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Abstract: Energies of molecular graphs have various applications in chemistry, polymerization,
computer networking and pharmacy. In this paper, we give general closed forms of distance and
adjacency energies of generalized wheel networks Wn,m. Consequently, we give these results for
classical wheel graphs. We also give pictorial dependencies of energies on the involved parameters
m ≥ 3 and n.
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1. Introduction

Energy is referred to as the sum of absolute values of any operator. In quantum chemistry, the
solutions of the Schrodinger equation is approximately reduced to the evaluation of eigenvalues
and corresponding eigenvectors of the Hamiltonian operator. Often, Hamiltonian operators are
approximately expressed as

H = αI + βA(G), (1)

where α and β are the empirical constants of Huckel molecular orbital theory and A(G) is the adjacency
matrix of the Huckel graph constructed for the π-electron network of conjugated hydro-carbons [1].
In this way, characteristic polynomials entered the arena of chemical graph theory. It has also attracted
keen interest even from pure mathematicians due to the interesting problems that originate from
the mathematical structures and their symmetries involved. The ordinary energy of the graph is
defined as the sum of the absolute values of the eigenvalues of its adjacency matrix. This graph
invariant is very closely connected to a chemical quantity known as the total π-electron energy of
conjugated hydro-carbon molecules. In recent times, analogous energies are being considered, based on
eigenvalues of a variety of other graph matrices associated to the graph [1–4]. In [5], authors computed
incidence energy of a graph. In [6], authors computed general forms of energies of non-regular graphs.

Gutman introduced this idea of the energy of a graph in 1978 in the context of Mathematics [4];
however, inspiration for his definition seems to emerge from the popular Huckel molecular orbital
theory. Huckel’s technique enabled scientific experts to predict energies related to p-electron orbitals
for a unique class of particles. The basic idea behind this is the Hamiltonian operator, which is a basic
linear combination of certain orbitals [7,8]. It is somewhat less known than the one Heilbronner et al.
developed, a model resulting in a fact that the roots of the characteristic polynomial of the line graph of
the molecular graph are in a linear manner related to the s-electron energy levels of the corresponding
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saturated hydrocarbon [7,8], where these molecular graphs have vertices of both carbon and hydrogen
atoms. Its popularity among mathematical chemists came from the fact that the Hamiltonian matrix
of the Huckel molecular orbital theory is a simple linear function of the adjacency matrix of the
corresponding molecular graph G. Thus, each π-electron energy level is a linear function of the
corresponding zero of the characteristic polynomial of G [9]. In addition, under certain sensible
presumptions about the particle, its “aggregate π electron energy” can be composed as the sum of the
total eigenvalues of this graph.

Since the definition of energy for a graph in [4] is rather strange, not many mathematicians appear
to be pulled by the definition. However, with the passage of time, the idea became powerful and in the
previous decade enthusiasm for graph energy has expanded resulting in numerous different forms [3].
In 2006, Gutman and Zhou defined the Laplacian energy of a graph [10]. The authors of [11,12]
discussed distance energy of a graph based on the idea of distance matrix associated with the graph.
Nikiforov et al. computed some energies of non-regular graphs [13]. In [14], the authors discussed
signless Laplacian energies of some finite graphs. In [15], the author discussed graph theoretical
analyses in analyzing the changes in interactions between solvent and solute. In [16,17], the authors
computed some asymptotic Laplacian and incidence energies of lattice.

Let G be a graph having vertex set V(G) and edge set E(G) denoted by G = (V, E). A Graph
G = (V, E) is said to be connected if there is a connection between any pair of vertices in G. The number
of vertices in a graph represents its order, the number of edges represents its size, and the number of
edges connected to a single vertex represents the degree of that vertex denoted as du. The distance
matrix associated to a graph is defined as the square matrix D = [dab] where dab consists of all graph
distances from vertex va to vertex vb. An n× n matrix M for a graph having order n, called an adjacency
matrix, can be associated to the graph as,

[Mab] =

{
1 p1 7→ p2

0 otherwise

}

The roots of a characteristics polynomial are the eigenvalues of a matrix associated to a graph.
In most cases, the associated matrices are real and symmetric so eigenvalues are necessarily real-valued
numbers. The collection of all eigenvalues of graph G forms the spectrum of G. Spectral properties
of graphs have been widely studied. If G is not connected, then the energy of a graph is the sum of
energies of its connected components. If a graph is connected, then its distance and adjacency energies
are defined as the sum of the absolute values of associated eigenvalues. Energy of some non-regular
graphs and Laplacian energy of a simple graph are discussed in [14,18].

In the current article, we want to find closed expressions for distance and adjacency energies of
generalized wheel graphs, also known as m-level wheel, Wn,m. An m-wheel graph Wn,m is a graph
obtained from m copies of cycles Cn and one copy of vertex v, such that all vertices of every copy of Cn

are adjacent to v. Thus, Wn,m has nm + 1 vertices, i.e., the center and n-rim vertices, and has diameter 2.
Figure 1 is an example of m-wheel graph W12,m.

Vertices that lay on the same cycle Cn and adjacent to central vertex are termed as rim vertices.
This graph can be considered as generalization of classical wheel graph Wn. Figure 2 is another instance
of m-wheel graph, W3,4.

This m-wheel network is an extension of the classical wheel graph W1,n. Figure 3 is an example of
wheel graph W6.

The wheel graph has been used in different areas such as the wireless sensor networks and the
vulnerability of networks [19]. The wheel graph has many good properties. From the standpoint of
the hub vertex, all elements, including vertices and edges, are in its one-hop neighborhood, which
indicates that the wheel structure is fully included in the neighborhood graph of the hub vertex. Wheel
and related graphs are extensively studied recently. In [20], the authors computed partition dimension
and connected partition dimension of wheel graphs and showed that, for n ≥ 4, [(2n)]

1
3 ≤ pd(G) ≤
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2[n
1
2 ] + 1. In [21], the authors gave an algorithm to compute average lower two-domination number

and also computed this number for some wheel related graphs. In [22], authors computed the metric
dimension of generalised wheel. In [23], Zafar et al. generalized the above results to multi-level wheel
and obtained that for every n ≥ 4, [(2nm)]

1
3 ≤ pd(Wn,m) ≤ 2[nm

1
2 ] + 1.

Figure 1. An m-level wheel, W12,m.

Figure 2. W3,4.

Figure 3. W6.
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2. Main Results

In this section, we give some results on distance and adjacency energies of wheel related
graphs Wn,m.

Theorem 1. The distance energy of the wheel graph Wn,m is given by

ED(Wn,m) = 2(mn− 2 +
√

m2n2 − 3mn + 4), (2)

where m ≥ 3 and n ≥ 1.

Proof. Let A be adjacency matrix of cycle graph Cm given by

A =



0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 0 0 0 . . . 0 1
1 0 0 0 . . . 1 0


where aij = 1 for |i− j| = 1 or m− 1 and aij = 0 otherwise.
Generally, the m-cycle has adjacency spectrum

Spec(Cm) = 2 cos(
2π j
m

) where j = 0, 1, 2, ...n− 1.

The distance matrix of wheel graph Wn,m obtained by joining of m-vertex cycle Cm and Kn can be
given as,

Cm×m =



0 J1×m J1×m . . . J1×m
Jm×1 [A + 2Ā]m×m Tm×m . . . Tm×m

Jm×1 Tm×m [A + 2Ā]m×m . . . Tm×m

. . . . . . .

. . . . . . .

. . . . . . .
Jm×1 Tm×m Tm×m . . . Tm×m

Jm×1 Tm×m Tm×m . . . [A + 2Ā]m×m


where

J1×m =
(

1 1 . . . 1
)

,

Tm×m =



2 2 . . . 2
2 2 . . . 2
. . . . . .
. . . . . .
. . . . . .
2 2 . . . 2


,
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and

A + 2A =



0 1 2 2 . . . 1 1
1 0 1 2 . . . 2 1
2 1 0 1 . . . 2 1
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
1 2 2 2 . . . 0 1
1 1 1 1 . . . 1 0


.

We get the distance spectrum of Wn,m by using binomial series and adjacency spectrum of cycle graph.
Thus, we get,

specD(Wn,m) =

(
mn− 2±

√
m2n2 − 3mn + 4 −4 −(λi + 2)

1 n− 1 n

)
f or i = 2, 3, ..., m,

where λi are the eigenvalues of the adjacency matrix of cycle graph.
Since λi > 0 for all i = 2, 3, ..., p, by using the definition and summing up the eigenvalues,

we arrive at the desired result of distance energy, which is ED(Wn,m) = 2(mn− 2+
√

m2n2 − 3mn + 4).

Theorem 2. The adjacency energy of the wheel graph Wn,m is given by

EA(Wn,m) = 4n− 2 + 2
√

nm + 1 (3)

where m is even.

Proof. Let A be adjacency matrix of cycle graph Cm.

A =



0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 0 0 0 . . . 0 1
1 0 0 0 . . . 1 0


where aij = 1 if |i− j| = 1 or m− 1 and aij = 0 otherwise.
Generally, the m cycles has adjacency spectrum.

Spec(Cm) = 2 cos(
2π j
m

) where j = 0, 1, 2, ...n− 1.
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Then, the adjacency matrix of wheel graph Wn,m obtained by joining of m-vertex cycle Cm and Kn

can be given as,

Tm×m =



0 J1×m J1×m . . . J1×m
Jm×1 [B]m×m [0]m×m . . . [0]m×m

Jm×1 [0]m×m [B]m×m . . . [0]m×m

. . . . . . .

. . . . . . .

. . . . . . .
Jm×1 [0]m×m [0]m×m . . . [0]m×m

Jm×1 [0]m×m [0]m×m . . . [B]m×m


,

where
J1×m =

(
1 1 . . . 1

)
,

and

Bm×m =



0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 0 0 0 . . . 0 1
1 0 0 0 . . . 1 0


.

We get the following adjacency spectrum of Wn,m by using binomial series and adjacency
spectrum of a cycle graph.

specA(Wn,m) =

(
−2 2 1±

√
mn + 1 λi

n n− 1 1 n

)
, f or i = 3, 4, ..., m,

where λi are the eigenvalues of the adjacency matrix of cycle graph.

As λi > 0 for all i = 2, 3, ..., p, by using the definition and summing up the eigenvalues, we arrive
at the desired result of adjacency energy, EA(Wn,m) = 4n− 2 + 2

√
nm + 1.

Theorem 3. Distance energy of wheel graph W3,m is

ED(W3,m) = 2(3m− 2 +
√

9m2 − 9m + 4) (4)

Proof. As a classical wheel is a special case of generalized wheels for n = 3, the proof follows
immediately from the first result.

Theorem 4. Adjacency energy of wheel graph W3,m is

EA(W3,m) = 10 + 2
√

3m + 1 (5)

Proof. As a classical wheel is a special case of generalized wheels for n = 3, the proof follows
immediately from the second result.

Conclusion and Analysis

In the current article, we compute general forms of distance and adjacency energies of multi-level
wheels, which are the extension of classical wheel graph. In the attached figure, dependencies of
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distance energies on the parameters m and n are given. Figure 4 represents the trends of distance
energies with change in m and n. The first part is a 3D plot showing the trends of distance energies
with change in m and n.

Figure 5 represents increasing behaviour of distance energy with respect to n while keeping m
constant. The three different colored lines correspond to three different values of m.

Figure 6 shows that, with the rise in m and n, the values of adjacency energies rise. It is the 3D
plot showing trends with changes in both m and n.

Figure 7 represents behaviour of adjacency energy with respect to n while keeping m constant.
The three different colored lines correspond to three different values of m.

Figure 4. View of distance energy of Wn,m.

m=6

m=12

m=18

10 15 20 25

500

1000

1500

n

E

Figure 5. Distance energy of Wn,m while keeping m constant.

Figure 6. View of adjacency energy of Wn,m.
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m=9
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26 28 30 32 34 36

140

160

180

200

Figure 7. Adjacency energy of Wn,m while keeping m constant.

In this paper, we compute closed forms of distance and adjacency energies of generalized wheels
and particularize these for classical wheels. These results are helpful for mathematicians and chemists
working in industry as generalized wheels can be considered as particular cyclic structures having a
common hub.
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