Article

The A_{α}-Spectral Radii of Graphs with Given Connectivity

Chunxiang Wang ${ }^{1, \dagger}$ and Shaohui Wang ${ }^{2, *, t}$ (D)
1 School of Mathematics and Statistics and Hubei key Laboratory Mathematics Sciences, Central China Normal University, Wuhan 430079, China; wcxiang@mail.ccnu.edu.cn
2 Department of Mathematics, Savannah State University, Savannah, GA 31419, USA
* Correspondence: shaohuiwang@yahoo.com; Tel.: +1-352-665-3381
\dagger These authors contributed equally to this work.

Received: 22 November 2018; Accepted: 24 December 2018; Published: 4 January 2019
Abstract: The A_{α}-matrix is $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)$ with $\alpha \in[0,1]$, given by Nikiforov in 2017, where $A(G)$ is adjacent matrix, and $D(G)$ is its diagonal matrix of the degrees of a graph G. The maximal eigenvalue of $A_{\alpha}(G)$ is said to be the A_{α}-spectral radius of G. In this work, we determine the graphs with largest $A_{\alpha}(G)$-spectral radius with fixed vertex or edge connectivity. In addition, related extremal graphs are characterized and equations satisfying $A_{\alpha}(G)$-spectral radius are proposed.

Keywords: adjacent matrix; signless Laplacian; spectral radius; connectivity

1. Introduction

We consider simple finite connected graph G with the vertex set $V(G)$ and the edge set $E(G)$. The number of vertices $|V(G)|=n$ is the order of a graph, and the number of edges $|E(G)|$ is the size of a graph. Denote the neighborhood of $v \in V(G)$ by $N(v)=\{u \in V(G), v u \in E(G)\}$, and the degree of v by $d_{G}(v)=|N(v)|$ (or briefly d_{v}). For $L \subseteq V(G)$ and $R \subseteq E(G)$, let $w(G-L)$ or $w(G-R)$ be the number of components of $G-L$ or $G-R$. L (or R) be a vertex(edge) cut set if $w(G-L($ or $R)) \geq 2$ and $E(w, L)=\{w u \in E(G), u \in L\}$. For $U \subseteq V(G), G[U]$ denote the induced subgraph of G, that is, $V(G[U])=U$ and $E(G[U])=\{u v \mid u v \in E(G), u, v \in U\}$.

If $A(G)$ is adjacency matrix of a graph G, and $D(G)$ is its diagonal matrix of the degrees of G, then the signless Laplacian matrix of G is $D(G)+A(G)$. With the successful studies of these matrices, Nikiforov [1] proposed the A_{α}-matrix

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$

with $\alpha \in[0,1]$. Obviously, $A_{0}(G)$ is the adjacent matrix and $A_{\frac{1}{2}}$ is the half of signless Laplacian matrix of G, respectively. For undefined terminologies and notations, we refer to [2].

The research of (adjacency, signless Laplacian) spectral radius is an intriguing topic during past decades [3-9]. For instances, Lovász and J. Pelikán studied the spectral radius of trees [10]. The minimal Laplacian spectral radius of trees with given matching number is given by Feng et al. [7]. The properties of spectra of graphs and their line graphs are studied by Chen [11]. The signless Laplacian spectra of graphs is explored by Cvetković et al. [12]. Zhou [13] found bounds of signless Laplacian spectral radius and its hamiltonicity. Graphs having none or one signless Laplacian eigenvalue larger than three are obtained by Lin and Zhou [14]. At the same time, the maximal adjacency or signless Laplacian spectral radius have attracted many interests among the mathematical literature including algebra and graph theory. Ye et al. [6] gave the maximal adjacency or signless Laplacian spectral radius of graphs subject to fixed connectivity.

Inspired by these outcomes, we determine the graphs with largest $A_{\alpha}(G)$-spectral radius with given vertex or edge connectivity. In addition, the corresponding extremal graphs are provided and the equations satisfying the $A_{\alpha}(G)$-spectral radius are obtained.

2. Preliminary

In this section, we provide some important concepts and lemmas that will be used in the main proofs.

Denote by G a graph such that $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is its vertex set and $E(G)$ is its edge set. The A_{α}-matrix of G has the (i, j)-entry of $A_{\alpha}(G)$ is $1-\alpha$ if $v_{i} v_{j} \in E(G) ; \alpha d\left(v_{i}\right)$ if $i=j$, and otherwise 0 . For $\alpha \in[0,1]$, let $\lambda_{1}\left(A_{\alpha}(G)\right) \geq \lambda_{2}\left(A_{\alpha}(G)\right) \geq \cdots \geq \lambda_{n}\left(A_{\alpha}(G)\right)$ be the eigenvalues of $A_{\alpha}(G)$. The A_{α}-spectral radius of G is considered as the maximal eigenvalue $\rho:=\lambda_{1}\left(A_{\alpha}(G)\right)$. Let $X=\left(x_{v_{1}}, x_{v_{2}}, \cdots, x_{v_{n}}\right)^{T}$ be a real vector of ρ.

By $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)$, we have the quadratic formula of $X^{T} A_{\alpha}(G) X$ can be expressed that

$$
X^{T} A_{\alpha}(G) X=\alpha \sum_{v_{i} \in V(G)} x_{v_{i}}^{2} d_{v_{i}}+2(1-\alpha) \sum_{v_{i} v_{j} \in E(G)} x_{v_{i}} x_{v_{j}}
$$

Because $A_{\alpha}(G)$ is a real symmetric matrix, and by Rayleigh principle, we have the formula

$$
\rho(G)=\max _{X \neq 0} \frac{X^{T} A_{\alpha}(G) X}{X^{T} X} .
$$

As we know that once X is an eigenvector of $\rho(G)$ for a connected graph G, X should be unique and positive. The corresponding eigenequations for $A_{\alpha}(G)$ is rewritten as

$$
\begin{equation*}
\rho(G) x_{v_{i}}=\alpha d_{v_{i}} x_{v_{i}}+(1-\alpha) \sum_{v_{i} v_{j} \in E(G)} x_{v_{j}} . \tag{1}
\end{equation*}
$$

As $A_{1}(G)=D(G)$, we study the A_{α}-matrix for $\alpha \in[0,1)$ below. Based on the definition of A_{α}-spectral radius, we have

Lemma 1. [4,15] Let $A_{\alpha}(G)$ be the A_{α}-matrix of a connected graph $G(\alpha \in[0,1)), v, w \in V(G)$, $u \in T \subset V(G)$ such that $T \subset N(v) \backslash(N(w) \cup\{w\})$. Let G^{*} be a graph with vertex set $V(G)$ and edge set $E(G) \backslash\{u v, u \in T\} \cup\{u w, u \in T\}$, and X a unit eigenvector to $\rho\left(A_{\alpha}(G)\right)$. If $x_{w v} \geq x_{v}$ and $|T| \neq 0$, then $\rho\left(G^{*}\right)>\rho(G)$.

If G is a connected graph, then $A_{\alpha}(G)$ is a nonnegative irreducible symmetric matrix. By the results of $[1,16,17]$ and adding extra edges to a connected graph, then A_{α}-spectral radius will increase and the following lemma is straightforward.

Lemma 2. (i) If G^{*} is any proper subgraph of connected graph G, and ρ is the A_{α}-spectral radius, then $\rho\left(G^{*}\right)<\rho(G)$.
(ii) If X is a positive vector and r is a positive number such that $A_{\alpha}(G) X<r X$, then $\rho(G)<r$.

Recall that the vertex connectivity (respectively, edge connectivity) of a graph G is the smallest number of vertices (respectively, edges) such that if we remove them, the graph will be disconnected or be a single vertex. For convenience, let \mathcal{F}_{n} be the set of all graphs of order n, and \mathcal{F}_{n}^{k} (respectively, $\left.\overline{\mathcal{F}}_{n}^{k}\right)(k \geq 0)$ be the set of such graphs with order n and vertex (resp., edge) connectivity k. Note that $\mathcal{F}_{n}^{0}=\overline{\mathcal{F}}_{n}^{0}$ having some disconnected graphs of order n, and $\mathcal{F}_{n}^{n-1}=\overline{\mathcal{F}}_{n}^{n-1}$ consisting of the unique graph K_{n}. Obviously, $\mathcal{F}_{n}=\cup_{k} \mathcal{F}_{n}^{k}=\cup_{k} \overline{\mathcal{F}}_{n}^{k}$.

Recall the graph $K(p, q)(p \geq q \geq 0)$ obtained from K_{p} by attaching a vertex together with edges connecting this vertex to q vertices of $K_{p} . K(p, q)$ is was found by Brualdi and Solehid in terms of stepwise adjacency matrix, but it is Peter Rowlinson who gives the purely combinatorial definition of such graph. For the property of $K(p, q)$, we refer to [18-20]. Clearly, $K(p, 0)$ is K_{p} with an additional isolated vertex. It's not hard to see that $K(p, q)$ is of vertex (resp., edge) connectivity q. Let δ, Δ be the smallest and largest degrees of vertices in the graph G, respectively.

Lemma 3. The graph K_{n} is the graph in \mathcal{F}_{n} having the largest A_{α}-spectral radius, and $K_{n-1} \cup K_{1}=K(n-1,0)$ is the graph in \mathcal{F}_{n}^{0} or $\overline{\mathcal{F}}_{n}^{0}$ having the smallest A_{α}-spectral radius.

Proof. By Lemma 2, the first statement is clear. For the second one, let G be a graph which attains the maximum A_{α}-spectral radius in \mathcal{F}_{n}^{0}, then G only has two unique connected components: K_{n-1}, K_{1}; if not, any component of G will be a proper subgraph of K_{n-1}. Then $\rho(G)<\rho\left(K_{n-1}\right)=\rho\left(K_{n-1} \cup K_{1}\right)$, a contradiction. Then this lemma is proved.

Lemma 4. For $k \in[1, n-2], K(n-1, k)$ is the graph having the largest A_{α}-spectral radius in \mathcal{F}_{n}^{k}.
Proof. Denote by G a graph having the largest A_{α}-spectral radius in \mathcal{F}_{n}^{k}. x is a unit (positive) Perron vector of A_{α}. Let U be the vertex cut of G having k vertices, and these components of $G-U$ be $G_{1}, G_{2}, \cdots, G_{s}$, for $s \geq 2$. We declare that $s=2$; if not, adding all possible edges within the graph $G_{1} \cup G_{2} \cup \cdots \cup G_{s-1}$, we would get a graph belonging to \mathcal{F}_{n}^{k} (because U is the smallest vertex cut set) and with a larger A_{α}-spectral radius. Similarly, induced subgraph $G[U]$, the subgraphs G_{1} and G_{2} are complete subgranph, and every vertex of U connects these vertices of G_{1} and G_{2}. Next we prove that one of G_{1}, G_{2} will be a singleton, which has a unique vertex. If not, suppose that G_{1}, G_{2} have orders greater than one. Without loss of generality, denote by u a vertex of G_{1} having a smallest value for x among vertices in $G_{1} \cup G_{2}$. Deleting these edges of G_{1} incident to u, and connecting all possible edges between $G_{1}-u$ and G_{2}, we get a graph $\widetilde{G}=K(n-1, k)$ still in \mathcal{F}_{n}^{k}. By Lemma $1, \rho(\widetilde{G})>\rho(G)$, which yields a contradiction. So one of G_{1}, G_{2} is a singleton, and G is the desired graph $K(n-1, k)$.

Lemma 5. For $k \in[1, n-2], K(n-1, k)$ is the graph having maximum A_{α}-spectral radius in $\overline{\mathcal{F}}_{n}^{k}$.
Proof. Denote by G a graph having the largest A_{α}-spectral radius in $\mathcal{F}_{n}^{k} . x$ is a unit (positive) Perron vector of A_{α}. We know that each vertex of G has degree greater than or equal to k. Otherwise $G \notin \bar{F}_{n}^{k}$. If there is a vertex u in G with degree k, then the edges adjacent to u are an edge cut such that $G-u$ is complete. The statement follows in this case. Then we will suppose that all vertices in G have degrees greater than k. Let E_{c} be an edge cut set of G having k edges. So $G-E_{c}$ consists of only two components G_{1}, G_{2}, respectively, of order n_{1}, n_{2}. Obviously G_{1}, G_{2} are both complete. In addition, neither of G_{1}, G_{2} is a singleton. Otherwise G would contain a vertex of degree k, which contradicted to the above assumption. So G_{1}, G_{2} contain more than 1 vertex, i.e., $n_{1} \geq 2$ and $n_{2} \geq 2$.

Without loss of generality, suppose that G_{1} contains a vertex w_{1} having a minimal value given by x within all vertices of $G_{1} \cup G_{2}$, and consists of vertices $w_{1}, w_{2}, \cdots, w_{n_{1}}$ such that $x\left(w_{1}\right) \leq x\left(w_{2}\right) \leq$ $\cdots \leq x\left(w_{n_{1}}\right)$. Assume that w_{1} joins t vertices of G_{2}. Surely $t \leq \min \left\{k, n_{2}\right\}$.

If $t=k$, there exist no edges joining $G_{1}-w_{1}$ and G_{2}, and $n_{2} \geq k+2$ otherwise G_{2} contains a vertex of degree k. Denote by G^{\prime} a new graph with vertex set $V(G)$ and edge set $E(G) \backslash E\left(w_{1}, N\right) \cup E\left(N, v^{\prime}\right)$, where $N=N\left(w_{1}\right) \cap V\left(G_{1}\right)$, and $v^{\prime} \in V\left(G_{2}\right)-N\left(w_{1}\right) \cap V\left(G_{2}\right)$, by Lemma 1, we have $\rho\left(G^{\prime}\right)>\rho(G)$. Let $G^{\prime \prime}$ be another new graph with vertex set $V\left(G^{\prime}\right)$ and adding all possible edges between $G_{1}-w_{1}$ and G_{2}. Note that $G^{\prime \prime}=K(n-1, k)$, and G^{\prime} is a proper subgraph of $G^{\prime \prime}$. By Lemma 2, we have $\rho\left(G^{\prime \prime}\right)>\rho\left(G^{\prime}\right)$. Thus, $\rho\left(G^{\prime \prime}\right)>\rho(G)$, a contradiction.

If $t<k$. Partition the set $V\left(G_{1}\right)-w_{1}$ as: $V_{11}=\left\{w_{i}: i=2,3, \cdots, n_{1}-(k-t)\right\}, V_{12}=\left\{w_{j}: j=\right.$ $\left.n_{1}-(k-t)+1, \cdots, n_{1}\right\}$. Thus, $\left|V_{11}\right|=n_{1}-(k-t)-1 ;\left|V_{12}\right|=k-t$.

Let $N=N\left(w_{1}\right) \cap V_{11}$, then $N \neq \varnothing$ since $d\left(w_{1}\right)>k$. Note there is vertex $v^{\prime} \in V\left(G_{2}\right)-N\left(w_{1}\right) \cap$ $V\left(G_{2}\right)$ since $n_{2} \geq k+2$. Let G^{\prime} be a new graph having vertex set $V(G)$ and edge set $E(G) \backslash E\left(w_{1}, N\right) \cup$ $E\left(N, v^{\prime}\right)$, where $N=N\left(w_{1}\right) \cap V_{11}$, and $v^{\prime} \in V\left(G_{2}\right)-N\left(w_{1}\right) \cap V\left(G_{2}\right)$, by Lemma 1, we have $\rho\left(G^{\prime}\right)>$ $\rho(G)$. Let $G^{\prime \prime}$ be another new graph having vertex set $V\left(G^{\prime}\right)$ and adding all possible edges between $G_{1}-w_{1}$ and G_{2}, adding all edges between w_{1} and V_{12}. Note that $G^{\prime \prime}=K(n-1, k)$, and G^{\prime} is a proper subgraph of $G^{\prime \prime}$. Lemma 2 implies that $\rho\left(G^{\prime \prime}\right)>\rho\left(G^{\prime}\right)$. Thus, $\rho\left(G^{\prime \prime}\right)>\rho(G)$, a contradiction. The result follows.

3. Main Results

In this section, we will determine maximizing A_{α}-spectral radius of of graphs with given connectivity. By Lemmas 4 and 5, we obtain the following Theorem:

Theorem 1. The graph K_{n} is the graph in \mathcal{F}_{n} with A_{α}-spectral radius, and $K_{n-1} \cup K_{1}=K(n-1,0)$ is the unique one in \mathcal{F}_{n}^{0} or \bar{F}_{n}^{0} with A_{α}-spectral radius. For $k \in[1, n-2], K(n-1, k)$ is the graph with maximum A_{α}-spectral radius in \mathcal{F}_{n}^{k} or $\overline{\mathcal{F}}_{n}^{k}$.

Proof. By the Lemmas 3-5, we obtain the results.
Lemma 6. [20] Given a partition $\{1,2, \cdots, n\}=\Delta_{1} \cup \Delta_{2} \cup \cdots \cup \Delta_{m}$ with $\left|\Delta_{i}\right|=n_{i}>0$, A be any matrix partitioned into blocks $A_{i j}$, where $A_{i j}$ is an $n_{i} \times n_{j}$ block. Suppose that the block $A_{i j}$ has constant row sums $b_{i j}$, and let $B=\left(b_{i j}\right)$. Then the spectrum of B is contained in the spectrum of A (taking into account the multiplicities of the eigenvalues).

Since $K(n-1, k)$ contains K_{n-1}, we can partition $K(n-1, k)$ into three different subsets: $\{u\}, T, S$, in which u is the vertex connecting a complete subgraph K_{n-1} with k edges, a subset S is in K_{n-1} connecting u, and $T=V\left(K_{n-1} \backslash S\right)$. Let x be a Perron vector of $K(n-1, k) . S=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ and $T=\left\{v_{1}, v_{2}, \cdots, v_{t}\right\}$. Note that $k+t+1=n$.

Theorem 2. Label the vertices of $K(n-1, k)$ as $u, u_{1}, u_{2}, \cdots, u_{k}, v_{1}, v_{2} \cdots, v_{t}$ with $k, t \geq 0$. The maximum eigenvalues of $A_{\alpha}(K(n-1, k))$ satisfy the equation: $f(\rho)=(\rho-k \alpha)(\rho-k \alpha-n+k+2)(\rho-n \alpha+1)-$ $k(1-\alpha)(\rho-k \alpha-\alpha+1)(\rho-n \alpha+\alpha+1)+k(1-\alpha)^{3}(n-k-1)=0$.

Proof. Since the matrix $A_{\alpha}=\alpha D+(1-\alpha) A$, where D has on the diagonal the vector $(k, n-1, n-2)$ and A consists of the following three row-vectors, in the order: $(0, k, 0) ;(1, k-1, n-k-1) ;(0, k, n-$ $k-2)$. Thus, by the Lemma $6, x$ is a constant value β_{2} on the vertex set S, and constant value β_{3} on the vertex set T. Defining $x(u)=: \beta_{1}, \rho(K(n-1, k))=: \rho$, also by (1), we get

$$
(\rho-\alpha k) \beta_{1}=k(1-\alpha) \beta_{2}
$$

$$
\begin{gathered}
(\rho-\alpha(n-1)) \beta_{2}=(1-\alpha)\left(\beta_{1}+(k-1) \beta_{2}+t \beta_{3}\right), \text { and } \\
(\rho-\alpha(n-2)) \beta_{3}=(1-\alpha)\left(k \beta_{2}+(t-1) \beta_{3}\right) .
\end{gathered}
$$

Then we get

$$
(\rho-\alpha(n-1))=\frac{k(1-\alpha)^{2}}{\rho-k \alpha}+\frac{k t(1-\alpha)^{2}}{\rho-k \alpha-t+1}+(k-1)(1-\alpha) .
$$

Note that for $n=t+k+1$, that is, $n-1=k+t$. Then we have:

$$
(\rho-k \alpha)=\frac{k(1-\alpha)^{2}}{\rho-k \alpha}+\frac{k t(1-\alpha)^{2}}{\rho-k \alpha-t+1}+(k-1)(1-\alpha)+t \alpha
$$

Then we obtain that

$$
\begin{array}{r}
(\rho-k \alpha)(\rho-k \alpha-n+k+2)(\rho-n \alpha+1)-k(1-\alpha)(\rho-k \alpha \\
-\alpha+1)(\rho-n \alpha+\alpha+1)+k(1-\alpha)^{3}(n-k-1)=0 .
\end{array}
$$

Thus, our proof is finished.
Corollary 1. Let G be a graph of order n having vertex/edge connectivity k, where $1 \leq k \leq n-2$, the maximum adjacency spectral radius is the largest root of the $f(\lambda)=\lambda^{3}-(n-3) \lambda^{2}-(n+k-2) \lambda+k(n-k-2)=0$.

Proof. By Theorem 2 , let $\alpha=0$, then $f(\lambda)=\lambda^{3}-(n-3) \lambda^{2}-(n+k-2) \lambda+k(n-k-2)=0$. It is obvious since $A_{0}=A(G)$.

By letting the special values for α, we have the following corollary.
Corollary 2. Let G be a graph of order n having vertex/edge connectivity k, where $1 \leq k \leq n-2$, the signless Laplacian spectral radius $\lambda_{1}=\frac{2 n+k-4+\sqrt{(2 n-k-4)^{2}+8 k}}{2}$.

Proof. By Theorem 2, let $\alpha=\frac{1}{2}$, then $f(\lambda)=\lambda^{3}-\frac{1}{2}(3 n+k-6) \lambda^{2}+\left(\frac{1}{4}(n-4)(2 n+3 k)+k+2\right) \lambda-$ $\frac{1}{4} k\left(n^{2}-5 n+6\right)=0$. It is obvious since $2 A_{\frac{1}{2}}=D+Q$. Thus,

$$
\begin{aligned}
8 f(\lambda)= & 8\left[\lambda^{3}-\frac{1}{2}(3 n+k-6) \lambda^{2}+\left(\frac{1}{4}(n-4)(2 n+3 k)+k+2\right) \lambda\right. \\
& \left.-\frac{1}{4} k\left(n^{2}-5 n+6\right)\right] \\
= & (2 \lambda)^{3}-(3 n+k-6)(2 \lambda)^{2}+((n-4)(2 n+3 k)+4 k+8)(2 \lambda) \\
& -2 k\left(n^{2}-5 n+6\right) \\
= & \left(\lambda_{1}\right)^{3}-(3 n+k-6)\left(\lambda_{1}\right)^{2}+((n-4)(2 n+3 k)+4 k+8)\left(\lambda_{1}\right) \\
& -2 k\left(n^{2}-5 n+6\right) .
\end{aligned}
$$

Let $\lambda_{1}=2 \lambda$ and

$$
\begin{aligned}
F\left(\lambda_{1}\right)= & \left(\lambda_{1}\right)^{3}-(3 n+k-6)\left(\lambda_{1}\right)^{2}+((n-4)(2 n+3 k)+4 k+8)\left(\lambda_{1}\right) \\
& -2 k\left(n^{2}-5 n+6\right)=0
\end{aligned}
$$

Then we get:

$$
\lambda_{1}=\frac{2 n+k-4+\sqrt{(2 n-k-4)^{2}+8 k}}{2}
$$

The above result is the same as [6].

Author Contributions: All authors have contributed equally to this work. Investigation and Methodology: C.W.; Methodology and Correction: S.W.
Funding: This work was partially supported by the National Natural Science Foundation of China under Grants 11771172 and 11571134.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nikiforov, V. Merging the A- and Q-spectral theories. Appl. Anal. Discret. Math. 2017, 11, 81-107. [CrossRef]
2. Bollobás, B. Modern Graph Theory; Springer: New York, NY, USA, 1998.
3. Xing, R.; Zhou, B. On the least eigenvalue of cacti with pendant vertices. Linear Algebra Appl. 2013, 438, 2256-2273. [CrossRef]
4. Xue, J.; Lin, H.; Liu, S.; Shu, J. On the A_{α}-spectral radius of a graph. Linear Algebra Appl. 2018, 550, 105-120. [CrossRef]
5. Yu, A.; Lu, M.; Tian, F. On the spectral radius of graphs. Linear Algebra Appl. 2004, 387, 41-49. [CrossRef]
6. Ye, M.-L.; Fan, Y.-Z.; Wang, H.-F. Maximizing signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity. Linear Algebra Appl. 2010, 433, 1180-1186. [CrossRef]
7. Feng, L.; Li, Q.; Zhang, X.-D. Minimizing the Laplacian spectral radius of trees with given matching number. Linear Multilinear Algebra 2007, 55, 199-207. [CrossRef]
8. Li, S.; Zhang, M. On the signless Laplacian index of cacti with a given number of pendant vertices. Linear Algebra Appl. 2012, 436, 4400-4411. [CrossRef]
9. Wu, J.; Deng, H.; Jiang, Q. On the spectral radius of cacti with k-pendant vertices. Linear Multilinear Algebra 2010, 58, 391-398. [CrossRef]
10. Lovász, L.; Peliken, J. On the eigenvalues of trees. Period. Math. Hungar. 1973, 3, 175-182. [CrossRef]
11. Chen, Y. Properties of spectra of graphs and line graphs. Appl. Math. J. Chin. Univ. Ser. B 2002, 17, 371-376.
12. Cvetković, D.; Rowlinson, P.; Simić, S.K. Signless Laplacians of finite graphs. Linear Algebra Appl. 2007, 423, 155-171. [CrossRef]
13. Zhou, B. Signless Laplacian spectral radius and Hamiltonicity. Linear Algebra Appl. 2010, 432, 566-570. [CrossRef]
14. Lin, H.; Zhou, B. Graphs with at most one signless Laplacian eigenvalue exceeding three. Linear Multilinear Algebra 2015, 63, 377-383.
15. Nikiforov, V.; Pastén, G.; Rojo, O.; Soto, R.L. On the A_{α}-spectra of trees. Linear Algebra Appl. 2017, 520, 286-305. [CrossRef]
16. Berman, A.; Plemmons, R.J. Nonnegative Matrices in the Mathematical Sciences; SIAM: Philadelphia, PA, USA, 1994.
17. Collatz, L.; Sinogowitz, U. Spektrcn endlicher Graten. Abh. Math. Scm. Univ. Hamburg 1957, 21, 63-77.
18. Brualdi, R.A.; Solheid, E.S. On the spectral radius of connected graphs. Publ. Inst. Math. 1986, 39, 45-54.
19. Rowlinson, P. On the maximal index of graphs with a prescribed number of edges. Linear Algebra Appl. 1988, 110, 43-53. [CrossRef]
20. Cvetkovic, D.; Rowlinson, P.; Simic, S. An Introduction to the Theory of Graph Spectra; Cambridge University Press: Cambridge, UK, 2009.
(c) 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/).
