
Article

Complex Intuitionistic Fuzzy Graphs with
Application in Cellular Network Provider Companies

Naveed Yaqoob 1 , Muhammad Gulistan 2 , Seifedine Kadry 3,* and Hafiz Abdul Wahab 2

1 Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Zulfi 11932, Saudi Arabia;
nayaqoob@ymail.com

2 Department of Mathematics and Statistics, Hazara University, Mansehra 21130, Pakistan;
gulistanmath@hu.edu.pk (M.G.); wahab@hu.edu.pk (H.A.W.)

3 Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab University,
P.O. Box 11-5020, Beirut, Lebanon

* Correspondence: skadry@gmail.com

Received: 11 October 2018; Accepted: 11 December 2018; Published: 1 January 2019
����������
�������

Abstract: In recent years, a mathematical approach of blending different aspects is on the way, which
as a result gives a more generalized approach. Following the above mathematical approach, we
combine two very powerful techniques, namely complex intuitionistic fuzzy sets and graph theory,
and introduce the notion of complex intuitionistic fuzzy graphs. Then, we introduce certain notions
including union, join and composition of complex intuitionistic fuzzy graphs, through which one can
easily manipulate the complex intuitionistic fuzzy graphs in decision making problems. We elucidate
these operations with some examples. We also describe the homomorphisms of complex intuitionistic
fuzzy graphs. Finally, we provide an application in cellular network provider companies for the
testing of our approach.

Keywords: complex intuitionistic fuzzy sets; intuitionistic fuzzy graphs; complex intuitionistic
fuzzy graphs

1. Introduction

We divide the Introduction Section into four main paragraphs. In the first paragraph, we provide
some details about the fuzzy sets. In the second paragraph, detail is given about the complex version
of fuzzy sets, namely complex fuzzy sets, which is an extension of fuzzy sets. In the third paragraph,
detail is given about graph theory in terms of different types of fuzzy sets. In the fourth paragraph,
we give our presented approach by combining the two different approaches given in the second and
third paragraphs.

Fuzzy set theory was conferred by Zadeh [1] to solve difficulties in dealing with uncertainties.
Since then, the theory of fuzzy sets and fuzzy logic have been examined by many researchers to solve
many real life problems involving ambiguous and uncertain environment. Atanassov [2] proposed
the extended form of fuzzy set by adding a new component, called “intuitionistic fuzzy sets” (IF-sets).
The idea of IF-sets is more meaningful as well as intensive due to the presence of degree of truth and
falsity membership. Applications of these sets have been broadly studied in other aspects such as
image processing [3], multi-criteria decision making [4], pattern recognition [5], etc.

Buckley [6] and Nguyen et al. [7] combined complex numbers with fuzzy sets. On the other
hand, Ramot et al. [8,9] extended the range of membership to “unit circle in the complex plane”,
unlike others who limited the range to [0, 1]. Zhang et al. [10] studied some operation properties and
δ-equalities of complex fuzzy sets. Some applications of complex fuzzy sets have been considered in
reasoning schemes [11], image restoration [12] and decision making [13]. Further, this concept has
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been studied in intuitionistic fuzzy sets [14]. Alkouri and Salleh studied some operations on complex
Atanassov’s intuitionistic fuzzy sets in [15] and also studied complex Atanassov’s intuitionistic fuzzy
relation in [16]. Ali et al. [17] introduced complex intuitionistic fuzzy classes.

Fuzzy graphs were narrated by Rosenfeld [18] and Mordeson [19]. After that, some opinion on
“fuzzy graphs” were given by Bhattacharya [20]. He showed that none of the concepts of crisp graph
theory have similarities in fuzzy graphs. Thirunavukarasu et al. [21] extended this concept for complex
fuzzy graphs. Shannon and Atanassov [22] and Akram and Davvaz [23] defined intuitionistic fuzzy
graphs. Later, several authors worked on intuitionistic fuzzy graphs and added many useful results
to this area, for instance, Akram and Akmal [24], Alshehri and Akram [25], Karunambigai et al. [26],
Myithili et al. [27], Nagoorgani et al. [28] and Parvathi et al. [29,30]. See also [31–35].

Inspired by the fact that complex intuitionistic fuzzy sets generalize intuitionistic fuzzy sets, in
this paper, we provide the new idea of complex intuitionistic fuzzy graphs with some fundamental
operations. We also describe homomorphisms of complex intuitionistic fuzzy graphs. Finally, we
provide an application.

2. Preliminaries and Basic Definitions

Definition 1. [8] A complex fuzzy set (CFS) A, defined on a universe of discourse X is an object of the form

A = {(x, uA(x)eiωA(x)) : x ∈ X},

where i =
√
−1, uA(x) ∈ [0, 1] and 0 ≤ ωA(x) ≤ 2π.

Definition 2. [14] A complex intuitionistic fuzzy set (cif-set) A, defined on a universe of discourse X is an
object of the form

A = {(x, µA(x)eiαA(x), υA(x)eiβA(x)) : x ∈ X},

where i =
√
−1, µA(x), υA(x) ∈ [0, 1], αA(x), βA(x) ∈ [0, 2π] and 0 ≤ µA(x) + υA(x) ≤ 1.

Definition 3. [14] Let A and B be two cif-sets in X , where

A = {(x, µA(x)eiαA(x), υA(x)eiβA(x)) : x ∈ X}

and B = {(x, µB(x)eiαB(x), υB(x)eiβB(x)) : x ∈ X}.

Then, A∪ B is given as

A∪ B = {(x, µA∪B(x)eiαA∪B(x), υA∪B(x)eiβA∪B(x) : x ∈ X}

where
µA∪B(x)eiαA∪B(x) = [µA(x) ∨ µB(x)]ei{αA(x)∨αB(x)},

υA∪B(x)eiβA∪B(x) = [υA(x) ∧ υB(x)]ei{βA(x)∧βB(x)},

Definition 4. [16] Let A and B be two cif-sets in X , where

A = {(x, µA(x)eiαA(x), υA(x)eiβA(x)) : x ∈ X}

and B = {(x, µB(x)eiαB(x), υB(x)eiβB(x)) : x ∈ X}.

Then, for all x ∈ X :

(1) A ⊂ B if and only if µA(x) < µB(x), υA(x) > υB(x) for amplitude terms and αA(x) < αB(x),
βA(x) > βB(x) for phase terms.

(2) A = B if and only if µA(x) = µB(x), υA(x) = υB(x) for amplitude terms and αA(x) = αB(x),
βA(x) = βB(x) for phase terms.
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Definition 5. A graph is an ordered pair G∗ = (V, E), where V is the set of vertices of G∗ and E is the set of
edges of G∗.

3. Complex Intuitionistic Fuzzy Graphs

In this section, we provide definition and operations of complex intuitionistic fuzzy graphs.

Definition 6. A complex intuitionistic fuzzy graph (cif-graph) with an underlaying set V is defined to be a
pair G = (A,B), where A is a cif-set on V and B is a cif-set on E ⊆ V ×V such that

µB(xy)eiαB(xy) ≤ min{µA(x), µA(y)}ei min{αA(x),αA(y)}

υB(xy)eiβB(xy) ≤ max{υA(x), υA(y)}ei max{βA(x),βA(y)}

for all x, y ∈ V.

Definition 7. Let G = (A,B) be a cif-graph. The order of a cif-graph is defined by

O(G) =

(
Σ

x∈V
µA(x)e

Σ
x∈V

αA(x)
, Σ

x∈V
υA(x)e

Σ
x∈V

βA(x)
)

.

The degree of a vertex x in G is defined by

deg(x) =
(

Σ
x∈E

µB(xy)e
Σ

x∈E
αB(xy)

, Σ
x∈E

υB(xy)e
Σ

x∈E
βB(xy)

)
.

Example 1. Consider a graph G∗ = (V, E) such that V = {a, b, c, d}, E = {ab, ac, bc, cd}. Let A be a
cif-subset of V and let B be a cif-subset of E ⊆ V ×V, as given:

A =

(
(0.2ei 1.3π , 0.4ei 0.5π)

a
,
(1.0ei 1.5π , 0.0ei 0.5π)

b
,
(0.7ei 0.3π , 0.2ei 1.5π)

c
,
(0.8ei 1.1π , 0.1ei 0.7π)

d

)
.

B =

(
(0.2ei 0.9π , 0.3ei 0.4π)

ab
,
(0.1ei 0.2π , 0.3ei 0.9π)

ac
,
(0.1ei 0.1π , 0.2ei 0.5π)

bc
,
(0.5ei 0.2π , 0.1ei 0.5π)

cd

)
.

(i) By routine calculations, it can be observed that the graph shown in Figure 1 is a cif-graph.
(ii) Order of cif-graph = O(G) = (2.7ei 4.2π , 0.7ei 3.2π)

(iii) Degree of each vertex in G is

deg(a) = (0.3ei 1.1π , 0.6ei 1.3π),

deg(b) = (0.3ei 1.0π , 0.5ei 0.9π),

deg(c) = (0.7ei 0.5π , 0.6ei 1.9π),

deg(d) = (0.5ei 0.2π , 0.1ei 0.5π).

Definition 8. The Cartesian product G1 × G2 of two cif-graphs is defined as a pair G1 × G2 = (A1 ×
A2,B1 ×B2), such that:

1. µA1×A2(x1, x2)e
iαA1×A2

(x1,x2) = min{µA1(x1), µA2(x2))}ei min{αA1
(x1),αA2

(x2)}

υA1×A2(x1, x2)e
iβA1×A2

(x1,x2) = max{υA1(x1), υA2(x2))}ei max{βA1
(x1),βA2

(x2)} for all x1, x2 ∈ V,

2. µB1×B2((x, x2)(x, y2))e
iαB1×B2

((x,x2)(x,y2)) = min{µA1(x), µB2(x2y2))}ei min{αA1
(x),αB2

(x2y2)}

υB1×B2((x, x2)(x, y2))e
iβB1×B2

((x,x2)(x,y2)) = max{υA1(x), υB2(x2y2))}ei max{βA1
(x),βB2

(x2y2)}

for all x ∈ V1, and x2y2 ∈ E2,
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3. µB1×B2((x1, z)(y1, z))eiαB1×B2
((x1,z)(y1,z)) = min{µB1(x1y1), µA2(z))}e

i min{αB1
(x1y1),αA2

(z)}

υB1×B2((x1, z)(y1, z))eiβB1×B2
((x1,z)(y1,z)) = max{υB1(x1y1), υA2(z))}e

i max{βB1
(x1y1),βA2

(z)}

for all z ∈ V2, and x1y1 ∈ E1.

Figure 1. Complex intuitionistic fuzzy graph G.

Definition 9. Let G1 and G2 be two cif-graphs. The degree of a vertex in G1 ×G2 can be defined as follows:
for any (x1, x2) ∈ V1 × V2,

dG1×G2(x1, x2) =


Σ

(x1,x2)(y1,y2)∈E
µB1×B2((x1, x2)(y1, y2))e

Σ
(x1,x2)(y1,y2)∈E

αB1×B2
((x1,x2)(y1,y2))

,

Σ
(x1,x2)(y1,y2)∈E

υB1×B2((x1, x2)(y1, y2))e
Σ

(x1,x2)(y1,y2)∈E
βB1×B2

((x1,x2)(y1,y2))

 .

Example 2. Consider the two cif-graphs G1 and G2, as shown in Figures 2 and 3.

Figure 2. Complex intuitionistic fuzzy graph G1.

Figure 3. Complex intuitionistic fuzzy graph G2.

Then, their corresponding Cartesian product G1 ×G2 is shown in Figure 4.
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Figure 4. Complex intuitionistic fuzzy graph of G1 ×G2.

Proposition 1. The Cartesian product of two cif-graphs is a cif-graph.

Proof. The conditions for A1 ×A2 are obvious, therefore, we verify only conditions for B1 ×B2.
Let x ∈ V1, and x2y2 ∈ E2. Then,

µB1×B2((x, x2)(x, y2))e
iαB1×B2

((x,x2)(x,y2))

= min{µA1(x), µB2(x2y2))}ei min{αA1
(x),αB2

(x2y2)}

≤ min{µA1(x), min{µA2(x2), µA2(y2)}}ei min{αA1
(x),min{αA2

(x2),αA2
(y2)}}

= min{min{µA1(x), µA2(x2)}, min{µA1(x), µA2(y2)}}ei min{min{αA1
(x),αA2

(x2)},min{αA1
(x),αA2

(y2)}}

= min{µA1×A2(x, x2), µA1×A2(x, y2)}ei min{αA1×A2
(x,x2),αA1×A2

(x,y2)},

υB1×B2((x, x2)(x, y2))e
iγB1×B2

((x,x2)(x,y2))

= max{υA1(x), υB2(x2y2))}ei max{γA1
(x),γB2

(x2y2)}

≤ max{υA1(x), max{υA2(x2), υA2(y2)}}ei max{γA1
(x),max{γA2

(x2),γA2
(y2)}}

= max{max{υA1(x), υA2(x2)}, max{υA1(x), υA2(y2)}}ei max{max{γA1
(x),γA2

(x2)},max{γA1
(x),γA2

(y2)}}

= max{υA1×A2(x, x2), υA1×A2(x, y2)}ei max{γA1×A2
(x,x2),γA1×A2

(x,y2)},

Similarly, we can prove it for z ∈ V2 and x1y1 ∈ E1.

Definition 10. The composition G1 ◦G2 of two cif-graphs is defined as a pair G1 ◦G2 = (A1 ◦ A2, B1 ◦ B2),
such that:

1. µA1◦A2(x1, x2)e
iαA1◦A2

(x1,x2) = min{µA1(x1), µA2(x2))}ei min{αA1
(x1),αA2

(x2)}

υA1◦A2(x1, x2)e
iβA1◦A2

(x1,x2) = max{υA1(x1), υA2(x2))}ei max{βA1
(x1),βA2

(x2)} for all x1, x2 ∈ V,

2. µB1◦B2((x, x2)(x, y2))e
iαB1◦B2

((x,x2)(x,y2)) = min{µA1(x), µB2(x2y2))}ei min{αA1
(x),αB2

(x2y2)}

υB1◦B2((x, x2)(x, y2))e
iβB1◦B2

((x,x2)(x,y2)) = max{υA1(x), υB2(x2y2))}ei max{βA1
(x),βB2

(x2y2)}

for all x ∈ V1, and x2y2 ∈ E2,

3. µB1◦B2((x1, z)(y1, z))eiαB1◦B2
((x1,z)(y1,z)) = min{µB1(x1y1), µA2(z))}e

i min{αB1
(x1y1),αA2

(z)}

υB1◦B2((x1, z)(y1, z))eiβB1◦B2
((x1,z)(y1,z)) = max{υB1(x1y1), υA2(z))}e

i max{βB1
(x1y1),βA2

(z)}

for all z ∈ V2, and x1y1 ∈ E1.
4. µB1◦B2 ((x1, x2)(y1, y2))eiαB1◦B2 ((x1,x2)(y1,y2)) = min{µA2 (x2), µA2 (y2), µB1 (x1y1)}ei min{αA2 (x2),αA2 (y2),αB1 (x1y1)}
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υB1◦B2 ((x1, x2)(y1, y2))eiβB1◦B2 ((x1,x2)(y1,y2)) = max{υA2 (x2), υA2 (y2), υB1 (x1y1)}ei max{βA2 (x2),βA2 (y2),βB1 (x1y1)}

for all x2, y2 ∈ V2, x2 6= y2 and x1y1 ∈ E1.

Definition 11. Let G1 and G2 be two cif-graphs. The degree of a vertex in G1 ◦G2 can be defined as follows:
for any (x1, x2) ∈ V1 × V2,

dG1◦G2(x1, x2) =


Σ

(x1,x2)(y1,y2)∈E
µB1◦B2((x1, x2)(y1, y2))e

Σ
(x1,x2)(y1,y2)∈E

αB1◦B2
((x1,x2)(y1,y2))

,

Σ
(x1,x2)(y1,y2)∈E

υB1◦B2((x1, x2)(y1, y2))e
Σ

(x1,x2)(y1,y2)∈E
βB1◦B2

((x1,x2)(y1,y2))

 .

Example 3. Consider the two cif-graphs, as shown in Figure 5.

Figure 5. Complex intuitionistic fuzzy graphs of G1 and G2.

Then, their composition G1 ◦G2 is shown in Figure 6.

Figure 6. Complex intuitionistic fuzzy graph of G1 ◦G2.

Proposition 2. The composition of two cif-graphs is a cif-graph.

Definition 12. The union G1 ∪G2 = (A1 ∪A2,B1 ∪ B2) of two cif-graphs is defined as follows:

1. µA1∪A2(x)eiαA1∪A2
(x) = µA1(x)eiαA1

(x),

υA1∪A2(x)eiβA1∪A2
(x) = υA1(x)eiβA1

(x), for x ∈ V1 and x /∈ V2.

2. µA1∪A2(x)eiαA1∪A2
(x) = µA2(x)eiαA2

(x),

υA1∪A2(x)eiβA1∪A2
(x) = υA2(x)eiβA2

(x), for x ∈ V2 and x /∈ V1.
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3. µA1∪A2(x)eiαA1∪A2
(x) = max{µA1(x), µA2(x)}ei max{αA1

(x),αA2
(x)},

υA1∪A2(x)eiβA1∪A2
(x) = min{υA1(x), υA2(x)}ei min{βA1

(x),βA2
(x)}, for x ∈ V1 ∩V2.

4. µB1∪B2(xy)eiαB1∪B2
(xy) = µB1(xy)eiαB1

(xy),

υB1∪B2(xy)eiβB1∪B2
(xy) = υB1(xy)eiβB1

(xy), for xy ∈ E1 and xy /∈ E2.

5. µB1∪B2(xy)eiαB1∪B2
(xy) = µB2(xy)eiαB2

(xy),

υB1∪B2(xy)eiβB1∪B2
(xy) = υB2(xy)eiβB2

(xy), for xy ∈ V2 and xy /∈ V1.

6. µB1∪B2(xy)eiαB1∪B2
(xy) = max{µB1(xy), µB2(xy)}ei max{αB1

(xy),αB2
(xy)},

υB1∪B2(xy)eiβB1∪B2
(xy) = min{υB1(xy), υB2(xy)}ei min{βB1

(xy),βB2
(xy)}, for xy ∈ V1 ∩V2.

Example 4. Consider the two cif-graphs, as shown in Figure 7.

Figure 7. Complex intuitionistic fuzzy graphs of G1 and G2.

Then, their corresponding union G1 ∪G2 is shown in Figure 8.

Figure 8. Complex intuitionistic fuzzy graph of G1 ∪G2.

Proposition 3. The union of two cif-graphs is a cif-graph.

Definition 13. The join G1+G2 = (A1+A2,B1+B2) of two cif-graphs, where V1 ∩ V2 = ∅, is defined
as follows:

1.

{
µA1+A2(x)eiαA1+A2

(x) = µA1∪A2(x)eiαA1∪A2
(x)

υA1+A2(x)eiβA1+A2
(x) = υA1∪A2(x)eiβA1∪A2

(x) if x ∈ V1 ∪V2,

2.

{
µB1+B2(xy)eiαB1+B2

(x) = µB1∪B2(xy)eiαB1∪B2
(x)

υB1+B2(xy)eiβB1+B2
(x) = υB1∪B2(xy)eiβB1∪B2

(x) if xy ∈ E1 ∩ E2,

3.

{
µB1+B2(xy)eiαB1+B2

(xy) = min{µA1(x), µA2(y)}e
i min{αA1

(x),αA2
(y)}

υB1+B2(xy)eiβB1+B2
(xy) = max{υA1(x), υA2(y)}e

i max{βA1
(x),βA2

(y)} if xy ∈ É, where É is the set

of all edges joining the vertices of V1 and V2.
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Example 5. Consider the two cif-graphs, as shown in Figure 9.

Figure 9. Complex intuitionistic fuzzy graphs of G1 and G2.

Then, their corresponding join G1+G2 is shown in Figure 10.

Figure 10. Complex intuitionistic fuzzy graph of G1+G2.

Proposition 4. The join of two cif-graphs is a cif-graph.

Proposition 5. Let G1 = (A1,B1) and G2 = (A2,B2) be cif-graphs of the graphs G∗1 and G∗2 and let
V1 ∩V2 = ∅. Then, union G1 ∪G2 = (A1 ∪A2,B1 ∪ B2) is a cif-graph of G∗ if and only if G1 and G2 are
cif-graphs of the graphs G∗1 and G∗2 , respectively.

Proof. Suppose that G1 ∪G2 is a cif-graph. Let xy ∈ E1. Then, xy /∈ E2 and x, y ∈ V1 −V2. Thus,

µB1(xy)eiαB1
(x) = µB1∩B2(xy)eiαB1∩B2

(x)

≤ min(µA1∩A2(x), µA1∩A2(y))e
i min(αA1∩A2

(x),αA1∩A2
(y))

= min(µA1(x), µA1(y))e
i min(αA1

(x),αA1
(y)).

υB1(xy)eiβB1
(x) = υB1∩B2(xy)eiβB1∩B2

(x)

≤ max(υA1∩A2(x), υA1∩A2(y))e
i max(βA1∩A2

(x),βA1∩A2
(y))

= max(υA1(x), υA1(y))e
i max(βA1

(x),βA1
(y)).
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This shows that G1 = (A1,B1) is a cif-graph. Similarly, we can show that G2 = (A2,B2) is a
cif-graph. The converse part is obvious.

Proposition 6. Let G1 = (A1,B1) and G2 = (A2,B2) be cif-graphs of the graphs G∗1 and G∗2 and let
V1 ∩ V2 = ∅. Then, join G1+G2 = (A1+A2,B1+B2) is a cif-graph of G∗ if and only if G1 and G2 are
cif-graphs of the graphs G∗1 and G∗2 , respectively.

Proof. The proof is similar to the proof of Proposition 5.

4. Isomorphisms of cif-Graphs

In this section, we discuss isomorphisms of cif-graphs.

Definition 14. Let G1 = (A1,B1) and G2 = (A2,B2) be two cif-graphs. A homomorphism g : G1 → G2 is
a mapping g : V1 → V2 such that:

1.

{
µA1(x1)e

iαA1
(x1) ≤ µA2(g(x1))e

iαA2
(g(x1))

υA1(x1)e
iβA1

(x1) ≤ υA2(g(x1))e
iβA2

(g(x1))
for all x1 ∈ V1,

2.

{
µB1(x1y1)e

iαB1
(x1y1) ≤ µB2(g(x1)g(y1))e

iαB2
(g(x1)g(y1))

υB1(x1y1)e
iβB1

(x1y1) ≤ υB2(g(x1)g(y1))e
iβB2

(g(x1)g(y1))
for all x1y1 ∈ E1.

A bijective homomorphism with the property

3.

{
µA1(x1)e

iαA1
(x1) = µA2(g(x1))e

iαA2
(g(x1))

υA1(x1)e
iβA1

(x1) = υA2(g(x1))e
iβA2

(g(x1))
for all x1 ∈ V1, is called a weak isomorphism.

A bijective homomorphism with the property

4.

{
µB1(x1y1)e

iαB1
(x1y1) = µB2(g(x1)g(y1))e

iαB2
(g(x1)g(y1))

υB1(x1y1)e
iβB1

(x1y1) = υB2(g(x1)g(y1))e
iβB2

(g(x1)g(y1))
for all x1y1 ∈ E1, is called a strong

co-isomorphism. A bijective mapping g : G1 → G2 satisfying 3 and 4 is called an isomorphism.

Example 6. Consider two cif-graphs, as shown in Figure 11.

Figure 11. Complex intuitionistic fuzzy graphs of G1 and G2.

Then, it is easy to see that the mapping g : V1 → V2 defined by g(a1) = b2 and g(b1) = a2 is a
weak isomorphism.

Proposition 7. An isomorphism between cif-graphs is an equivalence relation.

Proof. The reflexivity and symmetry are obvious. To prove the transitivity, we let f : V1 → V2 and
g : V2 → V3 be the isomorphisms of G1 onto G2 and G2 onto G3, respectively. Then, g ◦ f : V1 → V3 is
a bijective map from V1 to V3, where (g ◦ f )(x1) = g( f (x1)) for all x1 ∈ V1. Since a map f : V1 → V2

defined by f (x1) = x2 for x1 ∈ V1 is an isomorphism. Now
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µA1(x1)e
iαA1

(x1) = µA2( f (x1))e
iαA2

( f (x1))

= µA2(x2)e
iαA2

(x2) for all x1 ∈ V1· · · (A1),

υA1(x1)e
iβA1

(x1) = υA2( f (x1))e
iβA2

( f (x1))

= υA2(x2)e
iβA2

(x2) for all x1 ∈ V1· · · (A2),

µB1(x1y1)e
iαB1

(x1y1) = µB2( f (x1) f (y1))e
iαB2

( f (x1) f (y1))

= µB2(x2y2)e
iαB2

(x2y2) for all x1y1 ∈ E1· · · (B1).

υB1(x1y1)e
iβB1

(x1y1) = υB2( f (x1) f (y1))e
iβB2

( f (x1) f (y1))

= υB2(x2y2)e
iβB2

(x2y2) for all x1y1 ∈ E1· · · (B2).

Since a map g : V2 → V3 defined by g(x2) = x3 for x2 ∈ V2 is an isomorphism,

µA2(x2)e
iαA2

(x2) = µA3(g(x2))e
iαA3

(g(x2))

= µA3(x3)e
iαA3

(x3) for all x2 ∈ V2· · · (C1),

υA2(x2)e
iβA2

(x2) = υA3(g(x2))e
iβA3

(g(x2))

= υA3(x3)e
iβA3

(x3) for all x2 ∈ V2· · · (C2),

µB2(x2y2)e
iαB2

(x2y2) = µB3(g(x2)g(y2))e
iαB3

(g(x2)g(y2))

= µB3(x3y3)e
iαB3

(x3y3) for all x2y2 ∈ E2· · · (D1).

υB2(x2y2)e
iβB2

(x2y2) = υB3(g(x2)g(y2))e
iβB3

(g(x2)g(y2))

= υB3(x3y3)e
iβB3

(x3y3) for all x2y2 ∈ E2· · · (D2).

From (A1), (C1) and f (x1) = x2, x1 ∈ V1, we have

µA1(x1)e
iαA1

(x1) = µA2( f (x1))e
iαA2

( f (x1)) = µA2(x2)e
iαA2

(x2)

= µA3(g(x2))e
iαA3

(g(x2))

= µA3(g( f (x1)))e
iαA3

(g( f (x1))).

From (A2), (C2) and f (x1) = x2, x1 ∈ V1, we have

υA1(x1)e
iβA1

(x1) = υA2( f (x1))e
iβA2

( f (x1)) = υA2(x2)e
iβA2

(x2)

= υA3(g(x2))e
iβA3

(g(x2))

= υA3(g( f (x1)))e
iβA3

(g( f (x1))).
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From (B1) and (D1), we have

µB1(x1y1)e
iαB1

(x1y1) = µB2( f (x1) f (y1))e
iαB2

( f (x1) f (y1)) = µB2(x2y2)e
iαB2

(x2y2)

= µB3(g(x2)g(y2))e
iαB3

(g(x2)g(y2))

= µB3(g( f (x1))g( f (y1)))e
iαB3

(g( f (x1))g( f (y1))).

From (B2) and (D2), we have

υB1(x1y1)e
iβB1

(x1y1) = υB2( f (x1) f (y1))e
iβB2

( f (x1) f (y1)) = υB2(x2y2)e
iβB2

(x2y2)

= υB3(g(x2)g(y2))e
iβB3

(g(x2)g(y2))

= υB3(g( f (x1))g( f (y1)))e
iβB3

(g( f (x1))g( f (y1))),

for all x1y1 ∈ E1. Therefore, g ◦ f is an isomorphism between G1 and G3. This completes the proof.

Proposition 8. A weak isomorphism (co-isomorphism) between cif-graphs is a partial ordering relation.

Proof. The reflexivity and transitivity are obvious. To prove the anti-symmetry, we let f : V1 → V2

be a strong isomorphism of G1 onto G2. Then, f is a bijective map defined by f (x1) = x2 for all
x1 ∈ V1 satisfying

µA1(x1)e
iαA1

(x1) = µA2( f (x1))e
iαA2

( f (x1)) for all x1 ∈ V1,

υA1(x1)e
iβA1

(x1) = υA2( f (x1))e
iβA2

( f (x1)) for all x1 ∈ V1,

µB1(x1y1)e
iαB1

(x1y1) ≤ µB2( f (x1) f (y1))e
iαB2

( f (x1) f (y1)) for all x1y1 ∈ E1· · · (I1).

υB1(x1y1)e
iβB1

(x1y1) ≤ υB2( f (x1) f (y1))e
iβB2

( f (x1) f (y1)) for all x1y1 ∈ E1· · · (I2).

Let g : V2 → V1 be a strong isomorphism of G2 onto G1. Then, g is a bijective map defined by
g(x2) = x1 for all x2 ∈ V2 satisfying

µA2(x2)e
iαA2

(x2) = µA1(g(x2))e
iαA1

(g(x2)) for all x2 ∈ V2,

υA2(x2)e
iβA2

(x2) = υA1(g(x2))e
iβA1

(g(x2)) for all x2 ∈ V2,

µB2(x2y2)e
iαB2

(x2y2) ≤ µB1(g(x2)g(y2))e
iαB1

(g(x2)g(y2)) for all x2y2 ∈ E2· · · (J1).

υB2(x2y2)e
iβB2

(x2y2) ≤ υB1(g(x2)g(y2))e
iβB1

(g(x2)g(y2)) for all x2y2 ∈ E2· · · (J2).

The inequalities (I1), (J1) and (I2), (J2) hold on the finite sets V1 and V2 only when G1 and
G2 have the same number of edges and the corresponding edges have same weight. Hence, G1

and G2 are identical. Therefore, g ◦ f is a strong isomorphism between G1 and G3. This completes
the proof.

5. Complement of cif-Graphs

In this section, we discuss complements of cif-graphs.

Definition 15. The complement of a weak cif-graph G = (A,B) of G∗ = (V, E) is a weak cif-graph G =

(A,B) on G∗, is defined by

(i) V = V,

(ii)

{
µA(x)eiαA(x) = µA(x)eiαA(x)

υA(x)eiβA(x) = υA(x)eiβA(x) for all x ∈ V,
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(iii)


µB(xy)eiαB(xy) =

{
0 if µB(xy)eiαB(xy) 6= 0
min{µA(x), µA(y)}ei min{αA(x),αA(y)} if µB(xy)eiαB(xy) = 0.

υB(xy)eiβB(xy) =

{
0 if υB(xy)eiβB(xy) 6= 0
max{υA(x), υA(y)}ei max{βA(x),βA(y)} if υB(xy)eiβB(xy) = 0.

Example 7. Consider a cif-graph G, as shown in Figure 12.

Figure 12. Complex intuitionistic fuzzy graph of G.

Then, the complement G of G is shown in Figure 13.

Figure 13. Complex intuitionistic fuzzy graph of G.

Definition 16. A cif-graph G is called self complementary if G ≈ G.

The following propositions are obvious.

Proposition 9. Let G = (A,B) be a self complementary cif-graph. Then,

Σ
x 6=y

µB(xy)eiαB(xy) = Σ
x 6=y

min{µA(x), µA(y)}ei min{αA(x),αA(y)}

Σ
x 6=y

υB(xy)eiβB(xy) = Σ
x 6=y

max{υA(x), υA(y)}ei max{βA(x),βA(y)}.

Proposition 10. Let G = (A,B) be a cif-graph. If

µB(xy)eiαB(xy) = min{µA(x), µA(y)}ei min{αA(x),αA(y)}

υB(xy)eiβB(xy) = max{υA(x), υA(y)}ei max{βA(x),βA(y)},
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x, y ∈ V, then G is self complementary.

Proposition 11. Let G1 and G2 be cif-graphs. If there is a strong isomorphism between G1 and G2, then there
is a strong isomorphism between G1 and G2.

Proof. Let f be a strong isomorphism between G1 and G2. Then, f : V1 → V2 is a bijective map
that satisfies

f (x1) = x2 for all x1 ∈ V1,

µA1(x1)e
iαA1

(x1) = µA2( f (x1))e
iαA2

( f (x1)) for all x ∈ V1.

υA1(x1)e
iβA1

(x1) = υA2( f (x1))e
iβA2

( f (x1)) for all x ∈ V1.

µA1(x1y1)e
iαA1

(x1y1) ≤ µA2( f (x1) f (y1))e
iαA2

( f (x1) f (y1)) for all x1y1 ∈ E1.

υA1(x1y1)e
iβA1

(x1y1) ≤ υA2( f (x1) f (y1))e
iβA2

( f (x1) f (y1)) for all x1y1 ∈ E1.

Since f : V1 → V2 is a bijective map, f −1 : V2 → V1 is also bijective map such that f −1(x2) = x1

for all x2 ∈ V2. Thus

µA1( f−1(x2))e
iαA1

( f−1(x2)) = µA2(x2)e
iαA2

(x2) for all x2 ∈ V2.

υA1( f−1(x2))e
iβA1

( f−1(x2)) = υA2(x2)e
iβA2

(x2) for all x2 ∈ V2.

By definition of complement, we have

µB1
(x1y1)e

iαB1
(x1y1) = min{µA1(x1), µA1(y1)}ei min{αA1

(x1),αA1
(y1)}

≤ min{µA2( f (x2)), µA2( f (y2))}ei min{αA2
( f (x2)),αA2

( f (y2))}

= min{µA2(x2), µA2(y2)}ei min{αA2
(x2),αA2

(y2)}

= µB2(x2y2)e
iαB2

(x2y2).

υB1
(x1y1)e

iβB1
(x1y1) = max{υA1(x1), υA1(y1)}ei max{βA1

(x1),βA1
(y1)}

≤ max{υA2( f (x2)), υA2( f (y2))}ei max{βA2
( f (x2)),βA2

( f (y2))}

= max{υA2(x2), υA2(y2)}ei max{βA2
(x2),βA2

(y2)}

= υB2(x2y2)e
iβB2

(x2y2).

Thus, f −1 : V2 → V1 is a bijective map which is a strong isomorphism between G1 and G2.
This ends the proof.

The following Proposition is obvious.

Proposition 12. Let G1 and G2 be cif-graphs. Then, G1
∼= G2 if and only if G1

∼= G2.

Proposition 13. Let G1 and G2 be cif-graphs. If there is a co-strong isomorphism between G1 and G2, then
there is a homomorphism between G1 and G2 .

6. Application

Intuitionistic fuzzy sets are the valuable generalization of fuzzy sets. We combine complex
intuitionistic fuzzy sets with the graph theory. Complex intuitionistic fuzzy graphs have many
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applications in database theory, expert systems, neural networks, decision making problems, GIS-based
road networks, facility location problems and so on. In the following, we propose an assumption based
application that can be utilized in a physical way.

Consider a cellular company that has a plan to fix the minimum number of towers in a city, such
that the maximum numbers of the users can be attracted. For this purpose, the following are some of
the parameters that can be taken in account:

• Suitable place to fix a tower
• Transportation means
• Users
• Connectivity with the main server
• Urban area or hilly area
• Any other existing cellular network
• Available recourses
• Expenditures and outcomes

Suppose a team selected five places where they are interested in placing a tower, so that they can
facilitate maximum numbers of the users. They observe the following two situations:

1. Fixing a tower exactly at the chosen place from the selected five places
2. Fixing a tower between any two of the selected five places.

For Situation 1, we proceed as follows:
Let V = {C1, C2, C3, C4, C5} be the set of places where the team is interested in fixing a tower as a

vertex set. Suppose that 60% of the experts on the team believe that C1 should have a tower and 10%
of the experts believe that there is no need to fix tower at the place C1 after carefully observing the
different parameters. Thus, in this way, we can find the amplitude term for both membership and
non-membership functions. Now, the phase term that represents the period needs to be found. Let 40%
of the experts believe that in a particular time C1 can attract the maximum number of users (Profit) and
30% of the experts have the opposite opinion. We model this information as

〈
C1 : 0.6ei 0.4π , 0.1ei 0.3π

〉
.

Thus, the team finalizes its opinion about the place C1. Now, they visit the place C2. After
careful observation, they model the information as

〈
C2 : 0.7ei 0.2π , 0.2ei 0.4π

〉
. It means that 70% of

the experts are in the favor of C2, even though it will produce only 20% of profit, while 20% are
opposed to C2, even though it will produce 40% profit. Similarly, they model all the other places
as
〈
C3 : 0.5ei 0.6π , 0.7ei 0.4π

〉
,
〈
C4 : 0.7ei 0.8π , 0.5ei 0.7π

〉
and

〈
C5 : 0.4ei 0.4π , 0.9ei 0.2π

〉
. We denote this

model as

A =



〈
C1 : 0.6ei 0.4π , 0.1ei 0.3π

〉〈
C2 : 0.7ei 0.2π , 0.2ei 0.4π

〉〈
C3 : 0.5ei 0.6π , 0.7ei 0.4π

〉〈
C4 : 0.7ei 0.8π , 0.5ei 0.7π

〉〈
C5 : 0.4ei 0.4π , 0.9ei 0.2π

〉
The complex membership of the vertices denotes the positive characteristics and complex

non-membership of the vertices denotes the negative characteristics of a certain parameter for a
certain place. Now, finding the absolute values, we have

|C1| = (0.6, 0.1),

|C2| = (0.7, 0.2),

|C3| = (0.5, 0.7),

|C4| = (0.7, 0.5),

|C5| = (0.4, 0.9).
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To find the optimal choice, we find the score function of the absolute values of C1, C2, C3, C4, C5.
Thus, we have

S(C1) = 0.6− 0.1 = 0.5,

S(C2) = 0.7− 0.2 = 0.5,

S(C3) = 0.5− 0.7 = −0.2,

S(C4) = 0.7− 0.5 = 0.2,

S(C5) = 0.4− 0.9 = −0.5.

Since the scores for C1 and C2 are equal, we find the accuracies of C1 and C2 : H(C1) = 0.6+ 0.1 =

0.7 and H(C2) = 0.7 + 0.2 = 0.9, thus C1 > C2, which is the most suitable choice to fix a tower. This is
the application of complex intuitionistic fuzzy graph, where it has no edge, as shown in Figure 14.

Figure 14. Complex intuitionistic fuzzy graph with no edge.

Now, for Situation 2, we proceed as follows:
If a tower is fixed between places C1 and C2, it will represent the edge C1C2 of the vertex C1, C2.

To find the model of C1C2, we use Definition 6 and find that
〈
C1C2 : 0.6ei 0.4π , 0.2ei 0.4π

〉
. Similarly, we

find the other edges and we denote this model as

B =



〈
C1C2 : 0.6ei 0.4π , 0.2ei 0.4π

〉〈
C1C3 : 0.5ei 0.4π , 0.7ei 0.4π

〉〈
C1C4 : 0.6ei 0.4π , 0.5ei 0.7π

〉〈
C2C4 : 0.7ei 0.2π , 0.5ei 0.7π

〉〈
C1C5 : 0.4ei 0.4π , 0.9ei 0.3π

〉〈
C2C3 : 0.5ei 0.2π , 0.7ei 0.4π

〉〈
C2C5 : 0.4ei 0.2π , 0.9ei 0.4π

〉〈
C3C4 : 0.5ei 0.6π , 0.7ei 0.7π

〉〈
C3C5 : 0.4ei 0.4π , 0.9ei 0.4π

〉〈
C4C5 : 0.4ei 0.4π , 0.9ei 0.7π

〉
If we consider the edge

〈
C1C2 : 0.6ei 0.4π , 0.2ei 0.4π

〉
. In this case, the amplitude term shows that

60% of the experts believe that there should be a tower between these two places and 20% of the
experts believe the opposite. The phase terms show that 40% of the experts believe that in a certain
time if a tower is fixed between these two places it will produce maximum profit, while 40% of the
experts believe the opposite. Absolute values of the edges are:
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|C1C2| = (0.6, 0.2), |C1C3| = (0.5, 0.7)

|C1C4| = (0.6, 0.5), |C2C4| = (0.7, 0.5)

|C1C5| = (0.4, 0.9), |C2C3| = (0.5, 0.7)

|C2C5| = (0.4, 0.9), |C3C4| = (0.5, 0.9)

|C3C5| = (0.4, 0.9), |C4C5| = (0.4, 0.9)

To find the optimal choice, we find the score function of the absolute values of the edges. Thus,
we have

S(C1C2) = 0.4, S(C1C3) = −0.2,

S(C1C4) = 0.1, S(C2C4) = 0.2,

S(C1C5) = −0.5, S(C2C3) = −0.2,

S(C2C5) = −0.5, S(C3C4) = −0.4,

S(C3C5) = −0.5, S(C4C5) = −0.5.

S(C1C2) = 0.4 is the greatest, and hence most suitable choice to fix the tower. This is the case
where complex intuitionistic fuzzy graph has edges, as shown in Figure 15.

Figure 15. Complex intuitionistic fuzzy graph with edges.

7. Conclusions

We defined cif-graphs and accomplished the notion of union of cif-graphs, Cartesian product
of cif-graphs, join of cif-graphs and composition of cif-graphs. Our presented approach is the
generalization of fuzzy graphs. We aim to extend our work in the following directions: One can
see in the Section 6, that handling different parameters is one of the most difficult tasks, and since soft
sets are very useful tools where one can handle more parameters in a practical way, we will define the
complex fuzzy soft graphs that will generalize the idea of fuzzy graphs, soft graphs and fuzzy soft
graphs. On the other side, since intuitionistic fuzzy sets generalize the concept of fuzzy sets, we will
try to produce a model related with complex intuitionistic fuzzy soft graph, which is the generalization
of complex fuzzy graphs and complex fuzzy soft graphs.
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