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Abstract: The Colebrook equation is a popular model for estimating friction loss coefficients in water
and gas pipes. The model is implicit in the unknown flow friction factor, f . To date, the captured
flow friction factor, f , can be extracted from the logarithmic form analytically only in the term of the
Lambert W-function. The purpose of this study is to find an accurate and computationally efficient
solution based on the shifted Lambert W-function also known as the Wright ω-function. The Wright
ω-function is more suitable because it overcomes the problem with the overflow error by switching
the fast growing term, y = W(ex), of the Lambert W-function to series expansions that further can be
easily evaluated in computers without causing overflow run-time errors. Although the Colebrook
equation transformed through the Lambert W-function is identical to the original expression in terms
of accuracy, a further evaluation of the Lambert W-function can be only approximate. Very accurate
explicit approximations of the Colebrook equation that contain only one or two logarithms are shown.
The final result is an accurate explicit approximation of the Colebrook equation with a relative error of
no more than 0.0096%. The presented approximations are in a form suitable for everyday engineering
use, and are both accurate and computationally efficient.

Keywords: Colebrook equation; hydraulic resistance; Lambert W-function; Wright ω-function;
explicit approximations; computational burden; turbulent flow; friction factor

1. Introduction

The Colebrook equation; Equation (1), is an empirical relation which, in its native form, relates
implicitly the unknown Darcy’s flow friction factor, f , with the known Reynolds number, R, and the
known relative roughness of inner pipe surface, ε∗ [1,2]. Engineers use it at defined domains of the
input parameters: 4000 < R < 108 and for 0 < ε∗ < 0.05. The Colebrook equation is transcendental
(cannot be expressed in terms of elementary functions); the implicitly given function in respect to the
unknown flow friction factor, f :

1√
f
= −2· log10

2.51
R
·

1√
f
+

ε∗

3.71

 (1)

The Colebrook equation; Equation (1) also has an exact explicit analytical form in the terms of the
Lambert W-function; Equation (2) [3,4], which is also transcendental, but which can be evaluated using
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numerous thoroughly tested procedures with varying accuracy and complexity, developed for various
applications in physics and engineering [5] (it is here also given in the terms of the Wright ω-function).

1√
f
= 2

ln(10) · ln
(

R
2.51 ·

ln(10)
2

)
+ W(ex) − x

x = ln
(

R
2.51 ·

ln(10)
2

)
+ R·ε∗

2.51·3.71 ·
ln(10)

2

→
1√

f
= 2

ln(10) · ln
(

R
2.51 ·

ln(10)
2

)
+ω(x) − x

x = ln
(

R
2.51 ·

ln(10)
2

)
+ R·ε∗

2.51·3.71 ·
ln(10)

2


(2)

The parameter, x, in Equation (2) depends on the input parameters; the Reynolds number, R, and
the relative roughness of the inner pipe surface, ε∗. Its domain is 7.51 < x < 618,187.84. The Lambert
W-based Colebrook equation; Equation (2), contains the fast growing term, W(ex), which cannot be
accurately stored in common computer registers due to the runtime overflow error for the particular
combinations of the Reynolds number, R, and the relative roughness of the inner pipe surface, ε∗,
that can easily occur in everyday engineering practice [6,7]. The problem can be solved using the
Wright ω-function, a cognate of the Lambert W-function, which uses a shifted, non fast-growing
argument [4,8,9].

According to the very recently published study of Belkić [10], the Lambert W-function plays
a very important role across interdisciplinary research. The reference gives an updated detailed
list of applications, which include mathematics, physics, astrophysics, chemistry, biology, medicine,
population genetics, ecology, sociology, education, energetics, and technology. Finally, the presented
analytical solutions are numerically illustrated in the genome multiplicity corrections for survival of
synchronous cell populations after irradiation [11].

This paper is oriented to the application of the Lambert W-function and the Wright ω-function
in hydraulics (fluid dynamics). We present a few approximate solutions of the transformed
Lambert W-based Colebrook equation in a form more suitable for the computing codes used in
various engineering software. All mentioned and developed approximations are summarized in the
Appendix A. The best version of the presented explicit approximation gives the value of the flow
friction factor, f, for which the Colebrook equation is in balance with the relative error of no more
than 0.0096%. Such accuracy achieved without using a large number of computationally expensive
logarithmic functions (or non-integer powers) is highly computationally efficient. As reported by
Clamond [12], Winning and Coole [13], Biberg [4], Vatankhah [14], etc., functions, such as logarithms
and non-integer powers, require special algorithms with the execution of many more floating-point
operations compared with basic arithmetic operations (+, −, ×, /) that are executed directly in the
central processor unit (CPU) of computers.

In our previous contributions, we accelerated and simplified an iterative solution of the Colebrook
equation. In [15], the Padé approximation is used as a cheap alternative to the logarithm in the second
and the successful iterations of the fixed-point method. In [16], low cost starting points for iterative
methods found by genetic approximations of the Colebrook equation are introduced and tested, while
Praks and Brkić [17] discusses the optimal multi-point iterative methods for the Colebrook equation.
Finally, advanced iterative procedures for the Colebrook equation are studied in [18].

Rather than improving iterative solutions, in this paper, we provide simple, but powerful
approximations of the exact solution of the Colebrook model, which is given by the Wright ω-function.
We introduce cheap yet still accurate approximations of the Wright ω-function for the Colebrook
model using a symbolic regression technique [16,19,20] and Padé approximation [15,21]. Apparently,
this is the first highly accurate explicit approximation of the Colebrook equation that contains only
two computationally expensive functions (two logarithms, or as an alternative, two functions with
non-integer powers), or even less if a combination of Padé approximations [15,21,22], and symbolic
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regression is used for a further reduction of the computational burden (where one of the logarithms is
approximated by simple rational functions with a moderate increase of the maximal relative error).

2. Proposed Explicit Approximations and Comparative Analysis

The Colebrook equation in the terms of the Lambert W-function was apparently first proposed in
1998 by Keady [3]. However, as confirmed by Sonnad and Goudar [6] and Brkić [7], the term, W(ex),
grows so fast that it cannot be evaluated easily, even in the registers of modern computers, due to the
overflow runtime error for a particular number of combinations of the input parameters; the Reynolds
number, R, and the relative roughness of the inner pipe surface, ε∗; where parameter x of Equation
(2) depends directly on them. The procedure presented here replaces this fast growing term with the
much more numerically stable Wright ω-function [23].

As noted by Lawrence et al. [15], the Wright ω-function was studied implicitly, without being
named, by Wright [24], and named and defined by Corless and Jeffrey [25].

Further, the Colebrook equation, transformed explicitly in terms of the Lambert W-function, can
be found, among others, in Keady [3], Goudar and Sonnad [26,27], Brkić [28–32], More [33], Sonnad
and Goudar [34,35], Clamond [12], Rollmann and Spindler [9], Mikata and Walczak [36], and Biberg [4]
and Vatankhah [14].

2.1. Transformation and Formulation

The shifted Wright ω-function transforms the argument, ex, to x in the series, W(ex) = ω(x) ≈
ln(ex) − ln(ln(ex)) +

ln(ln(ex))
ln(ex)

; where x = ln(ex). Thus, the undesirably fast growing term, W(ex), in

Eqation (2) is approximated accurately through y ≈ x− ln(x) + ln(x)
x . The transformation is based on

unsigned Stirling numbers of the first kind as reported by Rollmann and Spindler [9]. Table 1 shows
the values of W(ex) compared with its approximate replacement in the domain of the applicability
of the Colebrook equation. Without the proposed transformation and simplification, the runtime
overflow error occurs during the evaluation of the friction factor, f , in computers for particular pairs or
the Reynolds number, R, and the relative roughness of the inner pipe surface, ε∗; where the parameter,
x, of Equation (2) depends directly on them (#VALUE! is an overflow error in Table 1). The values in
Table 1 were calculated in MS Excel.

Table 1. Values of W(ex) compared with its approximate replacement, y ≈ x− ln x + ln x
x .

W(ex) R = 4000 R = 104 R = 105 R = 106 R = 107 R = 108

ε∗ = 10−6 5.763586714 6.552354737 8.594740889 10.78188015 13.94025768 26.71930109
ε∗ = 10−5 5.767379666 6.562009418 8.694474328 11.80401384 24.50329461 125.7849498
ε∗ = 10−3 5.805329409 6.658658836 9.697953496 22.29514802 124.0554132 #VALUE!
ε∗ = 10−2 6.186774452 7.63459358 20.09639172 122.325789 #VALUE! #VALUE!
ε∗ = 0.05 10.14320931 17.90904123 120.5960672 #VALUE! #VALUE! #VALUE!

y R = 4000 R = 104 R = 105 R = 106 R = 107 R = 108

ε∗ = 10−6 5.766606874 6.552971455 8.592338256 10.7784212 13.93654591 26.71669441
ε∗ = 10−5 5.770385511 6.562602762 8.691991603 11.80037821 24.50049484 136.3596559
ε∗ = 10−3 5.808193728 6.659024862 9.694862641 22.29214094 134.073966 1246.853296
ε∗ = 10−2 6.188374207 7.633218988 20.093168 131.7885643 1244.552558 12,371.62215
ε∗ = 0.05 10.13993873 17.90560354 129.5034606 1242.251823 12,369.31975 123,639.9564

Note: #VALUE!—Overflow error.

The simplifications; W(ex) − x ≈ ln(x)·
(

1
x − 1

)
; 2

ln 10 ≈ 0.8686; 2·2.51
ln 10 ≈ 2.18; and 2.18·3.71 ≈ 8.0878,

and ln
(

2·2.51
ln 10

)
≈ 0.7794; transform the Lambert W-based expression of the Colebrook equation in a
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very accurate explicit approximate form that can be used efficiently in everyday engineering practice;
Equation (3):

1√
f
≈ 0.8686·

[
B−C + C

B+A

]
A ≈ R·ε∗

8.0878
B ≈ ln

(
R· ln 10
2·2.51

)
≈ ln(R) − 0.7794

C = ln(B + A)


(3)

Instead of logarithmic functions in the proposed explicit approximation; Equation (3), a new form
for B and C = ln(B + A) can be introduced, where a can be any sufficiently large constant, where the
larger value of a gives a more accurate approximation of the logarithmic function, Equation (4):

B ≈ a·Ra−1
− a− 0.7794

C = ln(B + A) ≈ a·(B + A)a−1
− a

 (4)

Very accurate results were obtained for a > 105. Choosing this value, power a−1 = 1
a is a fraction

with an integer numerator and denominator, where the appropriate form depends on the programming
language, and the option with fever floating point operations should be chosen [37].

Forms, such as R0.00001, require an evaluation of two transcendental functions, because compilers
in most programming languages interpret it through e0.00001· ln (R) [12].

For more accurate results, W(ex) − x ≈ 1.038· ln(x)
x+0.332 − ln(x) or W(ex) − x ≈ 1.0119· ln(x)

x − ln(x) +
ln(x)−2.3849

x2 can be used. These new approximations were found using the symbolic regression software,
Eureqa [16,19,20], and they are 2.5 and 16.7 times more accurate, respectively, as compared with
expression y from Table 1. The related approximations are given with Equations (5) and (6), respectively.

1√
f
≈ 0.8686·

[
B−C +

1.038·C
0.332 + B + A

]
(5)

1√
f
≈ 0.8686·

B−C +
1.0119·C

B + A
+

C− 2.3849

(B + A)2

 (6)

In Equations (5) and (6), parameters A, B, and C are the same as in Equation (3).

2.2. Accuracy

With the friction factor, f, computed using the approximate equations, Equation (3), the Colebrook
equation is in balance with a relative error of no more than 0.13%, while using Equation (5) of no
more than 0.045%, and finally, using Equation (6) of no more than 0.0096%, respectively. The related
distribution of errors is shown in Figure 1. The presented approximations require evaluation of only
two computationally expensive functions (two logarithms; Equations (3), (5), and (6), or alternatively
two non-integer powers; Equation (4)), and therefore they are not only accurate, but also efficient
for calculation.
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The demonstrated approximation of Equation (3) based on the Wright ω-function with a relative
error of up to 0.13% is about 10 times more accurate compared to the approximation from Brkić [30],
while Equation (5) is more than 25 times more accurate than [30], and, finally, Equation (6) is more than
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100 times more accurate than [30]. The approximations from Brkić [30,31] are based on the Lambert
W-function.

The most accurate approximations available to date are by Vatankhah [14], Offor and Alabi [38],
Buzzelli [39], Vatankhah and Kouchakzadeh [40], Romeo et al. [41], Zigrang and Sylvester [42], and
Serghides [43]. All approximations mentioned [14,38–47] or developed in this paper are listed in the
Appendix A, and their evaluated maximal relative error is shown in Table 2.

Table 2. Number of computationally expensive functions in the available approximations of the
Colebrook equations that introduce a relative error of no more than 1%.

1 Approximation Maximal Relative Error %
Function

Logarithms Non-Integer Powers 2 TOTAL

Vatankhah [14] 0.0028% 1 2 3(5)
Here developed; Equation (6) 0.0096% 2 0 2
Here developed; Equation (5) 0.045%, 2 0 2

Offor and Alabi [38] 0.0602% 2 1 3(4)
Here developed; Equation (3) 0.13% 2 0 2
Here developed; Equation (4) 0.13% 0 2 2(4)

3 Buzzelli [39] 0.14% 2 0 2
Zigrang and Sylvester [42] 0.14% 3 0 3

Serghides [43] 0.14% 3 0 3
Romeo et al. [41] 0.14% 3 2 5(7)

Vatankhah and Kouchakzadeh [40] 0.15% 2 1 3(4)
Barr [44] 0.27% 2 2 4(6)

Serghides-simple [43] 0.35% 2 0 2
Chen [45] 0.36% 2 2 4(6)

Here developed; Equation (11) Up to 0.4% 1 0 1
Fang et al. [46] 0.62% 1 3 4(7)

Papaevangelou et al. [47] 0.82% 2 1 3(4)

Notes: 1 All approximations are listed in the Appendix A of this paper, 2 in brackets: according to Clamond [12],
non-integer powers require the evaluation of two computationally expensive functions–logarithm and exponential
function, 3 in addition also contains one square root function.

Elaboration on the accuracy of explicit approximations to the Colebrook equation can be found,
among others, in Zigrang and Sylvester [48], Gregory and Fogarasi [49], Brkić [50,51], Winning and
Coole [13,52], Brkić and Ćojbašić [11], and Pimenta et al. [53].

2.3. Complexity and Computational Burden

In a computer environment, a logarithmic function and non-integer powers require more
floating-point operations to be executed in the central processor unit (CPU) compared to simple
arithmetic operations, such as adding, subtracting, multiplication, and division [12–14,54,55]. With
a relative error of up to 0.0096%, the herein proposed explicit approximation of the Colebrook
equation; Equation (6), that contains only two computationally expensive functions, is not only
accurate, but also sufficiently efficient. Winning and Coole [13] reported relative effort for computation
as: Addition-1, Subtraction-1.18, Division-1.35, Multiplication-1.55, Squared-2.18, Square root-2.29,
Cubed-2.38, Natural logarithm-2.69, Cubed root-2.71, Fractional exponential-3.32, and Logarithm to
base 10–3.37. One exception is Biberg [4], who grouped division with more expensive functions.

For comparison, Table 2 provides the number of logarithmic functions and non-integer terms
used in available approximations. Table 2 shows only highly accurate approximations with a relative
error of no more than 1%, according to criteria set by Brkić [50]. All approximations from Table 2 are
given in the Appendix A of this article.

In addition to that presented here, the approximation by Brkić [28,30,32] is also based on the
Lambert W-function, but as it uses four logarithmic functions, it is much more computationally
expensive, and is significantly less accurate with a relative error of about 2.2%.

In the next Section, the term, B ≈ ln
(

R· ln 10
2·2.51

)
≈ ln(R) − 0.7794, from Equation (3) is approximated

very accurately through rational polynomial expression, so complexity and computational expense
additionally decrease, as the logarithm is accurately approximated by a simple rational function.
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Numerical experiments show that for the here mentioned approximation ln
(

2·2.51
ln(10)

)
≈ 0.7794 is enough.

For this reason we use this value in the Matlab codes shown in Section 3.

2.4. Simplifications

A simple rational approximation of the logarithm term, B, of the novel Colebrook approximation
formulas; Equations (3), (5), and (6), is shown in this section. The logarithm represents the most
computationally expensive operation of the Colebrook formula, see Equation (3). To reduce computation
costs, the idea is to approximate the term, B, of Equation (3), which contains the logarithmic function, by
a simple rational function. A combination of Padé approximation [15,21] and an artificial intelligence
symbolic regression procedure [16,19,20] is used for this. Although the logarithm is a transcendental
function, the found rational approximation remains simple and accurate with a maximal relative error
limited to 0.2%. Although this rational approximation of the logarithm may seem unsightly to human
eyes, it is very fast with computers, as it requires only a limited number of basic arithmetic operations
to be executed in the central processor unit (CPU).

For the purpose of this simplification, the observed form, B, from Equation (3) can be transformed
as; Equation (7):

B ≈ ln(R) − ln(2.18) = ln(315, 012.6·r) − 0.77932 = ln(r) + ln(315, 012.6)−
0.77932 = ln(r) + 11.881

(7)

In Equation (7), for the term, r = R
315,012.6 , the constant, 315,012.6, is carefully selected to minimize

the error of the /2,3/ order Padé approximation of ln(r) at the expansion point, r0 = 1. The proposed
Padé approximant of the /2,3/ order of ln(r) at point 1 is; Equation (8):

ln(r) ≈ s(r) =
r·(r·(11·r + 27) − 27) − 11
r·(r·(3·r + 27) + 27) + 3

(8)

The value, 315,012.6, is a weighted average of the Reynolds number, R, for the turbulent zone
valid for the Colebrook equation; Rmin = 4000 and Rmax = 108, using the value 0.0063 that was
set by numerical experiments to minimize the absolute value of the maximum relative error of the
Padé approximant of ln(r) in the interval, [Rmin, Rmax], as 0.0063·Rmin+Rmax

2 = 315, 012.6. The Padé
approximant approximates a certain function very accurately only in a relatively small domain of
input parameters. It has been observed that the Padé approximant of ln(r) at the expansion point,
r0 = 1, defined by a rational function, s(r), approximates ln(r) with a maximal relative error of
between −11.8% and 11.8% for all values of the Reynolds number, R, in the interval, [Rmin, Rmax].
The Padé approximant, s(r), has a negligible error for r ∼ 1, whereas top errors correspond to
border points, Rmin and Rmax. For example, for Rmin = 4000, the Padé approximant of ln(r) is
s
(

4000
315,012.6

)
= s(0.012697905) = −3.38744549 where R = 315, 012.6·r. Therefore, the value of ln(4000) is

approximated by ln(315, 012.6) + (−3.387445469) = 9.272922448. The corresponding relative error for
ln(4000), is −11.8%.

Because of B = ln
(

R
2·2.51
ln(10)

)
= ln(R) − ln

(
2·2.51
ln(10)

)
and ln(315, 012.6) − ln

(
2·2.51
ln(10)

)
∼ 11.881, the value of

B can be approximated as Equation (9):

B ≈ ln(r) + 11.881 ≈ s(r) + 11.881 (9)

Further, a symbolic regression technique based on the computer software, Eureqa [19,20], is
used for a more precise approximation of ln(r). The aim is to construct a more accurate rational
approximation of ln(r) in comparison with Equation (9) using two known variables: The ratio,
r = R

315,012.6 , and its Padé approximation, s(r). To reduce the burden for the central processor unit
(CPU), the symbolic regression model should have a computationally cheap evaluation. For this
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reason, only rational functions are assumed for the symbolic regression model. To achieve that, 200
carefully selected quasi-random points of r using the LPTAU51 algorithm were used [56,57]. For these
generated numbers, the Padé approximation s(r) was calculated using Equation (8). Also, ln(r) was
calculated to train the model in Eureqa for the purpose of finding a rational approximation of ln(r) by
using r and s(r) pairs. The developed models were successfully tested using 2048 quasi-random points.
As a result, value B was approximated by simple rational functions, Equation (10), with a negligible
maximal relative error of 0.0765%:

B ≈ 0.98236·s +
s7

9200.67
+

r
150.2325

−
r2

138187.1651
−

1
161.124·r

+ 11.881 (10)

Here, the symbol, s, denotes the Padé approximant, s(r), given by Equation (8) and r = R
315,012.6 is

its argument.
When the Horner nested representation and the Variable Precision Arithmetic (VPA) at 4 decimal

digit accuracy is assumed, the approximation of B can be simplified by Equation (11):

B ≈ s·
(
0.0001086·s6 + 0.9824

)
−

0.006206
r

− r·(0.000007237·r − 0.006656) + 11.881, (11)

In this case, the maximal relative error remains negligible, 0.0793% compared with B calculated
using Equation (3).

The combined approach with the Padé approximant and the symbolic regression introduced in
this section is based on human observation and introducing the ratio, r = R

315,012.6 , with the subsequent
symbolic regression of r and s(r) pairs by Eureqa. The maximal relative error of B introduced by
Equation (11) was small (0.0793%), and in total if it is used instead of B ≈ ln

(
R

2.18

)
from Equation (3), the

total maximal error of the explicit approximation of the Colebrook equation can go up to 0.4%. As can
be seen from Table 2, with the only one-log call for ln(B + A) from Equation (3), this extremely accurate
explicit approximation of the Colebrook equation approximation is the cheapest for computation
presented to date.

The combined approach presented herein, with Padé approximation and symbolic regression, can
be also used for faster yet still accurate probabilistic modelling of gas networks, which requires a large
number of model evaluations [58–61].

3. Software Description

The presented approximations are thoroughly tested and registered at IT4Innovations,
VŠB–Technical University of Ostrava, Czech Republic. The codes are given in Matlab, but they
can be easily transposed in any programming language. The symbol I.R denotes the vector of the
Reynolds number R, whereas I.K denotes the vector of the relative roughness of the inner pipe surface
ε∗. The final result of the codes is the vector of the Darcy friction factor f.

The Matlab code for Equation (2), which presents the exact solution of the Colebrook equation
using the Wrightomega function y = wrightOmega(x)-x is:

c.C = 2 * 2.51/log(10); c.logC = log(c.C); c.C371 = c.C * 3.71; c.Cd251 = c.C/2.51;
B = log(I.R) − c.logC;
A = I.R.* I.K./c.C371;
x = A + B;
y = wrightOmega(x) − x;

f = 1./(c.Cd251. * (B + y)).ˆ2;

If needed, wrightOmega(x) can be replaced by: lambertw(exp(x)).
The Matlab code for Equation (3), which presents the approximation of the Colebrook equation

using y = lnx./x − lnx, where the symbol lnx denotes the natural logarithm is:
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c.Cd251 = 0.8686; c.logC = 0.7794; c.C371 = 8.0878;
B = log(I.R) − c.logC;
A = I.R. * I.K./c.C371;
x = A + B;
lnx = log(x);
y = (lnx./x − lnx);
f = 1./(c.Cd251. * (B + y)).ˆ2;

The Matlab code for Equation (5), which presents the approximation of the Colebrook equation
using y = (1.038 * lnx)./(x + 0.332) − lnx is the same like approximation using y = lnx./x − lnx, but the
line y = (lnx./x-lnx) is replaced by: y = (1.038 * lnx)./(x + 0.332) − lnx

Matlab code for Equation (6) which presents the approximation of the Colebrook equation using y
= (1.0119 * lnx)./x − lnx + (lnx−2.3849)./x.ˆ2 is the same like approximation using y = lnx./x − lnx, but
the line y= (lnx./x − lnx) is replaced by: y = (1.0119 * lnx)./x − lnx + (lnx − 2.3849)./x.ˆ2

4. Conclusions

In this paper, we presented novel, precise, but still numerically inexpensive approximations of
the Colebrook flow friction equation, which has been widely used in hydraulics since 1937 [1–4]. Our
novel approach exploited the fact that the exact solution of the Colebrook equation can be expressed
by the Lambert W-function [3,4] and combined numerical properties of the Wright ω-function [23–25],
Padé approximation [15], and a symbolic regression technique [16,62].

The implicit Colebrook equation for flow friction is empirical, and hence has disputable accuracy.
However, in many cases it is necessary to repeat calculations and to resolve the equation accurately to
compare scientific results. An iterative solution [63] requires extensive computational effort, especially
for flow evaluation of complex water or gas pipeline networks [64–67]. Although various available
explicit approximations offer a good alternative, they are by the rule very accurate, but too complex,
and vice versa [50]. Contrary to previous approximations of the Colebrook equation, the relation
presented herein with a relative error limited to 0.0096% is amongst the most accurate available explicit
approximations of the Colebrook equation. Moreover, the approach presented herein was also very
computationally cheap, as it needs only one or two logarithms (or alternatively two non-integer powers).
Measured against the criteria of accuracy and complexity, these approximations demonstrated desirable
levels of performance. Consequently, the approximations can be recommended for implementation in
software codes for engineering use.

The Colebrook equation is relevant only for turbulent flow, while for full-scale flow, different
unified equations need to be used [68]. Consequently, the presented approximations are suitable
for all cases where the Colebrook equation is used. Although the original experiment conducted by
Colebrook and White used air [1,2], the Colebrook equation is today mostly used for modelling water
flow [67]. However, in the case of natural gas flow modelling, the American Gas Association (AGA)
and the American Bureau of Mines recommend replacing the coefficient of Equation (1) from 2.51 to
2.825 [69,70]. For future work, it would be interesting to integrate these novel flow friction models to
stochastic gas network simulators [58,61].

Our approximations are valid for the whole domain of applicability of the Colebrook equation
(on the other hand some of the approximations available from the scientific literature [71] are accurate
only in certain narrow domain; e.g. for the highly turbulent flow or for the similar particular cases).

Author Contributions: The paper is a product of the joint efforts of the authors who worked together on models of
natural gas distribution networks. D.B.’s scientific background is in control and applied computing in mechanical
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Section 3. Software Description according to the models development jointly with D.B.
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Abbreviations

The following symbols are used in this paper:
Constants:
a any > 105

Variables:
A variable that depends on R and ε∗ (dimensionless)
B variable that depends on R (dimensionless)
C variable that depends on variables A and B (dimensionless)
f Darcy (Moody) flow friction factor (dimensionless)
R Reynolds number (dimensionless)
r variable that depends on R (dimensionless)
x variable in function on R and ε∗ (dimensionless)
ε∗ Relative roughness of inner pipe surface (dimensionless)
α variables defined in Appendix A of this paper
Functions:
e exponential function
log10 logarithm with base 10
ln natural logarithm
s Padé approximant
W Lambert W-function
ω Wright ω-function

Appendix A

The following explicit approximations of the Colebrook equation are referred to in this paper:

- Here, developed Equations (3), (5), and (6); Equations (A1)–(A3):

1√
f
≈ 0.8686·

[
B + C·

( 1
B + A

− 1
)]

(A1)

1√
f
≈ 0.8686·

[
B +

1.038·C
0.332 + B + A

−C
]

(A2)

1√
f
≈ 0.8686·

B +
1.0119·C

B + A
−C +

C− 2.3849

(B + A)2

 (A3)

where A ≈ R·ε∗
8.0878 , B ≈ ln

(
R· ln 10
2·2.51

)
≈ ln(R) − 0.7794, C ≈ ln(B + A).

- Here, developed Equation (4); Equations (A4)–(A6):

1√
f
≈ 0.8686·

[
B +

(
a·(B + A)a−1

− a
)
·

( 1
B + A

− 1
)]

(A4)

1√
f
≈ 0.8686·

B +
1.038·

(
a·(B + A)a−1

− a
)

0.332 + B + A
−

(
a·(B + A)a−1

− a
) (A5)



Mathematics 2019, 7, 34 11 of 15

1√
f
≈ 0.8686·

B +
1.0119·

(
a·(B + A)a−1

− a
)

B + A
−

(
a·(B + A)a−1

− a
)
+

(
a·(B + A)a−1

− a
)
− 2.3849

(B + A)2

 (A6)

where A ≈ R·ε∗
8.0878 , and B ≈ a·

(
R

2.18

)a−1

− a ≈ a·(R)a−1
− a− 0.7794. As parameter a is larger, the approximation is

more accurate. The value, a > 105, gives the sufficiently accurate approximation for gas hydraulic modelling,
as the corresponding maximal relative error is less than 0.007% for the analysed Colebrook model.

- Here, developed Equation (11); Equation (A7): Parameter B from the Equations (A1)–(A3) and Equations
(A4)–(A6) should be calculated using Equation (A7).

B ≈ s·
(
0.0001086·s6 + 0.9824

)
−

0.006206
r − r·(0.000007237·r− 0.006656) + 11.881

r = R
315,012.6

s ≈ s(r) = r·(r·(11·r+27)−27)−11
r·(r·(3·r+27)+27)+3

 (A7)

- Buzzelli [39]; (A8):

1√
f
≈ α1 −

(
α1+2· log10(

α2
R )

1+ 2.18
α2

)
α1 ≈

(0.774· ln(R))−1.41
1+1.32·

√
ε∗

α2 ≈
ε∗
3.7 ·R + 2.51·α1

 (A8)

- Zigrang and Sylvester [42]; (A9):

1√
f
≈ −2· log10

(
ε∗
3.7 −

5.02
R ·α3

)
α3 ≈ log10

(
ε∗
3.7 −

5.02
R ·α4

)
α4 ≈ log10

(
ε∗
3.7 −

13
R

)
 (A9)

- Serghides [43]; (A10):
1√

f
≈ α5 −

(α6−α5)
2

α7−2·α6+α5

α5 ≈ −2· log10

(
ε∗
3.7 −

12
R

)
α6 ≈ −2· log10

(
ε∗
3.7 −

2.51
R ·α5

)
α7 ≈ −2· log10

(
ε∗
3.7 −

2.51
R ·α6

)


(A10)

- Romeo et al. [41]; (A11):
1√

f
≈ −2· log10

(
ε∗

3.7065 −
5.0272

R ·α8
)

α8 ≈ log10

(
ε∗

3.827 −
4.567

R ·α9
)

α9 ≈ log10

((
ε∗

7.7918

)0.9924
+

(
5.3326

208.815+R

)0.9345
)

 (A11)

- Vatankhah and Kouchakzadeh [40]; (A12):

1√
f
≈ 0.8686· ln

(
0.4587·R

(α10−0.31)α11

)
α10 ≈ 0.124·R·ε∗ + ln(0.1587·R)

α11 ≈
α10

α10+0.9633

 (A12)

- Barr [44]; (A13):
1√

f
≈ −2· log10

(
ε∗
3.7 +

4.518· log10(
R
7 )

α12

)
α12 ≈ R·

(
1 + R0.52

29 ·(ε
∗)0.7

)
 (A13)

- Serghides-simple [43]; (A14):
1√

f
≈ 4.781− (α13−4.781)2

α14−2·α13+4.781

α13 ≈ −2· log10

(
ε∗
3.7 −

12
R

)
α14 ≈ −2· log10

(
ε∗
3.7 −

2.51
R ·α13

)
 (A14)
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- Chen [45]; (A15):
1√

f
≈ −2· log10

(
ε∗

3.7065 −
5.0452

R ·α15
)

α15 ≈ log10

(
(ε∗)1.1098

2.8257 + 5.8506
R0.8981

)  (A15)

- Fang et al. [46]; (A16):

1√
f
≈ (1.613·(ln (0.234·(ε∗)1.1007

− α16))
−2
)
−2

α16 ≈
60.525
R1.1105 + 56.291

R1.0712

 (A16)

- Papaevangelou et al. [47]; (A17):

1√
f
≈

0.2479− 0.0000947·
(
7− log10(R)

)4(
log10

(
ε∗

3.615 + 7.366
R0.9142

))2


−2

(A17)

- Vatankhah [14]; (A18):

1√
f
≈ 0.8686· ln

 0.3984·R

(0.8686·α17)
α17

α17+α18


α17 ≈ 0.12363·R·ε∗ + ln(0.3984·R)
α18 ≈ 1 + 1

1+α17
0.5· ln(0.8686·α17)

−
1+4·α17

3·(1+α17)


(A18)

- Offor and Alabi [38]; (A19):
1√

f
≈ −2· log10

(
ε∗

3.71 −
1.975

R ·α19
)

α19 ≈ ln
((

ε∗
3.93

)1.092
+ 7.627

R+395.9

)
 (A19)
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7. Brkić, D. Comparison of the Lambert W-function based solutions to the Colebrook equation. Eng. Comput.

2012, 29, 617–630. [CrossRef]
8. Corless, R.M.; Gonnet, G.H.; Hare, D.E.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput.

Math. 1996, 5, 329–359. [CrossRef]
9. Rollmann, P.; Spindler, K. Explicit representation of the implicit Colebrook–White equation. Case Stud. Therm.

Eng. 2015, 5, 41–47. [CrossRef]
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68. Brkić, D.; Praks, P. Unified friction formulation from laminar to fully rough turbulent flow. Appl. Sci. 2018, 8,
2036. [CrossRef]

69. Haaland, S.E. Simple and explicit formulas for the friction factor in turbulent pipe flow. J. Fluids Eng. 1983,
105, 89–90. [CrossRef]
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