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Abstract: The Aα-matrix is Aα(G) = αD(G) + (1− α)A(G) with α ∈ [0, 1], given by Nikiforov in
2017, where A(G) is adjacent matrix, and D(G) is its diagonal matrix of the degrees of a graph G.
The maximal eigenvalue of Aα(G) is said to be the Aα-spectral radius of G. In this work,
we determine the graphs with largest Aα(G)-spectral radius with fixed vertex or edge connectivity.
In addition, related extremal graphs are characterized and equations satisfying Aα(G)-spectral radius
are proposed.
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1. Introduction

We consider simple finite connected graph G with the vertex set V(G) and the edge set E(G).
The number of vertices |V(G)| = n is the order of a graph, and the number of edges |E(G)| is the size
of a graph. Denote the neighborhood of v ∈ V(G) by N(v) = {u ∈ V(G), vu ∈ E(G)}, and the degree
of v by dG(v) = |N(v)| (or briefly dv). For L ⊆ V(G) and R ⊆ E(G), let w(G− L) or w(G− R) be the
number of components of G− L or G− R. L(or R) be a vertex(edge) cut set if w(G− L (or R)) ≥ 2
and E(w, L) = {wu ∈ E(G), u ∈ L}. For U ⊆ V(G), G[U] denote the induced subgraph of G, that is,
V(G[U]) = U and E(G[U]) = {uv|uv ∈ E(G), u, v ∈ U}.

If A(G) is adjacency matrix of a graph G, and D(G) is its diagonal matrix of the degrees of G,
then the signless Laplacian matrix of G is D(G) + A(G). With the successful studies of these matrices,
Nikiforov [1] proposed the Aα-matrix

Aα(G) = αD(G) + (1− α)A(G)

with α ∈ [0, 1]. Obviously, A0(G) is the adjacent matrix and A 1
2

is the half of signless Laplacian matrix
of G, respectively. For undefined terminologies and notations, we refer to [2].

The research of (adjacency, signless Laplacian) spectral radius is an intriguing topic during
past decades [3–9]. For instances, Lovász and J. Pelikán studied the spectral radius of trees [10].
The minimal Laplacian spectral radius of trees with given matching number is given by Feng et al. [7].
The properties of spectra of graphs and their line graphs are studied by Chen [11]. The signless
Laplacian spectra of graphs is explored by Cvetković et al. [12]. Zhou [13] found bounds of signless
Laplacian spectral radius and its hamiltonicity. Graphs having none or one signless Laplacian
eigenvalue larger than three are obtained by Lin and Zhou [14]. At the same time, the maximal
adjacency or signless Laplacian spectral radius have attracted many interests among the mathematical
literature including algebra and graph theory. Ye et al. [6] gave the maximal adjacency or signless
Laplacian spectral radius of graphs subject to fixed connectivity.
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Inspired by these outcomes, we determine the graphs with largest Aα(G)-spectral radius with
given vertex or edge connectivity. In addition, the corresponding extremal graphs are provided and
the equations satisfying the Aα(G)-spectral radius are obtained.

2. Preliminary

In this section, we provide some important concepts and lemmas that will be used in the
main proofs.

Denote by G a graph such that V(G) = {v1, v2, · · · , vn} is its vertex set and E(G) is its
edge set. The Aα-matrix of G has the (i, j)-entry of Aα(G) is 1− α if vivj ∈ E(G); αd(vi) if i = j,
and otherwise 0. For α ∈ [0, 1], let λ1(Aα(G)) ≥ λ2(Aα(G)) ≥ · · · ≥ λn(Aα(G)) be the eigenvalues
of Aα(G). The Aα-spectral radius of G is considered as the maximal eigenvalue ρ := λ1(Aα(G)).
Let X = (xv1 , xv2 , · · · , xvn)

T be a real vector of ρ.
By Aα(G) = αD(G) + (1 − α)A(G), we have the quadratic formula of XT Aα(G)X can be

expressed that

XT Aα(G)X = α ∑
vi∈V(G)

x2
vi

dvi + 2(1− α) ∑
vivj∈E(G)

xvi xvj .

Because Aα(G) is a real symmetric matrix, and by Rayleigh principle, we have the formula

ρ(G) = maxX 6=0
XT Aα(G)X

XTX
.

As we know that once X is an eigenvector of ρ(G) for a connected graph G, X should be unique
and positive. The corresponding eigenequations for Aα(G) is rewritten as

ρ(G)xvi = αdvi xvi + (1− α) ∑
vivj∈E(G)

xvj . (1)

As A1(G) = D(G), we study the Aα-matrix for α ∈ [0, 1) below. Based on the definition of
Aα-spectral radius, we have

Lemma 1. [4,15] Let Aα(G) be the Aα-matrix of a connected graph G (α ∈ [0, 1)), v, w ∈ V(G),
u ∈ T ⊂ V(G) such that T ⊂ N(v) \ (N(w) ∪ {w}). Let G∗ be a graph with vertex set V(G) and
edge set E(G) \ {uv, u ∈ T} ∪ {uw, u ∈ T}, and X a unit eigenvector to ρ(Aα(G)). If xw ≥ xv and |T| 6= 0,
then ρ(G∗) > ρ(G).

If G is a connected graph, then Aα(G) is a nonnegative irreducible symmetric matrix. By the
results of [1,16,17] and adding extra edges to a connected graph, then Aα-spectral radius will increase
and the following lemma is straightforward.

Lemma 2. (i) If G∗ is any proper subgraph of connected graph G, and ρ is the Aα-spectral radius,
then ρ(G∗) < ρ(G).

(ii) If X is a positive vector and r is a positive number such that Aα(G)X < rX, then ρ(G) < r.

Recall that the vertex connectivity (respectively, edge connectivity) of a graph G is the smallest
number of vertices (respectively, edges) such that if we remove them, the graph will be disconnected
or be a single vertex. For convenience, let Fn be the set of all graphs of order n, and F k

n (respectively,

F k
n) (k ≥ 0) be the set of such graphs with order n and vertex (resp., edge) connectivity k. Note that
F 0

n = F 0
n having some disconnected graphs of order n, and Fn−1

n =Fn−1
n consisting of the unique

graph Kn. Obviously, Fn =∪kF k
n =∪kF

k
n.
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Recall the graph K(p, q)(p ≥ q ≥ 0) obtained from Kp by attaching a vertex together with edges
connecting this vertex to q vertices of Kp. K(p, q) is was found by Brualdi and Solehid in terms of
stepwise adjacency matrix, but it is Peter Rowlinson who gives the purely combinatorial definition of
such graph. For the property of K(p, q), we refer to [18–20]. Clearly, K(p, 0) is Kp with an additional
isolated vertex. It’s not hard to see that K(p, q) is of vertex (resp., edge) connectivity q. Let δ, ∆ be the
smallest and largest degrees of vertices in the graph G, respectively.

Lemma 3. The graph Kn is the graph inFn having the largest Aα-spectral radius, and Kn−1∪K1 = K(n− 1, 0)
is the graph in F 0

n or F 0
n having the smallest Aα-spectral radius.

Proof. By Lemma 2, the first statement is clear. For the second one, let G be a graph which attains the
maximum Aα-spectral radius in F 0

n , then G only has two unique connected components: Kn−1, K1;
if not, any component of G will be a proper subgraph of Kn−1. Then ρ(G) < ρ(Kn−1) = ρ(Kn−1 ∪ K1),
a contradiction. Then this lemma is proved.

Lemma 4. For k ∈ [1, n− 2], K(n− 1, k) is the graph having the largest Aα-spectral radius in F k
n .

Proof. Denote by G a graph having the largest Aα-spectral radius in F k
n . x is a unit (positive) Perron

vector of Aα. Let U be the vertex cut of G having k vertices, and these components of G − U be
G1, G2, · · · , Gs, for s ≥ 2. We declare that s = 2; if not, adding all possible edges within the graph
G1 ∪ G2 ∪ · · · ∪ Gs−1, we would get a graph belonging to F k

n (because U is the smallest vertex cut set)
and with a larger Aα-spectral radius. Similarly, induced subgraph G[U], the subgraphs G1 and G2 are
complete subgranph, and every vertex of U connects these vertices of G1 and G2. Next we prove that
one of G1, G2 will be a singleton, which has a unique vertex. If not, suppose that G1, G2 have orders
greater than one. Without loss of generality, denote by u a vertex of G1 having a smallest value for
x among vertices in G1 ∪ G2. Deleting these edges of G1 incident to u, and connecting all possible
edges between G1 − u and G2, we get a graph G̃ = K(n− 1, k) still in F k

n . By Lemma 1, ρ(G̃) > ρ(G),
which yields a contradiction. So one of G1, G2 is a singleton, and G is the desired graph K(n− 1, k).

Lemma 5. For k ∈ [1, n− 2], K(n− 1, k) is the graph having maximum Aα-spectral radius in F k
n.

Proof. Denote by G a graph having the largest Aα-spectral radius in F k
n . x is a unit (positive) Perron

vector of Aα. We know that each vertex of G has degree greater than or equal to k. Otherwise G /∈ F k
n.

If there is a vertex u in G with degree k, then the edges adjacent to u are an edge cut such that G− u
is complete. The statement follows in this case. Then we will suppose that all vertices in G have
degrees greater than k. Let Ec be an edge cut set of G having k edges. So G− Ec consists of only two
components G1, G2, respectively, of order n1, n2. Obviously G1, G2 are both complete. In addition,
neither of G1, G2 is a singleton. Otherwise G would contain a vertex of degree k, which contradicted to
the above assumption. So G1, G2 contain more than 1 vertex, i.e., n1 ≥ 2 and n2 ≥ 2.

Without loss of generality, suppose that G1 contains a vertex w1 having a minimal value given
by x within all vertices of G1 ∪ G2, and consists of vertices w1, w2, · · · , wn1 such that x(w1) ≤ x(w2) ≤
· · · ≤ x(wn1). Assume that w1 joins t vertices of G2. Surely t ≤ min{k, n2}.

If t = k, there exist no edges joining G1−w1 and G2, and n2 ≥ k+ 2 otherwise G2 contains a vertex
of degree k. Denote by G′ a new graph with vertex set V(G) and edge set E(G) \ E(w1, N) ∪ E(N, v′),
where N = N(w1) ∩V(G1), and v′ ∈ V(G2)− N(w1) ∩V(G2), by Lemma 1, we have ρ(G′) > ρ(G).
Let G′′ be another new graph with vertex set V(G′) and adding all possible edges between G1 − w1

and G2. Note that G′′ = K(n − 1, k), and G′ is a proper subgraph of G′′. By Lemma 2, we have
ρ(G′′) > ρ(G′). Thus, ρ(G′′) > ρ(G), a contradiction.

If t < k. Partition the set V(G1)− w1 as: V11 = {wi : i = 2, 3, · · · , n1 − (k− t)}, V12 = {wj : j =
n1 − (k− t) + 1, · · · , n1}. Thus, |V11| = n1 − (k− t)− 1; |V12| = k− t.
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Let N = N(w1) ∩V11, then N 6= ∅ since d(w1) > k. Note there is vertex v′ ∈ V(G2)− N(w1) ∩
V(G2) since n2 ≥ k + 2. Let G′ be a new graph having vertex set V(G) and edge set E(G) \ E(w1, N)∪
E(N, v′), where N = N(w1) ∩V11, and v′ ∈ V(G2)− N(w1) ∩V(G2), by Lemma 1, we have ρ(G′) >
ρ(G). Let G′′ be another new graph having vertex set V(G′) and adding all possible edges between
G1 − w1 and G2, adding all edges between w1 and V12. Note that G′′ = K(n − 1, k), and G′ is a
proper subgraph of G′′. Lemma 2 implies that ρ(G′′) > ρ(G′). Thus, ρ(G′′) > ρ(G), a contradiction.
The result follows.

3. Main Results

In this section, we will determine maximizing Aα-spectral radius of of graphs with given
connectivity. By Lemmas 4 and 5, we obtain the following Theorem:

Theorem 1. The graph Kn is the graph in Fn with Aα-spectral radius , and Kn−1 ∪ K1 = K(n− 1, 0) is the
unique one in F 0

n or F 0
n with Aα-spectral radius. For k ∈ [1, n− 2], K(n− 1, k) is the graph with maximum

Aα-spectral radius in F k
n or F k

n.

Proof. By the Lemmas 3–5, we obtain the results.

Lemma 6. [20] Given a partition {1, 2, · · · , n} =∆1 ∪ ∆2 ∪ · · · ∪ ∆m with |∆i| = ni > 0, A be any matrix
partitioned into blocks Aij, where Aij is an ni × nj block. Suppose that the block Aij has constant row sums
bij , and let B = (bij). Then the spectrum of B is contained in the spectrum of A (taking into account the
multiplicities of the eigenvalues).

Since K(n− 1, k) contains Kn−1, we can partition K(n− 1, k) into three different subsets: {u}, T, S,
in which u is the vertex connecting a complete subgraph Kn−1 with k edges, a subset S is in Kn−1

connecting u, and T = V(Kn−1 \ S). Let x be a Perron vector of K(n− 1, k). S = {u1, u2, · · · , uk} and
T = {v1, v2, · · · , vt}. Note that k + t + 1 = n.

Theorem 2. Label the vertices of K(n− 1, k) as u, u1, u2, · · · , uk, v1, v2 · · · , vt with k, t ≥ 0. The maximum
eigenvalues of Aα(K(n− 1, k)) satisfy the equation: f (ρ) = (ρ− kα)(ρ− kα− n + k + 2)(ρ− nα + 1)−
k(1− α)(ρ− kα− α + 1)(ρ− nα + α + 1) + k(1− α)3(n− k− 1) = 0.

Proof. Since the matrix Aα = αD + (1− α)A, where D has on the diagonal the vector (k, n− 1, n− 2)
and A consists of the following three row-vectors, in the order: (0, k, 0); (1, k− 1, n− k− 1); (0, k, n−
k− 2). Thus, by the Lemma 6, x is a constant value β2 on the vertex set S, and constant value β3 on the
vertex set T. Defining x(u) =: β1, ρ(K(n− 1, k)) =: ρ, also by (1), we get

(ρ− αk)β1 = k(1− α)β2

(ρ− α(n− 1))β2 = (1− α)(β1 + (k− 1)β2 + tβ3), and

(ρ− α(n− 2))β3 = (1− α)(kβ2 + (t− 1)β3).

Then we get

(ρ− α(n− 1)) =
k(1− α)2

ρ− kα
+

kt(1− α)2

ρ− kα− t + 1
+ (k− 1)(1− α).
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Note that for n = t + k + 1, that is, n− 1 = k + t. Then we have:

(ρ− kα) =
k(1− α)2

ρ− kα
+

kt(1− α)2

ρ− kα− t + 1
+ (k− 1)(1− α) + tα.

Then we obtain that

(ρ− kα)(ρ− kα− n + k + 2)(ρ− nα + 1)− k(1− α)(ρ− kα

−α + 1)(ρ− nα + α + 1) + k(1− α)3(n− k− 1) = 0.

Thus, our proof is finished.

Corollary 1. Let G be a graph of order n having vertex/edge connectivity k, where 1 ≤ k ≤ n− 2, the maximum
adjacency spectral radius is the largest root of the f (λ) = λ3− (n− 3)λ2− (n + k− 2)λ + k(n− k− 2) = 0.

Proof. By Theorem 2, let α = 0, then f (λ) = λ3 − (n− 3)λ2 − (n + k− 2)λ + k(n− k− 2) = 0. It is
obvious since A0 = A(G).

By letting the special values for α, we have the following corollary.

Corollary 2. Let G be a graph of order n having vertex/edge connectivity k, where 1 ≤ k ≤ n− 2, the signless

Laplacian spectral radius λ1 =
2n+k−4+

√
(2n−k−4)2+8k
2 .

Proof. By Theorem 2, let α = 1
2 , then f (λ) = λ3 − 1

2 (3n + k− 6)λ2 + ( 1
4 (n− 4)(2n + 3k) + k + 2)λ−

1
4 k(n2 − 5n + 6) = 0. It is obvious since 2A 1

2
= D + Q. Thus,

8 f (λ) = 8[λ3 − 1
2
(3n + k− 6)λ2 + (

1
4
(n− 4)(2n + 3k) + k + 2)λ

−1
4

k(n2 − 5n + 6)]

= (2λ)3 − (3n + k− 6)(2λ)2 + ((n− 4)(2n + 3k) + 4k + 8)(2λ)

−2k(n2 − 5n + 6)

= (λ1)
3 − (3n + k− 6)(λ1)

2 + ((n− 4)(2n + 3k) + 4k + 8)(λ1)

−2k(n2 − 5n + 6).

Let λ1 = 2λ and

F(λ1) = (λ1)
3 − (3n + k− 6)(λ1)

2 + ((n− 4)(2n + 3k) + 4k + 8)(λ1)

−2k(n2 − 5n + 6) = 0.

Then we get:

λ1 =
2n + k− 4 +

√
(2n− k− 4)2 + 8k
2

.

The above result is the same as [6].
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