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Abstract: In this paper, we consider a special nonlinear expectation problem on the special parameter
space and give a necessary and sufficient condition for the existence of the solution. Meanwhile, we
generalize the necessary and sufficient condition to the two-dimensional moment problem. Moreover, we
use the maximum entropy method to carry out a kind of concrete solution and analyze the convergence
for the maximum entropy solution. Numerical experiments are presented to compute the maximum
entropy density functions.
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1. Introduction

The sublinear expectation Ê introduced by Peng [1,2] can be regarded as the supremum of a family of
linear expectations {Eθ : θ ∈ Θ}, that is,

Ê[ϕ(X)] = sup
θ∈Θ

Eθ[ϕ(X)], (1)

where ϕ(x) is a local Lipschitz continuous function and Θ is the parameter space.
It is evident that the sublinear expectation defined by (1) depends on the choice of parameter space Θ.

Different spaces will result in different nonlinear expectations. In particular, let ϕ(x) = xn and:

µ̄n = Ê[Xn] ≥ µ
n
= −Ê[−Xn], n = 1, 2, · · · , N, (2)

then the parameter space Θ can be chosen as the following form:

Θ = [µ
1
, µ̄1]× [µ

2
, µ̄2]× · · · × [µ

N
, µ̄N ]. (3)

When N = 1, Peng [3] gave the definition of the independent and identically distributed random
variable and proved the weak law of large numbers (LLN) under the sublinear expectation and
Condition (2). Furthermore, if Θ = {0} × [µ

2
, µ̄2], then Peng [4–8] defined the G-normal distribution

and presented a new central limit theorem (CLT) under Ê. The new LLN and CLT are the theoretical
foundations in the framework of sublinear expectation.

The calculation of Ê(ϕ(X)) can be performed by solving the following nonlinear partial
differential equation:
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
∂u
∂t
− 1

2
((

∂2u
∂x2 )

+ − σ2(
∂2u
∂x2 )

−) = 0, (t, x) ∈ [0,+∞)×R,

u(0, x) = ϕ(x), x ∈ R,
(4)

whose solution is u(t, x) = Ê[ϕ(x +
√

tX)]. When the initial value ϕ(x) is a convex function, Peng [8] gave
the expression of Ê[ϕ(X)] as follows:

Ê[ϕ(X)] =
1√

2πµ̄2
2

∫ +∞

−∞
ϕ(x) exp{− x2

2µ̄2
2
}dx. (5)

If ϕ(x) is a concave function, the variance µ̄2
2 in (5) will be replaced by µ2

2
. For neither the concave nor

the convex case, Hu [9] derived the explicit solutions of Problem (4) with the initial condition ϕ(x) = xn,
n ≥ 1. Gong [10] used the fully-implicit numerical scheme to compute the nonlinear probability under
the G-expectation determined by the G-heat Equation (4) with the initial condition ϕ(x) = 1{x<0}, x ∈ R.
Here, 1{x<0} denotes the indicator function of the set {x|x < 0}. What all these methods mentioned
above have in common is that G-expectation is calculated via solving the nonlinear partial differential
Equation (4) with the particular initial condition ϕ(x). However, because of the nonlinear term, it is not
easy to find a solution of (4) with general continuous initial function ϕ(x).

Based on the above reasons, in this paper, we consider a kind of special parameter space Θ defined
in (3) and convert the sublinear expectation in (1) into the following two series of moment problems: find
the probability density functions p̄(x) and p(x) such that:

µ̄n =
∫ +∞

−∞
xn p̄(x)dx (6)

and:
µ

n
=
∫ +∞

−∞
xn p(x)dx, (7)

respectively, where n = 0, 1, · · · , N and N = 2M. That is, we will approximately find a special class of
nonlinear expectations Ê, which satisfies:

Ê[Xn] = sup
θ∈Θ

∫
R

xn pθ(x)dx = sup
µ

n
≤θn≤µ̄n

∫
R

xn pθ(x)dx = µ̄n

and:
−Ê[−Xn] = − sup

θ∈Θ

∫
R
(−xn)pθ(x)dx = − inf

µ
n
≤θn≤µ̄n

∫
R

xn pθ(x)dx = µ
n
,

where θ = (θ0, θ1, · · · , θN).
The rest of this article is organized as follows. In Section 2, we present an alternative sufficient and

necessary condition of the existence of solutions p̄(x) and p(x) that satisfy (6) and (7), respectively. In
Section 3, we use the maximum entropy method to find the concrete solutions and analyze the convergence
of maximum entropy solutions. In Section 4, we conduct the numerical simulations to calculate the
maximum entropy density functions.

2. Existence of Solutions for Moment Problems

According to Theorems 1.35 and 1.36 in Akihito [11], the sequences {µ̄j}N
j=0 and {µ

j
}N

j=0 should

satisfy some conditions if we use them to determine the probability density functions. Therefore, in this
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section, we consider the sufficient and necessary conditions to the existence of solutions for the moment
Problems (6) and (7), respectively.

Let:

∆̄2M =


µ̄0 µ̄1 · · · µ̄M
µ̄1 µ̄2 · · · µ̄M+1
...

...
...

µ̄M µ̄M+1 · · · µ̄2M

 and ∆2M =


µ

0
µ

1
· · · µ

M
µ

1
µ

2
· · · µ

M+1
...

...
...

µ
M

µ
M+1

· · · µ
2M

 (8)

be the Hankel matrices of the given sequences {µ̄j}2M
j=0 and {µ

j
}2M

j=0, respectively.

The following theorem gives an alternative sufficient and necessary condition for the existence of
p̄(x), which satisfies (6).

Theorem 1. A sufficient and necessary condition that the sequence {µ̄j}N
j=0 determines the probability density

function p̄(x) is that {µ̄j}N
j=0 satisfies one of the following two conditions:

(a) For any nonvanishing vector XT
m = (x0, x1, · · · , xm) (1 ≤ m ≤ M),

µ̄2mXT
m−1∆̄2(m−1)Xm−1 > (ŪT

mXm−1)
2;

(b) If there exist m0 ≥ 1 and nonvanishing vector XT
m0

= (x0, x1, · · · , xm0) such that XT
m0

∆̄2m0Xm0 = 0, then:

|∆̄2m| = 0

for m0 ≤ m ≤ M, where ŪT
m = (µ̄m, · · · , µ̄2m−1).

Proof. We prove first the necessity. Let X be a continuous random variable with density function p̄(x),
whose original moments are:

µ̄m = E[Xm] =
∫

R
xm p̄(x)dx, m = 0, 1, · · · , 2M, (9)

where µ̄0 = 1.
For any m + 1-dimensional nonvanishing vector Xm = (x0, x1, · · · , xm)T , we can check that:

XT
m∆̄2mXm = E[(

m

∑
j=0

xjX j)2], m = 0, 1, · · · , M. (10)

In fact, taking m = 0, we have:
XT

0 ∆̄0X0 = x2
0 = E[x2

0], (11)

which means that (10) holds for m = 0.
Assume that the Equation (10) holds for 0 ≤ m ≤ M− 1, that is,

XT
M−1∆̄2(M−1)XM−1 = E[(

M−1

∑
j=0

xjX j)2]. (12)

Then, we consider the case of m = M and note that the matrix ∆̄2M can be rewritten as:
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∆̄2M =

∆̄2(M−1) ŪM

ŪT
M µ̄2M

 . (13)

Multiply (13) by XT
M and XM, respectively; it follows from (9) and (12) that:

XT
M∆̄2MXM = (XT

M−1, xM)

∆̄2(M−1) ŪM

ŪT
M µ̄2M

(XM−1

xM

)

= XT
M−1∆̄2(M−1)XM−1 + 2xMŪT

MXM−1 + µ̄2Mx2
M

= E[(
M−1

∑
j=0

xjX j)2] + 2xM

M−1

∑
j=0

µ̄M+jxj + µ̄2Mx2
M

= E[(
M−1

∑
j=0

xjX j)2] + 2xM

M−1

∑
j=0

xjE[XM+j] + x2
ME[X2M]

= E[(
M

∑
j=0

xjX j)2] ≥ 0.

(14)

By using mathematical induction, we know that (10) holds for m = 0, 1, · · · , M. Moreover,
Equation (10) means that the Hankel matrices are nonnegative definite.

Now, we prove the necessary condition. Because of the nonnegative definiteness of ∆̄2m (0 ≤ m ≤ M),
there are two possible cases for XT

m∆̄2mXm, that is XT
m∆̄2mXm > 0 for any m-dimensional nonzero vector

Xm or XT
m0

∆̄2m0Xm0 = 0 for some m0-dimensional nonzero vector Xm0 . Thus, we divide the proof into
two cases.

Case 1: Let XT
m∆̄2mXm= E[(

m

∑
j=0

xjX j)2] > 0 for any nonzero vector Xm (1 ≤ m ≤ M); by (14), we have:

E[(
m

∑
j=0

xjX j)2] = XT
m−1∆̄2(m−1)Xm−1 + 2xmŪT

mXm−1 + µ̄2mx2
m. (15)

We regard (15) as a quadratic equation in one variable with respect to xm. Since the value of (15) is
greater than zero, so its discriminant is less than zero, i.e.,

(ŪT
mXm−1)

2 − µ̄2mXT
m−1∆̄2(m−1)Xm−1 < 0. (16)

This implies that (a) in Theorem 1 holds for m = 1, 2, · · · , M.
Case 2: Let XT

m0−1∆̄2(m0−1)Xm0−1 = 0 for some nonvanishing vector Xm0−1 (2 ≤ m0 ≤ M + 1).
For m > m0 − 1, let m = m0 − 1 + k0, k0 = 1, 2, · · · , M − m0 + 1. We choose an m × 1 vector XT

m =

(XT
m0−1, 0, · · · , 0︸ ︷︷ ︸

k0

) and multiply ∆̄2m by XT
m and Xm. Here, we consider only the case of k0 = 1 as an

example, and the same method can be used to analyze for 2 ≤ k0 ≤ M−m0 + 1. Then,

XT
m0

∆̄2m0Xm0 = (XT
m0−1, 0)

 ∆̄2(m0−1) Ūm0

ŪT
m0

µ̄2m0

( Xm0−1

0

)
= XT

m0−1∆̄2(m0−1)Xm0−1.

(17)
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Since ∆̄2m0 is nonnegative definite and XT
m0−1∆̄2(m0−1)Xm0−1 = 0, by (17), it follows that |∆̄2m0 | = 0,

that is (b) holds.
Next, we prove the sufficiency via its converse-negative proposition. In other words, we need to

show that there is no probability density function p(x) such that the corresponding moments {µ̄j}N
j=0

satisfy: there exist a positive integer m0 (2 ≤ m0 ≤ M + 1) and an m0-dimensional nonzero vector Xm0−1

such that:
(i) µ̄2m0XT

m0−1∆̄2(m0−1)Xm0−1 ≤ (ŪT
m0

Xm0−1)
2;

(ii) if XT
m0−1∆̄2(m0−1)Xm0−1 = 0, then there exists a positive integer m1 > m0 − 1 such that |∆̄2m1 | > 0.

Now, we carry out the proof by contradiction. Suppose such a density function p̄(x) exists.
If XT

m0
∆̄2m0 Xm0 > 0 holds for any m0 + 1-dimensional nonvanishing vector, then it follows from (15) that:

(ŪT
m0

Xm0−1)
2 − µ̄2m0 XT

m0−1∆̄2(m0−1)Xm0−1 < 0. (18)

The above inequality contradicts Condition (i).
If the moments µ̄j satisfy Condition (ii), then there exists an m0-dimensional nonzero vector such

that XT
m0−1∆̄2(m0−1)Xm0−1 = 0. By Condition (ii), without loss of generality, we let m1 = m0 and repeat the

same procedure for the derivation of (17) to get that:

0 < XT
m0

∆̄2m0Xm0 = XT
m0−1∆̄2(m0−1)Xm0−1 = 0, (19)

where XT
m0

= (XT
m0−1, 0). Obviously, the relationship in (19) is contradictory.

Then, we complete the proof of necessity.

Remark 1. We use µ
m

, ∆2m, and Um to replace µ̄2m, ∆̄2m, and Ūm, respectively, in Theorem 1, then we get the
sufficient and necessary conditions to the existence of the probability density function p(x).

Note that Theorem 1 is presented in one-dimensional random variable space. Now, we extend
this theorem to two-dimensional case. Let X and Y be any continuous random variables with the joint
probability density function pθ(x, y). The two-dimensional moment problems are defined by: find the
joint probability density function p̄(x, y) and p(x, y) such that:

µ̄ij =
∫
R

∫
R

xiyj p̄(x, y)dxdy, i, j ∈ M (20)

and:
µ

ij
=
∫
R

∫
R

xiyj p(x, y)dxdy, i, j ∈ M, (21)

where the set:
M = {(i, j)|i, j = 0, 1, · · · , 2M and 0 ≤ i + j ≤ 2M}.

Here, we still take the sequence {µ̄ij}i,j∈M for example and present the main results in the following
theorem without proof. Let:
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Γ̄2m+1 :=



µ̄00 µ̄10 · · · µ̄m0 µ̄01 µ̄02 · · · µ̄0m
µ̄10 µ̄20 · · · µ̄m+1,0 µ̄11 µ̄12 · · · µ̄1m

...
...

...
...

...
...

µ̄m0 µ̄m+1,0 · · · µ̄2m,0 µ̄m1 µ̄m2 · · · µ̄mm

µ̄01 µ̄11 · · · µ̄m1 µ̄02 µ̄02 · · · µ̄0,m+1
...

...
...

...
...

...
µ̄0m µ̄1m · · · µ̄mm µ̄0,m+1 µ̄0,m+2 · · · µ̄0,2m


(22)

be the Hankel matrix generated by the given sequence {µ̄ij}i,j∈M.

Theorem 2. The sequence {µ̄ij}i,j∈M can determine the density functions p̄N(x, y) if and only if it satisfies one of
the following conditions:
(a) For any m− 1-dimensional vectors X̄T

m−1 = (x1, · · · , xm−1), YT
m−1 = (y1, · · · , ym−1) and m-dimensional

vectors XT
m = (x0, · · · , xm−1), ȲT

m = (y1, y2 · · · , ym) (1 ≤ m ≤ M),

µ̄2m,0ZT
2m+1Γ̄2m+1Z2m+1 > (ŪT

0·Xm + ŪT
m·Ym−1)

2

and:
µ̄0,2mZT

2m+1Γ̄2m+1Z2m+1 > (ŪT
·mX̄m−1 + ŪT

0·Ȳm)
2;

(b)If there exists m0 ≥ 1 such that ZT
2m0+1Γ̄2m0+1Z2m0+1 = 0, then:

|Γ̄2l+1| = 0

for m0 ≤ l ≤ M, where the vectors ZT
2m−1 = (XT

m, xm, YT
m−1, ym) and ŪT

·0 = (µ̄m0, · · · , µ̄2m−1,0), ŪT
0· =

(µ̄0m, · · · , µ̄0,2m−1) and ŪT
·m = (µ̄1m, · · · , µ̄m−1,m), ŪT

m· = (µ̄m1, · · · , µ̄m,m−1).

3. Maximum Entropy for Moment Problems

In Section 2, we discussed the existence of solutions of the moment problems. Now, we will use the
maximum entropy method to get the solutions for Problems (6) and (7). Moreover, we will consider the
convergence of maximum entropy density functions.

Given the first N + 1 moments µ̄0, µ̄1, · · · , µ̄N , the core idea of the maximum entropy method is to
find the probability density function p̄N(x), such that:

µ̄j =
∫
R

xj p̄N(x)dx, j = 0, 1, · · · , N, (23)

where µ̄0 = 1.
The Lagrange operator can be defined as:

L( p̄, λ̄0, · · · , λ̄N) = −
∫
R

p̄(x) ln p̄(x)dx +
N

∑
j=0

λ̄j(
∫
R

xj p̄(x)dx− µ̄j), (24)

where λ̄j, j = 0, 1, · · · , N are the Lagrange multipliers.
By the functional variation with respect to p̄(x), we have:

p̄N(x) = exp{−
N

∑
j=0

λ̄jxj} = max
p̄
{−

∫
R

p̄(x) ln p̄(x)dx} (25)
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and (23) holds. The values of λ̄j can be calculated by solving a system of N + 1 equations resulting from the
moments conditions (23). Here, we take N = 2 as an example and work out the values of λ̄j (j = 0, 1, 2) as:

λ̄0 = µ̄2
1 + ln

√
2π(µ̄2 − µ̄2

1), λ̄1 = − µ̄1

µ̄2 − µ̄2
1

, λ̄2 =
1

2(µ̄2 − µ̄2
1)

.

So far, we have considered the existence of the solutions of the moment Problems (6) and (7) for all
N ≥ 1. According to Theorem 3.3.11 in Durrett [12], we know that the probability density function p̄(x) is
also unique in the weak convergence (see (27)) as long as its moments {µ̄j}+∞

j=0 satisfy the conditions (a)
and (b) in Theorem 1 and:

lim sup
m→+∞

µ̄1/2m
2m
2m

< ∞. (26)

By the analysis in Frontini [13], we have the weak convergence for the maximum entropy solution
p̄N(x) as follows:

lim
N→+∞

∫
R

p̄N(x) ln p̄N(x)dx =
∫
R

p̄(x) ln p̄(x)dx. (27)

Remark 2. By an argument analogous to the one-dimensional case, we can use the maximum entropy method
to solve a concrete joint probability density function p̄N(x, y) for the two-dimensional moment problem (20).
The detailed process is shown in the next section and need not be repeated here.

By Theorem 2 and Theorem 14.20 in Schmüdgen [14], if the marginal moments {µ̄m·}+∞
2m=0 and {µ̄·m}+∞

2m=0
satisfy Conditions (a) and (b) in Theorem 2 and the following multivariate Carleman condition [14]:

+∞

∑
m=0

µ̄
− 1

2m
2m,i =

+∞

∑
m=0

µ̄
− 1

2m
i,2m = +∞

for 0 ≤ i ≤ N, then there exists a unique joint probability density function p̄(x, y) satisfying (20).
The convergence rate for the maximum entropy density p̄N(x, y) has been analyzed in Frontini [13], and the

results are analogous to (27).

4. Numerical Experiments

In this section, we conduct numerical experiments to calculate the two-dimensional maximum entropy
density functions. In the numerical experiments, we use the maximum entropy method proposed in
Section 3 to calculate the joint probability density functions for the weekly closing price of stock X and the
weekly rate of return Y of Shanghai A shares.

By random sampling, we collect the data about the maximum (Table 1) and minimum (Table 2) values
of the mixed sample moments of orders one and two for X and Y, respectively. That is,

Table 1. The values for the maximum value of the moments.

Moments µ̄00 µ̄10 µ̄20 µ̄11 µ̄01 µ̄02

Values 1 30.781 1.5095 × 103 1.0158 0.033 0.0086

Table 2. The values for the minimum value of the moments.

Moments µ
00

µ
10

µ
20

µ
11

µ
01

µ
02

Values 1 14.311 343.1627 −1.2451 −0.087 0.0031
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The two-dimensional maximum entropy problem is defined as: find a probability density function
p̄2(x, y) such that:

p̄2(x, y) = max
p̄
{−

∫
R

∫
R

p̄(x, y) ln p̄(x, y)dxdy} (28)

and:
µ̄kj =

∫
R

∫
R

xkyj p̄2(x, y)dxdy (29)

for k, j = 0, 1, 2 and 0 ≤ k + j ≤ 2.
Take notice of the formula as:

p̄2(x, y) = p̄2(y|x) p̄2(x), (30)

where p̄2(y|x) denotes the maximum entropy conditional density function. From (30), we can obtain the
joint density function p̄2(y|x) as long as we deduce p̄2(y|x) and p̄2(x). Let:

µ̄0j(x) =
∫

R
yj p̄2(y|x)dy, j = 0, 1, 2, (31)

be the conditional moments of the random variable Y under X, which satisfy:∫
R

xkµ̄0j p̄2(x)dx = µ̄kj (32)

for k, j = 0, 1, 2 and 0 ≤ k + j ≤ 2.
According to Table 1 and the definition (22), we have:

Γ̄3 =

 1 30.781 0.033
30.781 1509.5 1.0158
0.033 1.0158 0.0086

 and ∆̄2· =

(
1 30.781

30.781 1509.5

)
. (33)

It is easy to verify that Γ̄3 and ∆̄2· are positive definite. Hence, by Theorem 1, there exists a density
function p̄2(x) determined by {µ̄i0, i = 0, 1}.

To derive the explicit expressions of p̄2(x, y), we need to construct the conditional moments
{µ̄0j(x)}2

j=0 on the base of (32). Without loss of generality, we suppose µ̄01(x) is a constant. Combining (32)
yields that: 

µ̄00(x) = 1,

µ̄01(x) = µ̄01,

µ̄02(x) = e−δ̄x2
+ µ̄2

01, δ̄ = 40.7624.

(34)

By calculation, we derive the expressions of p̄2(x, y) as follows:

p̄2(x, y) = 1√
2π

exp{−1− λ̄0 − λ̄1x− λ̄2x2

− 1
2 µ̄2

01e−δ̄x2
+ µ̄01ye−δ̄x2 − 1

2 y2e−δ̄x2},
(35)

where λ̄0 = 3.9276, λ̄1 = −0.0548, and λ̄2 = 0.0009.
In the same way, with the data in Table 2, we can obtain the following probability density function

p
2
(x, y) determined by {µ

k,j
, k, j = 0, 1, 2 and 0 ≤ k + j ≤ 2}.
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p
2
(x, y) =

1√
2π

exp{−1− λ0 − λ1x−λ2x2

− 1
2 µ2

01
e−δx2

+ µ
01

ye−δx2 − 1
2 y2e−δx2},

(36)

where λ0 = 3.1240, λ1 = −0.1034, λ2 = 0.0036, and δ = 773.7203.
Figures 1 and 2 show visually the sketches of the marginal entropy density functions p̄2(x), p

2
(x)

(derived in (25) with N = 2) and the joint entropy density functions p̄2(x, y), p
2
(x, y) (derived in (35)

and (36)), respectively.

Figure 1. The figures above show the figures of the maximum entropy marginal density p̄2(x) (left) and
joint density p̄2(x, y) (right) determined by {µ̄j0}2

j=0 and {µ̄ij}2
i,j∈M, respectively.

Figure 2. The figures above show the figures of the maximum entropy marginal density p
2
(x) (left) and

joint density p
2
(x, y) (right) determined by {µ

j0
}2

j=0 and {µ
ij
}2

i,j∈M, respectively.
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