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Abstract: Higher-order derivatives are used to determine the convergence order of iterative methods.
However, such derivatives are not present in the formulas. Therefore, the assumptions on the
higher-order derivatives of the function restrict the applicability of methods. Our convergence
analysis of an eighth-order method uses only the derivative of order one. The convergence results
so obtained are applied to some real problems, which arise in science and engineering. Finally,
stability of the method is checked through complex geometry shown by drawing basins of attraction
of the solutions.
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1. Introduction

Let F : Ω ⊆ B1 → B2 be differentiable continuously according to Fréchet between the Banach
spaces B1 and B2 and Ω be a convex set. Let B(µ, h) = {ν ∈ B1 : ‖µ− ν‖ < h} for h > 0. Denote by
B̄(µ, h) the closure of B(µ, h). Let also L(B1, B2) stand for the set of bounded linear operators from B1

to B2.
In this study, we locate p by solving equation

F(x) = 0. (1)

Many problems look like (1) [1–3]. The solutions of such equations are rarely attainable in closed
form. That is why most methods for solving such equations are usually iterative. Convergence
analysis is an important part in the development of an iterative method. In general, the convergence
domain is narrow. Without additional hypotheses, it is important to enlarge the convergence domain.
Knowledge of initial guesses requires the convergence radius. Other studies are found in [1,2,4–9].

The most well-known method is Newton’s method, which is written as

xn+1 = xn − F′(xn)
−1F(xn), for each n = 0, 1, 2, . . . , (2)

Many higher orders of convergence, modified Newton’s, or Newton-like methods have been
appeared in the literature, e.g., [1–3,5–7,9–21] and references therein. In particular, Cordero et al. [11]
studied eighth-order method for finding approximate solution of F(x) = 0 defined for each
n = 0, 1, 2, . . . by
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yn = xn − F′(xn)
−1F(xn),

zn = yn −
(1

4
I +

1
2

F′(yn)
−1F′(xn) +

1
4
(

F′(yn)
−1F′(xn)

)2
)

F′(xn)
−1F(yn), (3)

xn+1 = zn −
(1

2
I +

1
2
(F′(yn)

−1F′(xn))
2
)

F′(xn)
−1F(zn).

They considered the method (3) for solving system of equations, when B1 = B2 = Ri (i ∈ N).
The method was compared favorably to existing methods. They proved the eighth order of convergence
of the method but using Taylor series as well as eighth-order derivatives. The convergence order of the
other methods mentioned in [11] also use higher-order derivatives. Therefore, they can be handled
with the same technique. We simply picked (3) to work with which seems to be the best to study
among the rest.

It can be clearly seen that the assumptions on the higher-order Fréchet derivatives of the operator
F limit the applicability of method (3). As a motivational example, we consider the following:

Let B1 = B2 = C[0, 1] and Ω = B̄(p, 1). Consider the Hammerstein-type equation [1,4] defined by

x(s) =
∫ 1

0
D(s, t)

(
x(t)

3
2 +

x(t)2

2

)
dt, (4)

where D is defined on [0, 1]× [0, 1] as

D(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

Clearly, p(x) = 0 solves

[H(x)](s) = x(s)−
∫ 1

0
D(s, t)

(
x(t)

3
2 +

x(t)2

2

)
dt = 0 (5)

Then, we have that the Fréchet derivative is given by

[H′(x)y](s) = y(s)−
∫ 1

0
D(s, t)

(3
2

x(t)
1
2 + x(t)

)
dt, (6)

where the prime denotes derivative with respect to x. We have

H′(p(s)) = I,
∥∥ ∫ 1

0
D(s, t)dt

∥∥ ≤ 1
8

, and

‖H′(p)−1(F′(x)− F′(y))‖ ≤ 1
8

(3
2
‖x− y‖1/2 + ‖x− y‖

)
.

Boundary value problems of order two can be found in many disciplines: In Physics,
many problems can be expressed in this way, e.g., Newton’s laws; calculating concentrations of
various chemicals in a reaction; computing modes in biology etc. If we assume kinetic plus potential
energy is constant. Then, the mechanical system is called conservative. Consider the conservative
system defined by the Boundary Value Problem (BVP)

d2x(s)
ds2 + η(x(s)) = 0, x(0) = x(1) = 0,

where η(x) is differentiable at least one time. Then, solving BVP reduced to finding a solution of an
integral equation like (4) [15].

In this work, our approach is to weaken the assumptions in [11]. We work with Banach
space valued operators which constitute a more general setting and use only first-order derivatives.
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We summarize the contents of the paper. The local convergence of (3) is given in Section 2. Experiments
on some problems of the applied sciences are performed to verify the theoretical results in Section 3.
Then, in Section 4 we check the convergence domain of the iterative technique geometrically by means
of drawing basin of attractors. Concluding remarks are given in Section 5.

2. Local Convergence

Let w0 : [0, ∞) → [0, ∞) be a continuous and increasing function with w0(0) = 0. Assume a
minimal positive solution

w0(t) = 1, (7)

has ρ1. Let also w : [0, ρ1)→ [0, ∞), w1 : [0, ρ1)→ [0, ∞) be continuous and increasing functions with
w(0) = 0, and functions q1(t), q̄1(t) on the interval [0, ρ1) are given as

q1(t) =

∫ 1
0 w((1− θ)t)dθ

1− w0(t)

and
q̄1(t) = q1(t)− 1.

Clearly, q̄1(0) = −1 and q̄1(t) → ∞ as t → ρ−1 . By the intermediate value theorem,
equation q̄1(t) = 0 has at least one solution in the interval (0, ρ1), denote by R1. Assume

w0(φ1(t)t) = 1, (8)

has a minimal positive solution ρ2 and let ρ0 = min{ρ1, ρ2}. Define the functions q2(t) and q̄2(t) on
interval [0, ρ0) by

q2(t) =
(∫ 1

0 w((1− θ)q1(t)t)dθ

1− w0(q1(t)t)
+

(w0(q1(t)t) + w0(t))
∫ 1

0 w1(θq1(t)t)dθ

(1− w0(t))(1− w0(q1(t)t))

+
1
4

( (w0(t) + w0(q1(t)t))2

(1− w0(q1(t)t))2 +
2(w0(t) + w0(q1(t)t))

1− w0(q1(t)t)

)∫ 1
0 w1(θq1(t)t)dθ

1− w0(t)

)
q1(t)

and
q̄2(t) = q2(t)− 1.

Since, q̄2(0) = −1 and q̄2(t)→ ∞ as t→ ρ−0 , let R2 be the minimal solution of equation q̄2(t) = 0
in (0, ρ0). Assume

w0(q3(t)t) = 1, (9)

has a minimal solution ρ3 and let ρ = min{ρ2, ρ3}. Define the functions q3(t) and q̄3(t) on interval
[0, ρ) by

q3(t) =
(∫ 1

0 w((1− θ)q2(t)t)dθ

1− w0(q2(t)t)
+

(w0(q2(t)t) + w0(q1(t)t))
∫ 1

0 w1(θq2(t)t)dθ

(1− w0(q2(t)t))(1− w0(t))

+
1
2

( (w0(q1(t)t) + w0(t))2

(1− w0(q1(t)t))2 +
2(w0(q1(t)t) + w0(t))2

(1− w0(t))(1− w0(q1(t)t))

)∫ 1
0 w1(θq2(t)t)dθ

1− w0(t)

)
q2(t)

and
q̄3(t) = q3(t)− 1.

However, q̄3(0) = −1 < 0 and q̄3(t)→ ∞ as t→ ρ−, let R3 be the minimal solution of equation
q̄3 = 0.
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Define radius of convergence

R = min{Rm}, m = 1, 2, 3. (10)

Then, for all t ∈ [0, R)
0 ≤ w0(t) ≤ 1, (11)

0 ≤ w0(q1(t)t) ≤ 1, (12)

0 ≤ w0(q2(t)t) ≤ 1 (13)

and
0 ≤ qm(t) ≤ 1. (14)

We shall use the conditions (C) in the local convergence analysis of method (3) given below:

(C1) F : Ω → B2 is differentiable in the sense of Fréchet, p ∈ Ω with F(p) = 0 and F′(p)−1 ∈
LB(B2, B1).

(C2)w0 : [0, ∞)→ [0, ∞) continuous and increasing, w0(0) = 0 and for each x ∈ Ω

‖F′(p)−1(F′(p)− F′(x)
)
‖ ≤ w0(‖p− x‖).

Set: Ω0 = Ω ∩ B(p, ρ1), where ρ1 is given in (7).
(C3)w : [0, ρ1) → [0,+∞), w1 : [0, ρ1) → [0,+∞) are continuous, increasing, w(0) = 0 and for each

x, y ∈ Ω0

‖F′(p)−1(F′(x)− F′(y)
)
‖ ≤ w(‖x− y‖)

and
‖F′(p)−1F′(x)‖ ≤ w1(‖x− p‖).

(C4) B̄(p, R) ⊂ Ω, where R is defined in (10).

(C5)There exists R1 ≥ R such that
∫ 1

0 w0(θR1)dθ < 1.

Set: Ω1 = Ω ∩ B̄(p, R1).

Next, the convergence analysis of method (3) follows using the preceding notations and the
conditions (C).

Theorem 1. Assume that the conditions (C) hold. Then, the sequence {xn} starting at x0 ∈ B(p, R)− {p}
converges to p, and the following inequalities hold

‖yn − p‖ ≤ q1(‖xn − p‖)‖xn − p‖ ≤ ‖xn − p‖ < R, (15)

‖zn − p‖ ≤ q2(‖xn − p‖)‖xn − p‖ ≤ ‖xn − p‖ (16)

and
‖xn+1 − p‖ ≤ q3(‖xn − p‖)‖xn − p‖ ≤ ‖xn − p‖, (17)

where the “q” functions are given previously and R is defined in (10). Furthermore, p is the only solution of
equation F(x) = 0 in Ω1.

Proof. A mathematical induction-based proof is used. If x0 ∈ B(p, R)− {p}, using (10) and (C2), we
get that

‖F′(p)−1(F′(p)− F′(x0)
)
‖ ≤ w0(‖p− x0‖) < w0(R) < 1, (18)
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so, by the Banach Lemma on invertible operators [2,22], we have that F′(x0)
−1 ∈ LB(B2, B1) and

‖F′(x0)
−1F′(p)‖ ≤ 1

1− w0(‖x0 − p‖) . (19)

This also shows that y0 is well defined. Using (10), (14) (for m = 1), (C3) and (19), we get in
turn that

‖y0 − p‖ ≤ ‖x0 − p− F′(x0)
−1F(x0)‖

≤ ‖F′(x0)
−1F′(p)‖

∥∥∥ ∫ 1

0
F′(p)−1(F′(p + θ(x0 − p))− F′(x0)

)
(x0 − p)dθ

∥∥∥
≤
∫ 1

0 w((1− θ)‖x0 − p‖)dθ

1− w0(‖x− p‖)
= q1(‖x0 − p‖)‖x0 − p‖ ≤ ‖x0 − p‖ < R, (20)

so (15) holds for n = 0 and y0 ∈ B(p, R), so z0 and x1 are well defined.
We can have by (C1) that

F(x0) = F(x0)− F(p) =
∫ 1

0
F′(p + θ(x0 − p))dθ(x0 − p). (21)

Then, by the second condition in (C3), we get that

‖F′(p)−1F(x0)‖ ≤
∫ 1

0
w1(θ‖x0 − p‖)dθ‖x0 − p‖. (22)

By second substep of method (3) for n = 0, we have

z0 − p = y0 − p− F′(y0)
−1F(y0) + F′(y0)

−1(F′(x0)− F′(y0))F′(x0)
−1F(y0)

+ 1
4

((
F′(y0)

−1(F′(x0)− F′(y0)
)2 − 2(F′(y0)

−1(F′(x0)− F′(y0)))
)

F′(x0)
−1F(y0).

(23)

By using (10), (14) (for m = 2), (19) (for x0 = y0), (20), (22) (for x0 = y0) and (23), we obtain in
turn that

‖z0 − p‖ ≤ ‖y0 − p− F′(y0)
−1F(y0)‖

+ ‖F′(y0)
−1F′(p)‖

(
‖F′(p)−1(F′(y0)− F′(p))‖+ ‖F′(p)−1(F′(x0)− F′(p))‖

)
× ‖F′(x0)

−1F′(p)‖‖F′(p)−1F(y0)‖+
1
4

(
‖F′(y0)

−1F′(p)‖2(‖F′(p)−1(F′(x0)− F′(p))‖

+ ‖F′(p)−1(F′(y0)− F′(p))‖
)2

+ 2‖F′(y0)
−1F′(p)‖

(
‖F′(p)−1(F′(x0)− F′(p))‖

+ ‖F′(p)−1(F′(y0)− F′(p))‖
))
‖F′(x0)

−1F′(p)‖‖F′(p)−1F(y0)‖ (24)

≤
(∫ 1

0 w((1− θ)‖y0 − p‖)dθ

1− w0(‖y0 − p‖) +
(w0(‖y0 − p‖) + w0(‖x0 − p‖)

∫ 1
0 w1(θ‖y0 − p‖)dθ

(1− w0(‖x0 − p‖))(1− w0(‖y0 − p‖)

+
1
4

(
(w0(‖x0 − p‖) + w0(‖y0 − p‖))2

(1− w0(‖x− p‖))2 +
2(w0(‖x0 − p‖) + w0(‖y0 − p‖))

1− w0(‖x− p‖)

)
×
∫ 1

0 w1(θ‖y0 − p‖)dθ

1− w0(‖x− p‖)

)
‖y0 − p‖

≤q2(‖x0 − p‖)‖x0 − p‖ ≤ ‖x0 − p‖ < R,
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so (17) holds for n = 0, and z0 ∈ B(p, R). Moreover, by the third sub step of method (3), we have that

x1 − p =z0 − p− F′(z0)
−1F(z0) + (F′(z0)

−1 − F′(x0)
−1)F(z0)

+
1
2

(
I − (F′(y0)

−1F′(x0)
2
)

F′(x0)
−1F(z0)

=(z0 − p− F′(z0)
−1F(z0)) + F′(z0)

−1(F′(x0)− F′(z0))F′(x0)
−1F(z0)

+
1
2

(
(I − F′(y0)

−1F′(x0))
2 + 2(I − F′(y0)

−1F′(x0))F′(y0)
−1F′(x0)

)
F′(x0)

−1F(z0). (25)

Using (10), (14) (for m = 3), (19) (for x0 = y0, z0), (20), (22) (for x0 = z0), (24) and (25), we get in
turn that

‖x1 − p‖ ≤ ‖z0 − p− F′(z0)
−1F(z0)‖+ ‖F′(z0)

−1F′(p)‖
(
‖F′(p)−1(F′(z0)− F′(p))‖

+ ‖F′(p)−1(F′(x0)− F′(p))‖
)
‖F′(x0)

−1F′(p)‖‖F′(p)−1F′(z0)‖

+
1
2

(
‖F′(y0)

−1(F′(y0)− F′(x0))‖2 + 2‖F′(y0)
−1(F′(y0)− F′(x0))‖

× ‖F′(y0)
−1F′(p)‖‖F′(p)−1F′(x0)‖

)
‖F′(x0)

−1F′(p)‖‖F′(p)−1F(z0)‖

≤
(∫ 1

0 w((1− θ)‖z0 − p‖)dθ

1− w0(‖z0 − p‖) +
(w0(‖z0 − p‖) + w0(‖x0 − p‖))

∫ 1
0 w1(θ‖z0 − p‖)dθ

(1− w0(‖z0 − p‖))(1− w0(‖x0 − p‖))

+
1
2

(
(w0(‖y0 − p‖) + w0(‖x0 − p‖))2

(1− w0(‖y0 − p‖))2 +
2(w0(‖y0 − p‖) + w0(‖x0 − p‖))

1− w0(‖x0 − p‖)

× w1(‖x0 − p‖)
1− w0(‖y0 − p‖)

)∫ 1
0 w(θ‖z0 − p‖)dθ

1− w0(‖x0 − p‖)

)
‖z0 − p‖

≤q3(‖x0 − p‖)‖x0 − p‖ ≤ ‖x0 − p‖ < R, (26)

so (17) holds for n = 0 and x1 ∈ B(p, R). The induction for (17) is completed if x0, y0, z0, x1 are
replaced by xj, yj, zj, xj+1 in the preceding calculations. Then, in view of the inequality

‖xj+1 − p‖ ≤ λ‖xj − p‖ < R, (27)

where λ = q3(‖x0 − p‖) ∈ [0, 1), we get that limj→∞ xj = p and xj+1 ∈ B(p, R).

Furthermore, for the uniqueness part, let Q =
∫ 1

0 F′(p + θ(p∗ − p))dθ for some p∗ ∈ Ω1 such that
F(p∗) = 0. Using (C5), we get that

‖F′(p)−1(Q− F′(p))‖ ≤
∫ 1

0
w0(θ‖p∗ − p‖)dθ

≤
∫ 1

0
w0(θR)dθ < 1,

so Q−1 ∈ LB(B2, B1). Finally, 0 = F(p∗)− F(p) = Q(p∗ − p), we get p∗ = p.

Remark 1.

(i) In view of (C2)

‖F′(p)−1F′(x)‖ = ‖F′(p)−1(F′(x)− F′(p)) + I‖
= 1 + ‖F′(p)−1(F′(p)− F′(x))‖
≤ 1 + w0(‖p− x‖)
≤ 2
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Then, we can set w1(t) = 1 + w0(t), and condition (c3) can be removed, condition (C3) can be dropped
and w1 can be replaced by w1(t) = 2.

(ii) Let {wn} be any iterative method. Then, we define the computational order of convergence (COC) [21] by

COC = log
∥∥∥wn+2 − p

wn+1 − p

∥∥∥/log
∥∥∥wn+1 − p

wn − p

∥∥∥, for all n = 1, 2, .... (28)

and the approximate computational order of convergence (ACOC) [13], by

ACOC = log
∥∥∥wn+2 − wn+1

wn+1 − wn

∥∥∥/log
∥∥∥wn+1 − wn

wn − wn−1

∥∥∥, for all n = 1, 2, .... (29)

The order of convergence is derived.

3. Numerical Experiments

To show the applicability of our theory, we consider the following problems:

Example 1. The Van der Waals equation of state for a vapor is (see [23])(
P +

a
V2

)
(V − b) = RT,

Then, we must solve equation

PV3 − (Pb + RT)V2 + aV − ab = 0 (30)

in V, where all constants have a physical meaning whose values can be found in [23]. We solve this problem
when P = 10, 000 kPa and T = 800 K. The solution p of resulting equation is 36.9167 . . .. Then, we can choose
w0(t) = w(t) = 0.386121 t and w1(t) = 2, and by using (C) conditions the parameters are given by

R1 = 1.72657, R2 = 1.00118 and R3 = 0.695478.

So,
R = 0.695478.

Thus, the convergence of the method (3) to p = 36.9167 . . . is guaranteed, provided that x0 ∈ B(p, R).

Example 2. The following equation appears in the study of fractional conversation to ammonia from
nitrogen-hydrogen [24,25]. In particular, for 250 atm, 500 oC and the equation is

f (x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x− 1.674.

Figure 1 shows the conversion process. Then, for p = 0.27776 . . . we have w0(t) = 2.11111 t,
w(t) = 3.28224 t and w1(t) = 2. The parameters by using (C) conditions are computed as

R1 = 0.266509, R2 = 0.155662 and R3 = 0.111387.

So,
R = 0.111387.
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Figure 1. Ammonia process.

Example 3. Consider the three-mode feedback control of a stirred-tank heater system (Figure 2). The measured
output variable is the feed stream temperature [26]. Using standard methods [26], we get the control system
defined by

T̄
T̄i

=
(τIs)(τvs + 1)(τms + 1)

(τIs)(τPs + 1)(τvs + 1)(τms + 1) + K(τIs + 1 + τDτIs2)
(31)

where, the constants appearing in (31) have a physical meaning [26].
To study stability, we first specialize constants and then set the denominator in (31) equal to zero, and solve

τIτPτmτvs4 + (τIτPτm + τIτPτv + τIτmτv)s3 + (KτIτD + τIτP + τIτv + τIτm)s2+

(τI + KτI)s + K = 0.
(32)

We solve the characteristic polynomial when Kc is equal to its “critical" value that is 0.9396 using

τI = 10, τD = 1, τP = 10, τm = 5, τv = 5, KP = 10, Kv = 2, Km = 0.09.

By substituting the above parameters in (32), we get that

f (s) = 2500s4 + 1250s3 + 209.396s2 + 19.396s + 0.9396, (33)

so p = −0.285837 . . .. Then, we have that w0(t) = 15.2501 t, w(t) = 15.2501 t, w1(t) = 2 and by using the
(C) conditions, we obtain the parameter values

R1 = 0.0437156, R2 = 0.025349 and R3 = 0.017609,

which implies that
R = 0.017609.
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Figure 2. Stirred-tank heater.

Example 4. Let B1 = B2 = C[0, 1] and Ω = B̄(0, 1). Define function Q on Ω by

Q(ϕ)(x) = ξ(x)− 5
∫ 1

0
xτϕ(τ)3dθ.

We have that

Q′(ϕ(ξ))(x) = ξ(x)− 15
∫ 1

0
xτϕ(τ)2ξ(τ)dτ, for each ξ ∈ Ω.

Then for p = 0 we have that w0(s) = 7.5 s, w(s) = 15 s and w1(s) = 2. So, by (C) conditions, we obtain
the parameters

R1 = 0.666667, R2 = 0.0395822 and R3 = 0.0288681.

So,
R = 0.028861.

Example 5. In the example, of introduction, we can choose w0(s) = w(s) = 1
8

(
3
2
√

s + s
)

and v(s) = 2, so

R = min{R1, R2, R3}
= min{2.630300, 1.633190, 1.341759} = 1.341759.

Thus, the convergence of the method (3) to p = 0 is guaranteed, provided that x0 ∈ B(p, R).

4. Complex Dynamics of Method

The convergence and stability of iterative methods use complex dynamics of rational
functions [18,27,28]. A more complete study can be found, for example, in [29]. Consider mapping
g : Ĉ→ Ĉ, where Ĉ is a Riemann sphere, the set of its iterates can be considered as a discrete dynamical
system. The set

{z0, g(z0), g2(z0), . . . , gm(z0), . . .}

defines the orbit of z ∈ Ĉ.
The dynamical behavior of the orbit of a point of Ĉ can be categorized on its asymptotic behavior.

We need the standard definitions

• attractor if |gk(z0)| < 1,
• superattractor if |gk(z0)| = 0,
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• repuslor if |gk(z0)| > 1,
• parabolic if |gk(z0)| = 1.

The basin of attraction A(z0) of an attracting point z0 consists of the set of points z ∈ Ĉ that
accumulate on z0 under iteration of g(z), that is

A(z0) = {z ∈ Ĉ : gm(z)→ z0, m→ ∞}. (34)

The Fatou set contains elements with orbits converging to a fixed point. Moreover, the Juila set is
the closure of a set containing fixed points that are repelling.

We take the initial point as z0 ∈ Ω, where Ω is a rectangular region in complex plane containing all
the roots of f (z) = 0. The iterative methods beginning at point z0 in a rectangle can converge to the zero
of f (z) or not converge. We consider the stopping criterion for convergence as 10−3 up to a maximum
of 25 iterations. If we have not obtained the desired tolerance in 25 iterations, we do not continue and
decide that the iterative method starting at z0 does not converge to any root. The approach taken into
account is following: A color is allotted to each starting point z0 in the basin of attraction of a zero.
If the iteration starting from the initial point z0 converges then it represents the basins of attraction
with that particular color assigned to it and if it fails to converge in 25 iterations then it shows the black
color. In this way, we discriminate the attraction basins by their colors for the method.

Next, basin of attraction is analyzed.

Test problem 1. Consider the polynomial P1(z) = z2 − 1 having two simple zeros {−1, 1}. The basin
of attractors for this polynomial are shown in Figure 3. From this figure, it can be observed that
method (3) has very stable behavior. In addition, the method does not exhibit chaotic behavior on the
boundary points.

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

Figure 3. Basins of attraction of method (3) for test problem 1.

Test problem 2. Consider P2(z) = z3 − z having three simple zeros {−1, 0, 1}. The basin of attractors
for this polynomial are shown in Figure 4. From this figure, we observe the stable behavior of
method (3). Moreover, the method does not show chaotic behavior on the boundary of basins.
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Figure 4. Basins of attraction of method (3) for test problem 2.

Test problem 3. Consider the polynomial P4(z) = z4 − z having four simple zeros {−0.5− 0.86602i,
0, 1, −0.5 + 0.86602i}. The basin of attractors is shown in Figure 5. In this case, we also observe the
beautiful shape of the basins of attraction of different roots. At the boundaries, however, a few small
black points show that the method is divergent at such points.

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-

Figure 5. Basins of attraction of method (3) for test problem 3.

5. Conclusions

In this study, we have extended the usage of method (3) by presenting its convergence analysis
and complex dynamics. In contrast to other techniques relying on higher derivative order as well as
Taylor series, we have used only derivative of order one, since this actually appears in the method.
Another advantage of our approach is the computation of balls, uniqueness balls where the iterates
lie as well as estimates on ‖xn − x∗‖. These goals are achieved using our Lipschitz-like conditions.
Theoretical results so derived are verified on some practical problems. Finally, we have checked the
stability of the method by means of using complex dynamics tool, namely, basin of attraction.
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