number, for Γ(Zn) with n = pkqr. We will divide our work into scenarios depending on the values of k
and r.

Theorem 4. If n = pkqr, where k and r are even, then the matching number of Γ(Zn), is given by:

µ(Γ(Zn)) =
r

∑
j= r

2
(j,i)/∈{( r

2 , k
2 ),

k

∑
i= k

2
(r,k)}

|Spiqj |+
r

∑
j= r

2+1

k
2−1

∑
i=0

min
{
|Spiqj |, |Spk−iqr−j |

}
+

 |Sp
k
2 q

r
2
|

2


.
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Proof.

1. For k
2 ≤ i ≤ k, r

2 ≤ j ≤ r and (i, j) /∈ {( k
2 , r

2 ), (k, r)}, whenever x ∈ Spiqj and y ∈ Spk−iqr−j we have
xy ∈ E(Γ(Zn)).
Since the cardinality of Spiqj is less than the cardinality of Spk−iqr−j we can define a one to one
function fij : Spiqj −→ Spk−iqr−j .
Observing that the induced subgraph of Γ(Zn) over the vertex set Spiqj and the vertex set Spk−iqr−j

are the complete graph and the empty graph respectively, we have

Mij = {x fij :
k
2
≤ i ≤ k,

r
2
≤ j ≤ r and (i, j) /∈ {( k

2
,

r
2
), (k, r)}}

form a maximum matching set for the induced subgraph over the vertex set Spiqj ∪ Spk−iqr−j ,
therefore ∪ k

2≤i≤k r
2≤j≤r(i,j)/∈{( k

2 , r
2 ),(k,r)}Mij form a maximum matching set for the induced subgraph

over the vertex set ∪ k
2≤i≤k r

2≤j≤r(i,j)/∈{( k
2 , r

2 ),(k,r)}

(
Spiqj ∪ Spk−iqr−j

)
2. For 0 ≤ i ≤ k

2 − 1 and r
2 + 1 ≤ j ≤ r, the induced subgraph over the vertex set Spiqj and the

vertex set Spk−iqr−j are the empty graphs, moreover for any x ∈ Spiqj and y ∈ Spk−iqr−j we have
xy ∈ E(Γ(Zn)), so the induced subgraph over the vertex set Spiqj ∪ Spk−iqr−j is the complete
bipartite graph, so using Hall’s theorem the matching number of the induced subgraph over the
vertex set Spiqj ∪ Spk−iqr−j is min

{
|Spiqj |, Spk−iqr−j

}
3. For i = k

2 and j = r
2 , the induced subgraph over Spiqj is the complete graph, so the matching

number of the induced subgraph over the vertex set Spiqj is

⌊ |S
p

k
2 q

r
2
|

2

⌋
.

Collecting the results in the above cases we get the result.

Using Lemma 1 and above Theorem, we have:

Corollary 3. For n = pkqr, where k and r are even. Then:

µ(Γ(Zn)) =n
1
2

(
−1
pq

+
1
p
+

1
q

)
+

(
1− 1

p

)(
1− 1

q

) k
2−1

∑
i=1

r−1

∑
j= r

2+1
min

{
pk−iqr−j, piqj

}
+

(
1− 1

p

) k
2−1

∑
i=1

min
{

pk−i, qr−1 pi(q− 1)
}
+

(
1− 1

q

) r−1

∑
j= r

2+1
min

{
pk−1qr−j(p− 1), qj−1

}
+

min
{

pk
(

1− 1
p

)
, qr
(

1− 1
q

)}
+⌊

1
2

p
k
2 q

r
2

(
1− 1

p

)(
1− 1

q

)⌋
+ 1.

Moreover, using analysis of Theorem 4, one can give the value of β(Γ(Zn)) and the value of
α(Γ(Zn)) with k and r are even, where [12] gave a partial result of α(Γ(Zn)), as follows.
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Corollary 4. For n = pkqr, where k and r are even, then:

1. The covering number of Γ(Zn), is equal to:

β(Γ(Zn)) =
r
∑

j= r
2

(j,i) 6=

k
∑

i= k
2

(r,k)

|Spiqj |+
r
∑

j= r
2+1

k
2−1
∑

i=0
min

{
|Spiqj |, |Spk−iqr−j |

}
−1.

2. The independence number of Γ(Zn), is equal to:

α(Γ(Zn)) = 1 +
r
2
∑

j=0
(j,i)/∈{(0,0),

k
2
∑

i=0
( r

2 , k
2 )}

|Spiqj |+
r
∑

j= r
2+1

k
2−1
∑

i=0
max{|Spiqj |, |Spk−iqr−j |}.

Using Lemma 1 and Corollary 4, we have:

Corollary 5. For n = pkqr, where k and r are even. Then:

1. β(Γ(Zn)) =(q
r
2 − 1)(p

k
2 − 1) + p

k
2 + q

r
2 +

r−1

∑
j= r+1

2

k
2−1

∑
i=1

min
{

pk−iqr−j(1− 1
p
)(1− 1

q
), piqj(1− 1

p
)(1− 1

q
)

}
+

min
{

pk(1− 1
p
), qr(1− 1

q
)

}
− 3.

2. α(Γ(Zn)) =1 + pk−1qr−1(p− 1)
(

1− 1
q

) r
2−1

+ (q− 1)
(

1− 1
p

) k
2
+

pk−1qr−1
(

1− 1
q

) r
2−1 (

1− 1
p

) k
2
+ (q− 1)q

r
2−1 pk−1

(
1− 1

p

) k
2−1

+ pk−1q
r
2−1(q− 1)(p− 1)+

(
1− 1

p

)(
1− 1

q

) r−1

∑
j= r

2+1

k
2−1

∑
i=1

max
{

pk−iqr−j, piqj
}
+

(
1− 1

p

) k
2−1

∑
i=1

max
{

pk−i, qr−1 pi(q− 1)
}
+

(
1− 1

q

) r−1

∑
j= r

2+1
max

{
pk−1qr−j(p− 1), qj−1

}
+

max
{

pk
(

1− 1
p

)
, qr
(

1− 1
q

)}
.

By similar approach with some minor differences, we get the following Theorems.

Theorem 5. If n = pkqr, where k is even and r is odd, then the matching number of Γ(Zn), is given by:

µ(Γ(Zn)) =
r

∑
j= r+1

2
(j,i) 6=(r,k)

k

∑
i= k

2

|Spiqj |+
r

∑
j= r+1

2

k
2−1

∑
i=0

min
{
|Spiqj |, |Spk−iqr−j |

}

Using Lemma 1 and above Theorem, we have:
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Corollary 6. For n = pkqr, where k is even and r is odd. Then:

µ(Γ(Zn)) =pk−1
(

1
p

) k
2−1 (

1− 1
p

) k
2
+

qr−1
(

1
q

) r−1
2
(

1− 1
q

) r−1
2
+

pk−1qr−1 p−
k
2+1

(
1− 1

p

) k
2
(

1
q

) r−1
2
(

1− 1
q

) r−1
2
+

r−1

∑
j= r+1

2

min
{

pk−1qr−j−1(p− 1)(q− 1), qj−1(q− 1)
}
+

k
2−1

∑
i=1

min
{

pk−i−1(p− 1), pi−1qr−1(p− 1)(q− 1)
}
+

min
{

pk−1(p− 1), qr−1(q− 1)
}
+

r−1

∑
j= r+1

2

k
2−1

∑
i=1

min
{

pk−i−1qr−j−1(p− 1)(q− 1), pi−1qj−1(p− 1)(q− 1)
}

.

Theorem 6. If n = pkqr, where k and r are odd, then the matching number of Γ(Zn), is given by:

µ(Γ(Zn)) =
r

∑
j= r+1

2
(j,i) 6=(r,k)

k

∑
i= k+1

2

|Spiqj |+
r

∑
j= r+1

2

k−1
2

∑
i=0

min
{
|Spiqj |, |Spk−iqr−j |

}
.

Using Lemma 1 and above Theorem, we have:

Corollary 7. For n = pkqr, where k and r are odd. Then:

µ(Γ(Zn)) =(p
k−1

2 − 1)(q
k−1

2 − 1) + p
k−1

2 + q
r−1

2 − 2+

r−1

∑
j= r+1

2

k−1
2

∑
i=1

min
{

pk−iqr−j(1− 1
p
)(1− 1

q
), piqj(1− 1

p
)(1− 1

q
)

}
+

k−1
2

∑
i=1

min
{

pk−i(1− 1
p
), qr pk−i(1− 1

p
)(1− 1

q
)

}
+

r−1

∑
j= r+1

2

min
{

pkqr−j(1− 1
p
)(1− 1

q
), qj(1− 1

q
)

}
.

Corollary 8. For n = pkqr, where k and r are odd or one of them is odd and one is even. Then the covering
vertex number of Γ(Zn), denoted by β(Γ(Zn)), is equal to µ(Γ(Zn)).

Corollary 9. For n = pkqr, where k is even and r is odd. Then the independence number of Γ(Zn), denoted by
α(Γ(Zn)), is equal to:

r−1
2
∑

j=0
(j,i) 6=(0,0)

k
2
∑

i=0
|Spiqj |+

r
∑

j= r+1
2

k
2−1
∑

i=0
max{|Spiqj |, |Spk−iqr−j |}.
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Corollary 10. For n = pkqr, where k and r are odd. Then the independence number of Γ(Zn), denoted by
α(Γ(Zn)), is equal to:

r−1
2
∑

j=0
(j,i) 6=(0,0)

k−1
2
∑

i=0
|Spiqj |+

r
∑

j= r+1
2

k−1
2
∑

i=0
max{|Spiqj |, |Spk−iqr−j |}.

Remark 1. For Γ(Zn), one can see that β(Γ(Zn))+ α(Γ(Zn)) = |V(Γ(Zn))|.

Further Works. This work can be investigated further for any positive integer n.

5. Conclusions

Graph invariants are the properties of graphs that do not change under graph isomorphisms.
In this paper, we provided a technique that can be used to find some graph invariants of the
zero-divisor graphs of Zpk and Zpkqr . This technique can be used to calculate these graphs invariants
of Γ(Zn) for any n depending on the factorization of n.
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