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Abstract: In the complex case, the Blaschke group was introduced and studied. It turned out that in the
complex case this group plays important role in the construction of analytic wavelets and multiresolution
analysis in different analytic function spaces. The extension of the wavelet theory to quaternion variable
function spaces would be very beneficial in the solution of many problems in physics. A first step in
this direction is to give the quaternionic analogue of the Blaschke group. In this paper we introduce the
quaternionic Blaschke group and we study the properties of this group and its subgroups.
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1. Introduction

We write D for the unit disc D := {z ∈ C : |z| < 1}, and T := {z ∈ C : |z| = 1} for the unit circle.
The element (e := (0, 1) ∈ B) will play a special role. The complex Blaschke-functions are then defined by

Ba(z) := ε
z− a

1− az
(a := (a, ε) ∈ B := D×T, |z| ≤ 1). (1)

The restrictions of the Blaschke functions on the set D or on T with the composition operation
(Ba1 ◦ Ba2)(z) := Ba1(Ba2(z)) (z ∈ D) form transformation groups. Ba is a one-to-one map on D as well
as on T. The function Be(z) = z is the identity map of D = D ∪T and Ba−1 (a−1 := (−aε, ε) ∈ B) is the
inverse of the function Ba.

In the parameter set B := D×T let us define the operation induced by the function composition in the
following way: Ba1◦a2 := Ba1 ◦ Ba2 . The set of the parameters B with the induced operation is called the
complex Blaschke group on B. The components of a = (a, ε) = a1 ◦ a2 are given by the following formulas:

a = B
a−1

2
(a1), ε = ε1B−a1a2(ε2). (2)

The complex Blaschke functions play important role in the theory of Hardy spaces and in the control
theory. Using the Blaschke functions one of the basic results of the theory of Hardy spaces, the factorization
theorem, can be formulated in a natural way (see for ex. [1]).

The Blaschke group is related to well known matrix groups. The special linear group SL(2,R)
is the group of 2 × 2 real matrices with determinant one. SL(2,R) is isomorphic to the group of all
linear transformations of R2 that preserve oriented area, and is isomorphic to the generalized special
unitary group SU(1, 1). SL(2,R) acts on the complex upper half-plane by fractional linear transformations.
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The group action factors through the quotient PSL(2,R) (the 2× 2 projective special linear group over R).
More specifically, PSL(2, R) = SL(2, R)/{I,−I}, where I denotes the 2× 2 identity matrix.

The quotient PSL(2,R) has several interesting descriptions. PSL(2, R) is the group of conformal
automorphisms of the upper half-plane, which is isomorphic with the group of conformal automorphisms
of the unit disc, i.e., with the Blaschke group .

The topological group SU(1, 1) is homeomorphic to the space B = D×T. With the Blaschke group we
can realize another parametrization of the SU(1, 1), on which wavelet transforms were introduced earlier.
For the descriptions of the mentioned matrix groups and the related transforms see for example [2–5].

Using the parametrization of the Blaschke group reflects better in the same time the properties of
the covering group and the action of the representations on different analytic function spaces, see [6],
where it is explained in detail the relation between SU(1, 1) and the Blaschke group, and why we consider
the Blaschke group useful in order to develop wavelet analysis on this group. One reason is that the
techniques of the complex analysis can be applied more directly in the study of the properties of the voice
transforms (so called hyperbolic wavelet transforms) generated by representations of the Blaschke group
on different analytic function spaces (see [7–11]). The discretization of these special wavelet transforms
leads to the construction of analytic rational orthogonal wavelets, and multiresolution analysis (MRA)
in the Hardy space of the unit disc, upper half plane, and in weighted Bergman spaces (see [11–14]).
The Blaschke functions are closely related to the generator functions of the Zernike functions often used in
optical tests. They can be expressed as matrixelements of the representation of the Blasche group on the
Hardy space of the unit circle. An important consequence of this relation is the addition formula for these
functions (see [7,8,11]). In the same time using the parametrization of the Blaschke group it was easier to
apply the coorbit theory (see [15]) in order to obtain atomic decompositions in weighted Bergman spaces
(see [6,10]). In this way as a special case we get back well known atomic decompositions in the weighted
Bergman spaces obtained by complex techniques, but in addition some new atomic decompositions can be
presented. This is the reason why we consider that Blaschke group is very interesting and the wavelet
transforms on Blaschke group are worth to be studied.

In this paper we introduce the quaternionic analogue of the Blaschke group, and we will study the
properties of this group.

2. The Blaschke Group over the Set of Quaternions.

Quaternions play important role in modeling the time and space dependent problems in physics
and engineering. For example in engineering applications unit quaternions are used to describe three
dimensional rotations. In the last years quaternions have gained a new life due to their applicability in
signal processing, for example by the use of quaternion-valued functions for the coding of color-coded
images as well as the link to new concepts of higher-dimensional phases, like the hypercomplex signal of
Bülow or the monogenic signal by Larkin and Felsberg. Quaternions are also of interest in connection with
quantum theory. Thus there is a strong motivation to extend key results of modern harmonic analysis, like
the wavelet theory, to spaces of functions with quaternion variables. As a first step in this direction we
propose the foundations of a quaternionic analogue of the Blaschke group. The main obstacle in the study
of quaternion-valued matrices and functions, as expected, comes from the non-commutative nature of
quaternionic multiplication.

Our work was inspired by [16], where monogenic wavelet transform for quaternion valued functions
on the three dimensional unit ball in R3 was introduced. The construction is based on representations of
the group of Möbius transformations which maps the three dimensional unit ball onto itself.
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Quaternions are extensions of complex numbers. There is an useful representation of the quaternions:
The matrix representation. The matrix representation makes possible to use the properties of the matrices
at different computations.

Let us denote by

E := E0 :=

(
1 0
0 1

)
, E1 :=

(
i 0
0 −i

)
, E2 :=

(
0 1
−1 0

)
, E3 :=

(
0 i
i 0

)
(3)

the quaternion units, where i ∈ C is the complex imaginary unit. Analogous with the property of
the complex unit i2 = −1, the quaternion units satisfy the following equations E2

j = −E (j = 1, 2, 3).
Since E1E2 = −E2E1 = E3, E2E3 = −E3E2 = E1,E3E1 = −E1E3 = E2, the set {±Ej : j = 0, 1, 2, 3} is closed
with respect to matrix multiplication. Let us denote by

Q :=
{

Z :=
3

∑
j=0

zjEj : z = (z0, z1, z2, z3) ∈ R4
}

, (4)

the set of quaternions, which is a non-commutative field with the unit element E and null element the
null-matrix Θ ∈ C2×2. Let us denote by

Z := z0E0 −
3

∑
j=1

zjEj = Z∗, |Z| :=
( 3

∑
j=0

z2
j

)1/2
, ZZ∗ = |Z|2E,

the analogue of the conjugate which in matrix representation is Z∗, the adjoint matrix of Z ∈ C2×2, and
the absolute value of the Z = ∑3

j=0 zjEj ∈ Q. The map Z → |Z| defines a multiplicative norm:

|Z1 + Z2| ≤ |Z1|+ |Z2|, |Z1 · Z2| = |Z1| |Z2| (Z1, Z2 ∈ Q).

The multiplicative inverse of a nonzero quaternion Z ∈ Q, Z 6= Θ in matrix representation is
Z−1 = Z∗/|Z|2. The analogue of the complex torus and unit disc in the set of the quaternions are defined
by T := {Z ∈ Q : |Z| = 1}, and D := {Z ∈ Q : |Z| < 1} respectively. From the property of the norm it
follows that T is a multiplicative subgroup of the multiplicative group of Q, which can be identified by the
matrix group SU2.

The set Q with matrix addition and multiplication is a skew-field denoted by (Q,+, ·). Taking into
account that RE and R are isomorphic (RE u R) and CE u C the field (Q,+, ·) can be considered as
an extension of R and C, respectively. The purely imaginary quaternion Ic := ∑3

j=1 cjEj (c = (c1, c2, c3) ∈
R3) satisfy the equation I2

c = −|c|2E. The map c→ Ic is a linear isomorphism between R3 and the set of
purely imaginary quaternion J := {Z = Ic : c ∈ R3} = {Z ∈ Q : spur(Z) = 0}, consequently R3 and J
can be identified.

The two dimensional subspace

Qc := {Qc(z) := xE + yIc : z = x + iy ∈ C} ⊂ Q (c ∈ R3, |c| = 1) (5)

of Q is called the slice of Q in the direction of the vector c. The map Qc : C → Qc is a linear isomorphism.
From I2

c = −E (|c| = 1) follows that

Qc(z1 + z2) = Qc(z1) + Qc(z2), Qc(z1 z2) = Qc(z1) Qc(z2) (z1, z2 ∈ C), (6)
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and obviously Qc(z) = Q∗c (z) (z ∈ C). This implies that the map Qc is an isometric isomorphism between
the fields C and Qc.

The complex numbers and their extensions, the quaternions are very useful in the description of many
problems in geometry and physics. For example the rotations in the Euclidian plane C can be described
using the map z→ εz where ε, z ∈ C are complex numbers and ε = eiα ∈ T (α ∈ R). In this case α is the
angle of the rotation.

If instead of complex numbers we use quaternions, we can describe the rotations in R3 with a relatively
simple map. In order to illustrate this, we use the analogue of the Euler formula eit = cos t + i sin t (t ∈ R):

etIc = E cos t + Ic sin t (t ∈ R, c ∈ R3, |c| = 1). (7)

From this it follows that, analogue to unit complex numbers, every unit quaternion S = z0E + Iz

(z = (z1, z2, z3) ∈ R3), |S| = 1 can be represented as S = etIc , where cos t = z0, c = z/|z|.
The relation spur(SZS∗) = spur(Z) (S ∈ T, Z ∈ Q) implies that the map Z → SZS∗ takes the

subspace J, which is isomorphic with R3, in itself and can be interpreted as a rotation around the axis c of
the space R3 with angle 2t. The image of the slice Qc trough this rotation will be the slice Qb for which
Ib = SIcS∗ (S ∈ T), i.e., Qb = SQcS∗. The polar representation of the quaternion Z ∈ Q can be written as

Z = ρetIc (ρ = |Z|, t ∈ R, Ic ∈ J). (8)

3. The Quaternion Blaschke Group

The Blaschke functions can be defined also among quaternion. The formulas are very similar to the
complex case:

BA(Z) := (Z− A)(E− A∗Z)−1 (A ∈ D, Z ∈ D := {Z ∈ Q : |Z| ≤ 1}). (9)

It can be proved that these quaternion Blaschke functions have many analogue properties of the
complex Blaschke functions (see [17]). One of this is:

1− |BA(Z)|2 =
(1− |A|2)(1− |Z|2)
|E− A∗Z|2 (A ∈ D, Z ∈ D). (10)

From this follows that, similar to the complex case, for any A ∈ D the function BA takes the quaternion
unit disc D into D, and the quaternion unit torus T into T.

Because of the non commutativity of the product operation in Q, in order to generate the quaternion
analogue of the complex Blaschke group, we have to introduce a right and left unit quaternion factor from
T in (9) instead of the multiplication by complex ε ∈ T. We consider in Q the following function:

CA(Z) := (E− ZA∗)0 :=
E− ZA∗

|E− ZA∗| (A ∈ D, Z ∈ D). (11)

It is obvious that CA takes D into T, and CZ(A) = C∗A(Z) (A, Z ∈ D).
First we show that for the extended quaternion Blaschke functions, given by (9), an analogue rule of

composition hold.

Theorem 1. For every A1, A2 ∈ D and Z ∈ D we have

BA1(BA2(Z)) = UBA(Z)V∗,
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where
A = B−A2(A1), U = C−A2(A1), V = C−A∗2

(A∗1). (12)

We observe that for the complex unit parameter ε (see formula (1)), in the quaternion case corresponds
a right and left unit quaternion. In the complex case we can interchange the order of the terms in the
product and obtain analogue of ε factor.

To get a collection of functions closed with respect to the composition operation ◦ it is convenient to
introduce the parameter set B := T×D× T and the function set

B := {Ba := UBAV∗ : a = (U, A, V) ∈ B}. (13)

For the extended quaternion Blaschke functions we have

|Ba(Z)| = |BA(Z)| ≤ |A|+ |Z|
1 + |A||Z| (A ∈ D, Z ∈ D) (14)

and Ba takes D into D. Applying formula (12) for A1 = A, A2 = −A we get U = V = E and

BA(B−A(Z)) = B−A(BA(Z)) = Z (Z ∈ D, A ∈ T).

This implies that BA : D→ D, BA : T→ T is bijective and B−1
A = B−A.

The set of functions B is closed with respect to the inverse operation. In order to prove this we will
use the following formula

U∗BA(UZV∗)V = BU∗AV(Z) (A ∈ D, U, V ∈ T). (15)

Let us introduce the map a = (U, A, V)→ â := UAV∗ from B to D. Based on the previous relation it
follows that any function of the form

Ba = UBAV∗ (a = (U, A, V) ∈ B)

has an inverse and
B−1
a (Z) = U∗B−UAV∗(Z)V = U∗B−â(Z)V. (16)

Indeed Ba(X) = UBA(X)V∗ = Z is equivalent to, B−1
a (Z) = X = B−A(U∗ZV). From this we get

B−1
a (Z) = U∗B−UAV∗(Z)V = U∗B−â(Z)V.

It can be proved that the set of functions B is closed with respect to function composition, consequently
(B, ◦) is a transformation group on D and T respectively, called quaternion Blascke transformation group.

Theorem 2. For any two functions Ba1 ,Ba2 ∈ B (aj = (Uj, Aj, Vj) ∈ B, j = 1, 2), we have

Ba1 ◦ Ba2 = Ba (a = (U, A, V) ∈ B),

where
A = B−1

a2
(A1), U = U1C−â2(A1)U2, V = V1C−(â2)∗(A∗1)V2. (17)

The unit element of this group is Be, where e = (E, Θ, E).
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The bijection B 3 a→ Ba ∈ B induces in the set of the parameters B an operation, a1 � a2 = a for
which Ba1 ◦ Ba2 = Ba. The set of the parameters with the induced operation (B,�) is a group. In the set
of the parameters the inverse a− of an element a = (U, A, V) is the element for which Ba− = B−1

a where
a− = (U∗,−â, V∗).

If instead of a1 we set z and instead of a2 a−, then â−2 = −U∗2 U2 AV∗2 V2 = −A, and in the set of the
parameters the right translations z→ z� a− can be described as follows:

z� a− = (U1CA(Z)U∗2 , U2BA(Z)V∗2 , V1CA∗(Z∗)V∗2 ). (18)

In the papers [18–22]the operations C−a(z), Ba(z) were studied, also for higher dimensions, which we
describe now as follows:

a⊕ z = B−a(z), gyr[a, z] = C−a(z). (19)

They have been also used (19) to describe the gyro group. Our description makes possible to avoid the
complicated gyro group description. It is also more useful from the point of view of the extensions for
higher dimension.

4. Subgroups of B

The set {BρE : ρ ∈ I := (−1, 1)} is subgroup of B, satisfying Bρ1E ◦ Bρ2E = Bρ1◦ρ2E, where

ρ1 ◦ ρ2 =
ρ1 + ρ2

1 + ρ1ρ2
(ρ1, ρ2 ∈ I) (20)

is the real Blaschke group operation on I.
Another subgroup can be generated if we choose the parameters and variable Z on the same slice.

First let us observe that if Aj = Qc(aj) (j = 1, 2) and Z = Qc(z) belong to the same slice, then

BAj(Z) = Qc(Baj(z)), BA1(BA2(Z)) = Qc(Ba1(Ba2(z)), B−1
A1

(Z) = Qc(B−1
a1

(z)). (21)

This implies

BA1(BA2(Z)) = Qc(Ba1(Ba2(z))), B−1
A (Z) = Qc(B−1

a (z)),

A = Qc(a), Aj = Qc(aj), Z = Qc(z) (a, aj ∈ D, z ∈ D, j = 1, 2).

Set Dc = D ∩Qc, Tc = T ∩Qc. Then it follows that the collection

Bc := {UBAV∗ : A ∈ Dc, U, V ∈ Tc}

is a transformation group on Dc and Tc respectively, isomorph to the complex Blaschke
transformation group.

Another interesting subgroup of the quaternion Blaschke group is induced by the following subset:

Theorem 3. Let ε(A) := (E− A∗)/|E− A| (A ∈ D). Then the subset

A := {AA = ε(A)BAε(A) : A ∈ D} ⊂ B (22)
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is a one parameter subgroup of B. Moreover

(i) AA(E) = E (A ∈ D),

(ii) A−1
A = AA− , A− = −ε(A)Aε(A),

(iii) AA1 ◦ AA2 = AA, A = AA−2
(A1).

(23)

From

1− |AA(Z)|2 =
(1− |A|2)(1− |Z|2)
|1− A∗Z|2 , |AA(B)| ≤ |A|+ |B|

1 + |A||B| ≤ |A|+ |B| (24)

it follows that the function AA (A ∈ D) are bijections on D and on T respectively, consequently A is
a transformation subgroup on D. The bijection A → AA between the sets D and A induces a group
structure (D, •), where

A1 • A−2 = AA2(A1) (A1, A2 ∈ D). (25)

The unit element of this subgroup is the nullmatrix O ∈ Q and the inverse element of A ∈ D is given
by A− = −ε(A)Aε(A).

The map A → |A| defines a norm on the group (D, •). Denote ρ(A1, A2) := |A1 • A−2 | the metric
induced by this norm. It can be proved that the group operation (A1, A2)→ A1 • A−2 is continuous with
respect to this metric.

5. Proofs

First we prove relation (10), i.e.,:

1− |BA(Z)|2 =
(1− |A|2)(1− |Z|2)
|E− A∗Z|2 .

During the proofs we will use in several places the following identity:

AA∗ = A∗A = |A|2E (A ∈ Q).

We start from the left hand side of the equality (10), which is equal to:

E− BA(Z)B∗A(Z) = E
(

1− |Z− A|2
|E− A∗Z|2

)
= E
|E− A∗Z|2 − |Z− A|2

|E− A∗Z|2

= E
(1 + |A|2|Z|2 − A∗Z− AZ∗)− (|Z|2 + |A|2 − A∗Z− AZ∗)

|E− A∗Z|2

= E
(1− |A|2)(1− |Z|2)
|E− A∗Z|2 .

Another frequently used relation is the following:

|E + A1 A∗2 | = |E + A∗1 A2| (A1, A2 ∈ D).

This is equivalent to

(E + A1 A∗2)(E + A2 A∗1) = (E + A∗1 A2)(E + A∗2 A1),
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and
A1 A∗2 + A2 A∗1 = A∗1 A2 + A∗2 A1.

This last equality follows from the following identity:

(A1 + A2)(A∗1 + A∗2) = (A∗1 + A∗2)(A1 + A2).

We will use also the following property:

B∗A(Z) = BA∗(Z∗),

which is equivalent to the following relations

(E− Z∗A)−1(Z∗ − A∗) = (Z∗ − A∗)(E− AZ∗)−1,

and
(Z∗ − A∗)(E− AZ∗) = (E− Z∗A)(Z∗ − A∗).

This last one is true, because

Z∗ − A∗ − Z∗AZ∗ + |A|2Z∗ = Z∗ − A∗ − Z∗AZ∗ + Z∗|A|2.

Proof of Theorem 1. As in the complex case this identity can be proved directly:

BA1(BA2(Z)) =

=
[
(Z− A2)(E− A∗2 Z)−1 − A1

][
E− A∗1(Z− A2)(E− A∗2 Z)−1

]−1

=
[(

(Z− A2)− A1(E− A∗2 Z)
)
(E− A∗2 Z)−1

]
·

·
[(

(E− A∗2 Z)− A∗1(Z− A2)
)
(E− A∗2 Z)−1

]−1

= [(E + A1 A∗2)Z− (A1 + A2)][(E + A∗1 A2)− (A∗1 + A∗2)Z]−1.

From this relation it follows that

BA1(BA2(Z)) =

=
[
(E + A1 A∗2)

(
Z− (E + A1 A∗2)

−1(A1 + A2)
)]
·

·
[
(E + A∗1 A2)

(
E− (E + A∗1 A2)

−1(A∗1 + A∗2)Z
)]−1

= (E + A1 A∗2)
(
(Z− P)(E−QZ)−1

)
(E + A∗1 A2)

−1,

where

P∗ = (A∗1 + A∗2)(E + A2 A∗1)
−1 = B−A∗2

(A∗1)

Q∗ = (A1 + A2)(E + A∗2 A1)
−1 = B−A2(A1).

But we have P = B∗−A∗2
(A∗1) = B−A2(A1) = Q∗, and let us denote A := P = Q∗. Using this notation

we get that
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BA1(BA2(Z))(E + A1 A∗2)
(
(Z− A)(E− A∗Z)−1

)
(E + A∗1 A2)

−1

=
E + A1 A∗2
|E + A1 A∗2 |

BA(Z)
(

E + A∗1 A2

|E + A∗1 A2|

)−1
,

and Theorem 1 is proved. ut

Relation (14) says:

|BA(Z)| ≤ |A|+ |Z|
1 + |A||Z| (A ∈ D, Z ∈ D).

This follows from:

1− |BA(Z)|2 =
(1− |A|2)(1− |Z|2)
|E− A∗Z|2 ≥

≥ (1− |A|2)(1− |Z|2)
(1 + |A| |Z|)2 ,

which implies (14).
Relation (15) says:

U∗BA(UZV∗)V = BU∗AV(Z) (A ∈ D, U, V ∈ T).

Proof of relation (15):

U∗BA(UZV∗)V = U∗(UZV∗ − A)(E− A∗UZV∗)−1V =

= (Z−U∗AV)V∗(E− A∗UZV∗)−1V = (Z−U∗AV)(V∗(E− A∗UZV∗)V)−1 =

= (Z−U∗AV)(E−V∗A∗UZ)−1 = BU∗AV(Z). �

Proof of Theorem 2. We use that BA3(U3ZV∗3 ) = U3BU∗3 A3V3(Z)V∗3 with the following parameters
U3 = U2, V3 = V2, U∗3 A3V3 = A2. Then A3 = U3 A2V∗3 = U2 A2V∗2 , and the following relation is true:

Ba2(Z) = U2BA2(Z)V∗2 = BU2 A2V∗2
(U2ZV∗2 ) = Bâ2 (̂z),

where â2 = U2 A2V∗2 , ẑ = U2ZV∗2 . Using the previous relation and Theorem 1. we get

Ba1(Ba2(Z)) = U1BA1(Bâ2 (̂z))V
∗
1 .

Applying again Theorem 1. for the parameters A1, â2, ẑ:

BA1(Bâ2 (̂z)) = U′BA′(U2ZV∗2 )V
′∗ = U′U2BU∗2 A′V2

(Z)V∗2 V′∗,

where
A′ = B−â2(A1), U′ = C−â2(A1), V′ = C−â∗2 (A∗1).

From here we get the formula

Ba1 ◦ Ba2 = Ba = UBAV∗,

A = U∗2 B−â2(A1)V2, U = U1C−â2(A1)U2, V = V1C−â∗2 (A∗1)V2.

ut
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Proof of Theorem 3. (i) From

ε(A) = (E− A∗)/|E− A| = (E− A)−1|E− A|

it follows that AA(E) = E (A ∈ D).
(ii) Let A− := −ε(A)Aε(A). First we prove

ε(A−) = ε∗(A) (A ∈ D). (26)

Applying ε(A)−1 = ε∗(A), |ε(A)| = 1 we get

E− A− = E + ε(A)Aε(A) = ε(A)(ε∗(A) + Aε(A))

= ε(A)|E− A|−1((E− A) + A(E− A∗)) = ε(A)|E− A|−1(1− |A|2).

Hence we get

ε(A−) = (E− A−)−1|E− A−| = [ε(A)|E− A|−1(1− |A|2)]−1|E− A|−1(1− |A|2) = ε∗(A).

Using (26) we have that

A−1
A = ε∗(A)B−ε(A)Aε(A)ε

∗(A) = AA− .

(iii) To prove (iii) we use the equation

BA1(ε(A2)Zε(A2)) = ε(A2)BA3(Z)ε(A2), A3 := ε∗(A2)A1ε∗(A2) (27)

and Theorem 1 in the following form:

BA3 ◦ BA2 = ε(−A2 A∗3)BAε∗(−A∗2 A3), A = B−A2(A3),

where by (27) A = AA−2
(A1).

Then we get

AA1(AA2(Z)) = ε(A1)BA1(ε(A2)BA2(Z)ε(A2))ε(A1)

= ε(A1)ε(A2)BA3(BA2(Z))ε(A2)ε(A1)

= ε(A1)ε(A2)ε(−A2 A∗3)BA(Z)ε∗(−A∗2 A3)ε(A2)ε(A1)

= XAA(Z)Y,

where
X = ε(A1)ε(A2)ε(−A2 A∗3)ε

∗(A), Y = ε∗(A)ε∗(−A∗2 A3)ε(A2)ε(A1).

We show that X = Y = E. Since by i) XY = E it is enough to see that X = E, or which is the same

ε(A1)ε(A2)ε(−A2 A∗3) = ε(A). (28)
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Indeed

E− A = E− B−A2(A3) = E− (E + A3 A∗2)
−1(A3 + A2)

= (E + A3 A∗2)
−1((E− A2)− A3(E− A∗2))

= (E + A3 A∗2)
−1|E− A2|(ε∗(A2)− ε∗(A2)A1ε∗(A2)ε(A2))

= (E + A3 A∗2)
−1|E− A2|ε∗(A2)(E− A1)

= (E + A3 A∗2)
−1|E− A2||E− A1|ε∗(A2)ε

∗(A1),

consequently

ε(A) = |E− A|(E− A)−1 = ε(A1)ε(A2)(E + A3 A∗2)/|E + A3 A∗2 | = ε(A1)ε(A2)ε(−A2 A∗3)

and (iii) is proved. ut
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