

  mathematics-07-00041




mathematics-07-00041







Mathematics 2019, 7(1), 41; doi:10.3390/math7010041




Article



Time-Space Fractional Coupled Generalized Zakharov-Kuznetsov Equations Set for Rossby Solitary Waves in Two-Layer Fluids



Lei Fu 1, Yaodeng Chen 2 and Hongwei Yang 1,2,*[image: Orcid]





1



College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China






2



Key Laboratory of Meteorological Disaster (KLME), Ministry of Education and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China









*



Correspondence: hwyang1979@163.com







Received: 7 December 2018 / Accepted: 29 December 2018 / Published: 3 January 2019



Abstract

:

In this paper, the theoretical model of Rossby waves in two-layer fluids is studied. A single quasi-geostrophic vortex equation is used to derive various models of Rossby waves in a one-layer fluid in previous research. In order to explore the propagation and interaction of Rossby waves in two-layer fluids, from the classical quasi-geodesic vortex equations, by employing the multi-scale analysis and turbulence method, we derived a new (2+1)-dimensional coupled equations set, namely the generalized Zakharov-Kuznetsov(gZK) equations set. The gZK equations set is an extension of a single ZK equation; they can describe two kinds of weakly nonlinear waves interaction by multiple coupling terms. Then, for the first time, based on the semi-inverse method and the variational method, a new fractional-order model which is the time-space fractional coupled gZK equations set is derived successfully, which is greatly different from the single fractional equation. Finally, group solutions of the time-space fractional coupled gZK equations set are obtained with the help of the improved (G′/G)-expansion method.
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1. Introduction


Although the existence of solitary waves has been known in hydrokinetics for about a century, it was not until recently that the theory was applied to wave phenomena in the atmospheric, ocean [1,2,3,4,5,6] and large lake dynamics system, such as solitary waves [7], internal gravity waves [8], internal Kelvin waves [9] and so on. Since Long(1964) derived the Korteweg de-Vries(KdV) equation on the positive pressure system, the isolated Rossby wave theory has been gradually developed [10,11,12], but in many complex atmospheric and oceanic systems, waves interact with each other. The problem of wave–wave interaction is a very important one in the earth fluid, and further study can deepen people’s understanding of large-scale motion phenomena in the atmosphere, ocean and large lakes. There are many motion equations describing Rossby waves in a layer of fluid, such as one-dimensional KdV equation [13], MKdV equation [14], Boussinesq equation [15] and high-dimensional ZK equation [16], mZK equation [17], KP equation [18] and so on. The actual atmospheric ocean system is very complex, compared with the single equation of low dimension, the coupled equations set [19,20,21] of high dimension are more practical. Therefore, this paper derives the (2+1)-dimensional coupled generalized ZK(gZK) equations set from the classical quasi-geostrophic vorticity equations [22,23]. The gZK equation is a class of important high-dimensional nonlinear evolution equation in mathematical physics, the gZK equations set as the extension of a single equation can be used to describe the interaction of nonlinear Rossby waves in two-layer fluids [24,25,26].



Fractional calculus have been used to model atmospheric and oceanic systems, and these models have been found to be suitable to be described by fractional differential equations [27,28,29]. Standard mathematical models of integer derivatives, including nonlinear models, do not work well in many cases. For fractional-order equations set, most researchers only choose the time fractional-order equations set [30,31], but few study the time-space fractional-order equations set, especially the time-space coupled fractional-order equations set. So, for the first time, we transform integral order coupled gZK equations set into fractional order coupled gZK equations set of space-time, and find that it has great research value.



Given the exact solution of nonlinear equations set [32,33] plays an important role in explaining some complex phenomena in physics, dynamics and other scientific fields, mathematicians and physicists have done a lot of researches on solving nonlinear equations set [34,35,36,37,38,39,40,41]. So far, researchers have proposed many effective solutions, such as the (G′/G)-expansion method [42], the exp-function method [43], the Kudryashov method [21], the sun-equation method [44], the functional variable method [45], the modified extended Tanh method [46], Khater method [47], Godunov-type method [48], Lie group analysis method [49,50] and so on. We choose the modified (G′/G)-expansion method to solve the time-space fractional coupled gZK equations set, and get several different kinds of solutions.




2. Derivation of Coupled gZK Equations Set


A single set of quasi-geostrophic vortex equation is usually used to derive various equations which can be used to research Rossby solitary waves [51] in a single layer of the atmosphere and ocean. For the waves in two-layer fluids, they are divided into upper and lower layers as shown in Figure 1, but the isolated waves between the two layers do not propagate separately but interact with each other, this is where the coupled equations set model comes in.



In the first place, for the exploration of the Rossby waves propagation and action between two-layer fluids, the coupled gZK equations set of the objective function is derived from the following two layers of quasi-geostrophic vortex equations set by using the multi-scale analysis and turbulence method


qAt+J(ψA,qA)+βψAx=0,qBt+J(ψB,qB)+βψBx=0,



(1)




where ψA, ψB are the stream functions of the upper fluid and the lower fluid respectively, J[a,b] is the Jacobi operator and J(a,b)=axby−bxay and β represents the Coriolis parameter, as well as


qA=ψAxx+ψAyy+F(ψB−ψA),qB=ψBxx+ψByy+F(ψA−ψB).



(2)







Then the Equation (1) colorredcan be expanded to the following form


ψAxxt+ψAyyt+F(ψB−ψA)t+ψAx[ψAxxy+ψAyyy+F(ψB−ψA)y]−[ψAxxx+ψAyyx+F(ψB−ψA)x]ψAy+βψAx=0,ψBxxt+ψByyt+F(ψA−ψB)t+ψBx[ψBxxy+ψByyy+F(ψA−ψB)y]−[ψBxxx+ψByyx+F(ψA−ψB)x]ψBy+βψBx=0,



(3)




with F represents the weak coupling coefficient between two-layer fluids [22].



In the next place, so as to derive the gZK type equations set, we take the long wave approximation in the x direction, then the stream functions ψA and ψB can be divided into the basic stream functions and the disturbance stream functions, written as


ψA=ϕA0(y)+ϕA(x,y,t)=(UA0+c0y)+ϕA(x,y,t),ψB=ϕB0(y)+ϕB(x,y,t)=(UB0+c0y)+ϕB(x,y,t).



(4)







Suppose the coupling between the two-layer fluids is weak, and the rotation effect of the Earth is very small, therefore we can adopt the following space-time transformation


F=εF0,β=ε2β,



(5)






X=ε(x−c0t),Y=εy,T=ε3t,



(6)




where ε is a small parameter.



Under the premise of Equations (5) and (6), Equation (3) can be rewritten as the following form


−c0ε3ϕAXXX+ε5ϕAXXT−c0ε3ϕAYYX−2c0ε2ϕAYyX−c0εϕAyyX+ε5ϕAYYT+2ε4ϕAYyT+ε3ϕAyyT+ε4F0(ϕBT−ϕAT)−c0ε2F0(ϕBX−ϕAX)+εϕAX[ε3ϕAXXY+ε2ϕAXXy+ϕA0yyy+ε3ϕAYYY+3ε2ϕAYYy+3εϕAYyy+ϕAyyy+εF0(ϕB0y−ϕA0y)+ε2F0(ϕBY−ϕAy)+εF0(ϕBy−ϕAy)]−[ε3ϕAXXX+ε3ϕAYYX+2ε2ϕAYyX+ε2F0(ϕBX−ϕAX)](ϕA0y+εϕAY+ϕAy)+ε4β1ϕAX=0,-c0ε3ϕBXXX+ε5ϕBXXT−c0ε3ϕAYYX−2c0ε2ϕBYyX−c0εϕByyX+ε5ϕBYYT+2ε4ϕBYyT+ε3ϕByyT+ε4F0(ϕAT−ϕBT)-c0ε2F0(ϕAX−ϕBX)+εϕBX[ε3ϕBXXY+ε2ϕBXXy+ϕB0yyy+ε3ϕBYYY+3ε2ϕBYYy+3εϕBYyy+ϕByyy+εF0(ϕA0y−ϕB0y)+ε2F0(ϕAY−ϕBy)+εF0(ϕAy−ϕBy)]−[ε3ϕBXXX+ε3ϕBYYX+2ε2ϕBYyX+ε2F0(ϕAX−ϕBX)](ϕB0y+εϕBY+ϕBy)+ε4β1ϕBX=0,



(7)




where the perturbation stream functions have the following series expansion forms


ϕA=εϕA1(X,Y,T)+ε2ϕA2(X,Y,T)+ε3ϕA3(X,Y,T)+o(ε4),ϕB=εϕB1(X,Y,T)+ε2ϕB2(X,Y,T)+ε3ϕB3(X,Y,T)+o(ε4).



(8)







By substituting Equation (8) into Equation (7), we obtained the following equations about small parameter ε


ε2:-ϕA0yyyϕA1X-c0ϕA1yyX+ϕA0yϕA1yyX=0,-ϕB0yyyϕB1X-c0ϕB1yyX+ϕB0yϕB1yyX=0,



(9)






ε3:−ϕA0yyyϕA2X−c0ϕA2yyX+ϕA0yϕA2yyX−2ϕA1YyX(ϕA0y−c0)+ϕA1XϕA1yyy−ϕA1yyXϕA1y+F0ϕB1X(ϕA0y−c0)+F0ϕA1X(ϕB0y−c0)=0,−ϕB0yyyϕB2X−c0ϕB2yyX+ϕB0yϕB2yyX−2ϕB1YyX(ϕB0y−c0)+ϕB1XϕB1yyy−ϕB1yyXϕB1y+F0ϕA1X(ϕB0y−c0)+F0ϕB1X(ϕA0y−c0)=0,



(10)






ε4:−ϕA0yyyϕA3X−c0ϕA3yyX+ϕA0yϕA3yyX−2ϕA2YyX(ϕA0y−c0)+ϕA2XϕA1yyy+ϕA1XϕA2yyy−ϕA1yyXϕA2y+F0ϕB2X(ϕA0y−c0)+F0ϕA2X(ϕB0y−c0)+ϕA1XXX(ϕA0y−c0)+ϕA1yyT+ϕA1YYX(ϕA0y−c0)+ϕA1XϕA0yyy+3ϕA1XϕA0yyy+3ϕA1XϕA1Yyy−2c0ϕB1YyXϕB1y−ϕB1yyXϕB1Y+F0ϕB1XϕA1y−F0ϕB1yϕA1X=0,−ϕB0yyyϕB3X−c0ϕB3yyX+ϕB0yϕB3yyX−2ϕB2YyX(ϕB0y−c0)+ϕB2XϕB1yyy+ϕB1XϕB2yyy−ϕB1yyXϕB2y+F0ϕA2X(ϕB0y−c0)+F0ϕB2X(ϕA0y−c0)+ϕB1XXX(ϕB0y−c0)+ϕB1yyT+ϕB1YYX(ϕB0y−c0)+ϕB1XϕB0yyy+3ϕB1XϕB0yyy+3ϕB1XϕB1Yyy−2c0ϕB1YyXϕB1y−ϕB1yyXϕB1Y+F0ϕB1XϕA1y−F0ϕB1yϕA1X=0.



(11)







In Equation (9), it is easy to find that ϕA1 and ϕA2 have the following separable variables form solutions


ϕA1=A1(X,Y,T)B1(y)≡A1B1,ϕB1=A2(X,Y,T)B2(y)≡A2B2.



(12)







Substituting (12) into Equation (9), we get the following equations about variable y


UA0yB1y−UA0yyB1+C1=0,UB0yB2y−UB0yyB2+C2=0,



(13)




where C1, C2 are arbitrary constants. Applying Equations (12) and (13) to Equation (10), integrating with respect to X once, cancel out the integral function, and we get the following equations


2UA0y(B1∂yy−B1)ϕA2+B1[A12(B1B1yyy−B1yB1yy)−4UA0yA1YB1y−2F0(UB0yB1A1−UA0yB2A2)]=0,2UB0y(B2∂yy−B2)ϕB2+B2[A22(B2B2yyy−B2yB2yy)−4UB0yA2YB2y−2F0(UA0yB2A2−UB0yB1A1)]=0.



(14)







It’s easy to see from this set of equations that


ϕA2=(a1A12+a2A1Y+a3A1+a4A2)B1,ϕB2=(b1A22+b2A2Y+b3A2+b4A1)B2,



(15)




where ai,bi,i=1,2,3,4 are functions of y


a1=B1B1yyy−B1yB1yy4UA0yB1yy,a2=−B1yB1yy,a3=−F0UB0y2UA0yB1yy,a4=F0B22B1yy,b1=B2B2yyy−B2yB2yy4UB0yB2yy,a2=−B2yB2yy,b3=−F0UA0y2UB0yB2yy,b4=F0B12B2yy.



(16)







In the end, after substituting Equation (12), Equation (15) and ψA3=ψB3=0 into Equation (9), the integrating from 0 to y0 of the resulting, the following coupled gZK equations set can be obtained though simple calculation.


A1T+c1(A1A2)X+c2(A12)X+c3(A22)X+c4A1XY+c5A2XY+c6(A12)XY+c7A1XXX+c8A1XYY=0,A2T+d1(A1A2)X+d2(A12)X+d3(A22)X+d4A1XY+d5A2XY+d6(A22)XY+d7A2XXX+d8A2XYY=0,



(17)




where


c1=∫0y0(a4B1B1yyy+F0B1B1yB1yy−a4B1)dy,c2=∫0y0(F0UB0yB1yy−2a3B1−2B1y)dy,c3=2∫0y0b1F0UA0yB2B1yydy,c4=∫0y0a3B1y+a2F0UB0yB1B1yydy,c5=∫0y0a4B1y+b2F0UA0yB2B1yydy,c6=∫0y0(a2B1B1yy−2B1y2+2a1B1yB1y−a2B1)dy,c7=∫0y0UA0yB1B1yydy,c8=∫0y0a2B1y+UA0yB1B1yy,d1=∫0y0(b4B2B2yy+F0B2B2yB2yy−b4B2)dy,d3=∫0y0(b1F0UA0yB2B2yy−2a3B2−2a3B2y)dy,d2=2∫0y0a1F0UB0yB1B2yy,d4=∫0y0b4B2y+a2F0UB0yB1B2yydy,d5=∫0y0b3B2y+b2F0UB0yB2B2yydy,d6=∫0y0(b2B2B2yyy−2B2y2+2b1B2yB2yy−b2B2B2yy)dy,d7=∫0y0UB0yB2B2yydy,d8=∫0y0b2B2y+UB0yB2B2yy.



(18)







Remark 1.

The coupled gZK equations set is the extension of a single ZK equation and a class of important nonlinear evolution equations of high dimension. They describe two kinds of weakly nonlinear waves interaction with each other and the interaction between two waves is reflected in multiple coupling terms (A1A2)X, (A12)XY and (A22)XY.






3. The Time-Space Fractional Coupled gZK Equations set


In previous work, we only derived a single fractional-order equation, but here we will apply the semi-inverse method and the variational method [52,53,54] to derive the coupled fractional-order equations set for the first time, and obtain a new fractional-order coupled equations set, namely time-space fractional coupled gZK equations set. colorredFor the ease of understanding, some definitions and properties of fractional order are introduced before demonstrating the specific derivation process.



Definition 1

([52]). Modified Rieman-Liouville derivative


Dtαf(t)=1Γ(1−α)ddt∫0t(t−δ)−α(f(δ)−f(0))dδ,0<α<1,(f(n)(x))(α−n),n≤α<n+1,n≥1,








where f(t) is a continuous function.





Definition 2

([42]). Assume that f(t) denotes a continuous R→R function, we use the following equality for the integral


Dtαf(t)=1Γ(α)∫0t(t−ζ)−1f(ζ)dζ=1Γ(1+α)ddt∫0tf(ζ)(dζ)α,0<α≤1.













Property 1

([54]). Integral property of fractional order equation


∫at(dτ)αf(τ)=α∫atdτ(t−τ)αf(τ).













Property 2

([54]). Integration by parts property of fractional order equation


∫ab(dτ)αf(t)Dtαg(t)=1Γ(1−α)[g(t)f(t)|ab−∫ab(dτ)αg(t)Dtαf(t)],f(t),g(t)∈[a,b].













Introducing two potential functions U(X,Y,T) and V(X,Y,T), and their relationship to A1 and A2 is that A1=UX,A2=VX, substituting these two expressions into Equation (17) separately, the potential equations of the coupled gZK equations set have the form as


UXT+c1(vXV)X+c2(UX2)X+c3(VX2)X+c4UXXY+c5VXXY+c6(UX2)XY+c7UXXXX+c8UXXYY=0,VXT+d1(VXU)X+d2(UX2)X+d3(VX2)X+d4UXXY+d5VXXY+d6(VX2)XY+d7VXXXX+d8VXXYY=0.



(19)







Further, the semi-inverse method was applied to derive the Lagrangian equations of coupled gZK equations, functional of the Equation (19) could be written as


J(U,V)=∫RdX∫RdY∫TdT{U[m1UXT+m2c1(UXV)X+m3c2UXUXX+m4c3VXVXX+m5c4UXXY+m6c5VXXY+m7c6(UX2)XY+m8c7UXXXX+m9c8UXXYY]+V[n1VXT+n2d1(UXV)X+n3d2UXUXX+n4d3VXVXX+n5d4UXXY+n6d5VXXY+n7d6(VX2)XY+n8d7VXXXX+n9d8VXXYY]},



(20)




with mi,ni, i=1,⋯,9 are Lagrange coefficients and will be calculated later to determine the exact values. Carrying out the integration by parts in Equation (20) and taking UX|R=UY|R=UT|T=VX|R=VY|R=VT|T=0, the functional be rewritten as


J(U,V)=∫RdX∫RdY∫TdT{[−m1UXUT−m2c1UX2VX−12m3c2UX3−12m4c3UXVX2−m5c4UXUXY−m6c5UXVXY−m7c6(UX2)UXY−m8c7UXX2−m9c8UXY2]−[n1VXVT+n2d1VX2UX+12n3d2VX3−12n4d3VXUX2+n5d4VXVXY+n6d5VXUXY+n7d6VX2VXY+n8d7VXX2+n9d8VXY2]}.



(21)







Using the variational method for this functional equation, integrating by parts to optimize this variational, the resulting forms are expressed as


−2m1UXT−2m2c1(UXV)X−3m3c2(UX2)X−3m4c3(VX2)X−2m5c4UXXY−m6c5VXXY−4m7c6(UX2)XY+m8c7UXXXX−m9c8UXXYY=0,−2n1VXT−2n2d1(VXU)X−3n3d2(UX2)X−3n4d3(VX2)X−2n5d4UXXY−n6d5VXXY−4n7d6(VX2)XY+n8d7VXXXX−n9d8VXXYY=0.



(22)







Since the Equations (22) and (19) are equal, the values of all the Lagrangian constants in the equations can be obtained, m1=m2=m5=n1=n2=n5=−12, m3=m4=n3=n4=−13, m7=n7=−14, m8=n8=1, m6=m9=n6=n9=−1. Thus, the Lagrangian forms [55,56] of the integer order coupled gZK equations set is,


I1=12UXUT+12c1UX2VX+13c2UX3+13c3UX2VX+c4UXUXY+12c5UXVXY+14c6(UX2)UXY−c7UXX2+c8UXY2=0,I2=12VXVT+12d1VX2UX+13d2VX3+13d3VX2UX+d4VXVXY+12d5VXUXY+14d6(VX2)VXY−d7VXX2+d8VXY2=0.



(23)







The fractional variational problem of Lagrange was obtained [57]. A natural generalization of Agrawal’s approach [53,58,59,60], was applied to the fractional calculus of constrained systems. In order to obtain time-space fractional gZK equation set, we use the Lagrangian to minimize certain functionals which will naturally contain fractional derivative terms. Analogously, based on the Definition 1 and Agrawal’s method, the Lagrangian forms of the time-space fractional coupled gZK equations are given as


F1=12DTαU×DXβU+12c1(DXβU)2DXβV+13c2(DXβU)3+13c3(DXβV)2DXβU+c4DXβU×DXYβωU+12c5DXβU×DXYβωV+14c6(DXβU)2DXYβωV−c7(DX2βU)2+c8(DXYβωU)2=0,F2=12DTαV×DXβV+12d1(DXβV)2DXβU+13d2(DXβV)3+13d3(DXβU)2DXβV+d4DXβV×DXYβωV+12d5DXβV×DXYβωU+14d6(DXβV)2DXYβωU−d7(DX2βV)2+d8(DXYβωV)2=0,



(24)




where DXYβωf=DYω[DXβf],DX2βf=DXβ[DXβf].



It’s similar to what we did for the integral order equation, the functional of the time-space coupled gZK equations set has the form


JF(U,V)=∫R(dX)β∫R(dY)ω∫T(dT)α(F1+F2).



(25)




and the variation of functional Equation (24) leads to


δJF(U,V)=∫R(dX)β∫R(dY)ω∫T(dT)α[DTα(∂F1∂DTαU)+DXβ(∂F1∂DXβU)+DYω(∂F1∂DXβU)−DX2β(∂F1∂DX2βU)]δJU+∫R(dX)β∫R(dY)ω∫T(dT)α[DTα(∂F2∂DTαV)+DXβ(∂F2∂DXβV)+DYω(∂F2∂DXβV)−DX2β(∂F2∂DX2βV)]δJV.



(26)







According to the properties introduced at the beginning, integrating the Equation (26) by parts and making δJF(U,V)=0, optimizing the variation of the function, the following form Euler-Lagrange equations [53] for the time-space fractional coupled gZK equations set can be given


DTα(∂F1∂DTαU)+DXβ(∂F1∂DXβU)+DYω(∂F1∂DXβU)−DX2β(∂F1∂DX2βU)=0,DTα(∂F2∂DTαV)+DXβ(∂F2∂DXβV)+DYω(∂F2∂DXβV)−DX2β(∂F2∂DX2βV)=0.



(27)







The last step is to plug expressions for F1,F2 given by Equation (24) and fractional potential functions DXβU(X,Y,T)=u(X,Y,T),DXβV(X,Y,T)=v(X,Y,T) in this equation, the final equations set is


DTαu+c1DXβ(uv)+c2DXβ(u2)+c3DXβ(v2)+c4DXβDYωu+c5DXβDYωv+c6DXβDYω(u2)+c7DX3βu+c8DXβDY2ωv=0,DTαv+d1DXβ(uv)+d2DXβ(u2)+d3DXβ(v2)+d4DXβDYωu+d5DXβDYωv+d6DXβDYω(v2)+d7DX3βv+d8DXβDY2ωv=0.



(28)







It is the time-space fractional coupled gZK equations set. This new set of fractional-order equations will promote the study of fractional-order nonlinear equations and has great significance for the future research.




4. Solutions of Time-Space Fractional Coupled gZK Equations Set


In the previous section, the integral order coupled equations set is transformed into the fractional order coupled equations set. To further explore the Rossby solitary waves interaction between two-layer fluids, we solved the time-space fractional coupled gZK equations set by improved (G′/G)-expansion method [42,43] in this section.



Firstly, by using the following fractional traveling wave transformations


u(X,Y,T)=ϕ1(ξ),v(X,Y,T)=ϕ2(ξ)



(29)






ξ=k1XβΓ(1+β)+k2YωΓ(1+ω)−σTαΓ(1+α)



(30)




where the k1,k2,σ are constants, and using chain rule, we have the equations


DTαu=ρT′∂ϕ1∂ξDTα,DTαv=ρT′∂ϕ2∂ξDTα,DXβu=ρX′∂ϕ1∂ξDXβ,DXβv=ρX′∂ϕ2∂ξDXβ,DYωu=ρY′∂ϕ1∂ξDYω,DYωv=ρY′∂ϕ2∂ξDYω,



(31)




with ρT,ρX,ρY are the fractal indexes, without loss of generality we can make ρT=ρX=ρY=l, thereinto l is a constant.



Put the Equation (29) with Equations (30) and (31) into the Equation (28), the time-space fractional coupled equations set can be reduce to the ordinary differential coupled equations set


−σϕ1′+k1(c1ϕ2ϕ1′+c1ϕ1ϕ2′+c2ϕ1ϕ1′+c3ϕ2ϕ2′)+k1k2l[c4ϕ1″+c5ϕ2″+c6ϕ1ϕ1″+c6(ϕ1′)2]+(c7k13l2+c8k1k22l2)ϕ1‴=0,−σϕ2′+k1(d1ϕ2ϕ1′+d1ϕ1ϕ2′+d2ϕ1ϕ1′+d3ϕ2ϕ2′)+k1k2l[d4ϕ1″+d5ϕ2″+d6ϕ2ϕ2″+d6(ϕ2′)2]+(d7k13l2+d8k1k22l2)ϕ2‴=0.



(32)







Secondly, suppose Equation (32) have the solutions in relation to (G′/G) as follows


ϕ1(ξ)=e0+e1(G′G),ϕ2(ξ)=f0+f1(G′G).



(33)




where e0,e1,f0,f1 are computed later, G=G(ξ) satisfies the second ordinary differential equation


G″+mG′+nG=0.



(34)




thereinto the apostrophe represents derivative with respect to ξ and m,n are parameters.



By substituting Equation (33) with Equation (34) into (32), collecting all terms with the same order of (G′/G), equating each coefficient of the resulting polynomial to zero, we can obtain a set of algebraic equations for k1,k2,σ,l,e0,e1,f0,f1,m and n.



The last, due to the very complicated coefficients in the equations, the calculation process is extremely complicated, in order to calculate accurate results, take c1=d1=c6=d6=2,c2=c3=d2=d3=6,c4=c5=c7=c8=d4=d5=d7=d8=1. Solving the algebraic equations system and subsequently substituting these constants k1,k2,σ,l,e0,e1,f0,f1,m and n, we get the solutions of the time-space fractional gZK coupled equations set that we want in following as



Case 1:


σ=(H1lk1+8k1)(I1H1+H3)−4(2H2H1+H3)k1−I1H1l+H4H1k2l4k22l,e0=I1H1+H24,e1=e1,f0=−I1H1+H34k22l,f1=e1,l=l,m=−H14k2,n=0,



(35)






u1=I1H1+H34±e1H28k2C1sinh(±H28k2ξ)+C2cosh(±H28k2ξ)C1cosh(±H28k2ξ)+C2sinh(±H28k2ξ)+H18k2,v1=I1H1+H24±f1H28k2C1sinh(±H28k2ξ)+C2cosh(±H28k2ξ)C1cosh(±H28k2ξ)+C2sinh(±H28k2ξ)+H18k2,



(36)




where C1,C2 are arbitrary constants, H1=2k2e1−3(k12+k22l),I1=−(k12+k22)l2,H2=2e1k2l+5I1,H3=k22l−4e1k2,H4=lk1k2−4e1k1.



Case 2:


σ=−16H5k1+I2k1k2l2+I3k2l−4l2k1k22k2l,e0=H5k2l,e1=−H62k2,f0=−H5k2l,f1=−H62k2,l=l,m=0,n=12,



(37)






u2=H5k2l−H624k2−C1sin(22ξ)+C2cos(22ξ)C1cos(22ξ)+C2sin(22ξ)−22,v2=−H5k2l−H624k2−C1sin(22ξ)+C2cos(22ξ)C1cos(22ξ)+C2sin(22ξ)−22,



(38)




where C1,C2 are arbitrary constants, H5=k1k22l−2[3(k12+k22)l+4k2]k1k2,I2=−(2k12+3k22)k1l2+4k1k2l,I3=4(k13+k1k22)l2,H6=−3(k12+k22)l+4k2.



Case 3:


σ=I4nH72,e0=−12H8H7,e1=4k22H7,f0=36H8H7,f1=0,l=12k2H7,m=−2n+1,n=n,



(39)





	(i)

	
When 4n2−8n+2>0, the hyperbolic solutions as:


u31=−12H8H7+4k224n2−8n+22H7C1sinh(4n2−8n+2ξ)+C2cosh(4n2−8n+2ξ)C1cosh(4n2−8n+2ξ)+C2sinh(4n2−8n+2ξ)−1−2n2,v31=36H8H7−1−2n2,



(40)








	(ii)

	
When 4n2−8n+2>0, the trigonometric solutions as:


u32=−12H8H7−4k224n2+22H7−C1sin(4n2−8n+2ξ)+C2cos(4n2−8n+2ξ)C1cos(4n2−8n+2ξ)+C2sin(4n2−8n+2ξ)−1−2n2,v32=36H8H7−1−2n2,



(41)








	(iii)

	
When 4n2−8n+2>0, the solutions as:


u33=C2C1+C2ξ−1−2n2,v33=C1C2+C1ξ−1−2n2,



(42)




where C1,C2 are arbitrary constants, I4=288k1k22(k12+k22),H7=9k12+7k22,H8=2k12n+2k22n−k12−k22.









The exact solutions obtained by the research show that the fluctuation relationship of each wave not only contains its own wave number and amplitude, but also contains the amplitude of another wave, which explains the main characteristics of nonlinear waves interaction [61]. On the other hand, the interaction between Rossby waves has a great influence on the propagation stability of waves. When both waves are unstable, and they are still unstable after the interaction. When at least one wave is stable, the two waves may be stable or unstable through the interaction, which is related to the values of the coupling term coefficients.




5. Conclusions


In this paper, based on the quasi-geostrophic vortex equation set, we obtain the (2+1)-dimensional coupled gZK equations set for the first time, which can describe Rossby solitary waves interactions in two-layer fluids. Next, according to the new model and using the semi-inverse method and the fractional variational principle, a new (2+1)-dimensional time-space fractional coupled gZK equations set is obtained. Then, we solved the (2+1)-dimensional time-space fractional coupled gZK equations set. The coupled gZK equations set is the evolution of a single gZK equation in two-layer fluids, which is of great significance for the study of Rossby waves propagation and interaction. How Rossby solitary waves described by coupled equations set interacts specifically and how the energy changes during the interaction, which are our research aim in the future.
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Figure 1. Model geometry for the two-layer fluids, U and V are the basic flows of the upper and lower layers, β represents the Coriolis parameter. 
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