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Abstract

:

In this paper, we construct a helicoidal surface with a prescribed weighted mean curvature and weighted extrinsic curvature in a 3-dimensional complete manifold with a positive density function. We get a result for the minimal case. Additionally, we give examples of a helicoidal surface with a weighted mean curvature and weighted extrinsic curvature.
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1. Introduction


It is well known that a helicoidal surface is a generalization of a rotation surface. There are many studies about these surfaces under some given certain conditions [1,2,3,4,5,6,7,8,9,10,11,12]. Recently, the popular question has become whether a helicoidal surface can be constructed when its curvatures are prescribed. Several researchers have worked on this problem and obtained useful results. Firstly, Baikoussis et al. studied helicoidal surfaces with a prescribed mean and Gaussian curvature in R3 [13]. Then, Beneki et al. [14] and Ji et al. [15] studied similar work in R13. Furthermore, Dae Won Yoon et al. studied the helicoidal surfaces with a prescribed weighted mean and Gaussian curvature in R3 with density [16] and Yıldız et al. have studied the helicoidal surfaces with prescribed weighted curvatures in R13 with density [17]. For more details on manifolds with density and surfaces in manifold with density, see References [18,19,20,21,22,23,24,25].



This problem is extended to complete manifolds. Lee et al. studied the helicoidal surfaces with a prescribed extrinsic curvature or mean curvature in a conformally flat 3-space [10]. It is well known that a metric on a complete manifold is conformal to the Euclidean metric. For a given surface in a complete manifold with a conformal factor function F, the mean curvature and the extrinsic curvature are given by:


(1)HgF=FHg0−N,gradF,(2)GgF=F2Gg0−2Hg0FN,∇F+N,∇F2,








where N is the unit normal vector of a surface and ∇F is the gradient of F, Hg0 is the mean curvature of the surface in Euclidean 3-space, and Gg0 is the Gaussian curvature of a surface in Euclidean 3-space [26].



In this paper, we study helicoidal surfaces in a 3-dimensional complete manifold with density. We construct a helicoidal surface with a prescribed weighted mean and weighted extrinsic curvature. Then, we give examples to illustrate our result.




2. Preliminaries


Let M be a 3-dimensional complete manifold R3,,g equipped with a metric ,g that is conformal to the Euclidean metric , such that:


,g=1F2,,








where F:R3→R+ is a positive differentiable function.



A manifold with a positive density function φ is used to weight the volume and the hypersurface area. In terms of the underlying Riemannian volume dV0 and area dA0, the new, weighted volume and area are given by dV=φdV0 and dA=φdA0, respectively. One of the most important examples of manifolds with density, with applications to probability and statistics, is a Gauss space with density φ=ea−x2−y2−z2 for a∈R [22].



In Euclidean 3-space with density eφ, the weighted mean curvature is given by:


Hφg0=Hg0−12N,▽φ,



(3)




where Hg0 is the mean curvature of the surface, N is the unit normal vector of the surface, and ▽φ is the gradient vector of φ [23]. If Hφg0=0, then the surface is called a weighted minimal surface. In Euclidean 3-space with density eφ, the weighted Gaussian curvature with density is:


Gφg0=Gg0−△φ,



(4)




where Gg0 is the Gaussian curvature of the surface and △ is the Laplacian operator [27].



Throughout this paper, for x=x1,x2,x3∈R3, we consider the positive density function and the conformal factor function as eφ=e−x12−x22 and F=x12+x22, respectively.



Let γ be a C2–curve on x1x3–plane, of type γu=u,0,fu, where u∈I for an open interval I⊂R+. Using helicoidal motion on γ, we can obtain the helicoidal surface M as:


Xu,v=cosv−sinv0sinvcosv0001u0fu+00hv,








with x3-axis and a pitch h∈R, so the parametric equation can be given in the form:


Xu,v=ucosv,usinv,fu+hv.











It is straightforward to see that the mean curvature Hg0, the Gaussian curvature Gg0, and the unit normal vector of helicoidal surface are:


Hg0=u2+h2uf″u+u2f′3u+u2+2h2f′u2u2f′2u+u2+h23/2,Gg0=u3f′uf″u−h2u2f′2u+u2+h22,N=hsinv−uf′ucosv,−uf′usinv−hcosv,uu2f′2u+u2+h21/2.











Using Equations (3) and (4), the weighted mean curvature Hφg0 and the weighted Gaussian curvature Gφg0 are obtained as:


Hφg0=u2+h2uf″u+u2−2u4f′3u+u2+2h2−2u4−2h2u2f′u2u2f′2u+u2+h23/2,Gφg0=u3f′uf″u−h2u2f′2u+u2+h22+4.











We assume that M is a surface in a 3-dimensional complete manifold with density. By considering Equations (1)–(4), we can define the weighted mean curvature HφgF and the weighted extrinsic curvature GφgF as:


HφgF=FHg0−12FN,▽φ−N,▽FGφgF=F2Gg0−2FHg0N,▽F−F2△φ+N,▽φN,▽FF+N,▽F2.











We obtain HφgF and GφgF for M as:


HφgF=u3u2−2u4−2h2u2−2f′u+3u2−2u4f′3u+uu2+h2f″u2u2f′2u+u2+h23/2,



(5)






GφgF=u24h4+4u4+h28u2−1+h26u2+3+2u2+3u4f′2u+2u2+u4f′4u+u2u2+h2f′uf″uu2f′2u+u2+h22.



(6)








3. Helicoidal Surfaces with Prescribed Weighted Mean or Weighted Extrinsic Curvature


In this section, we construct helicoidal surfaces with a prescribed weighted mean curvature and weighted extrinsic curvature in a 3-dimensional complete manifold with density eφ=e−x12−x22, where conformal factor F=x12+x22 and x=x1,x2,x3∈R3.



Theorem 1.

Let γu=u,0,fu be a profile curve of the helicoidal surface given by Xu,v=ucosv,usinv,fu+hv in the 3-dimensional complete manifold with density and HφgF(u) be the weighted mean curvature at the point u,0,fu. Then, there exists a two-parameter family of the helicoidal surface given by the curves:


γu,HφgF(u),h,c1,c2=u,0,fu,








where:


f=±∫u2+h21e−u2u4∫e−u2u4HφgFdu+c11−u21e−u2u4∫e−u2u4HφgFdu+c12du+c2.











Conversely, for a given smooth function HφgF(u), one can obtain the two-parameter family of curves γu,HφgF(u),h,c1,c2 being the two-parameter family of helicoidal surfaces, accepting HφgF(u) as the weighted mean curvature h as a pitch.





Proof. 

Let us solve Equation (5), which is a second-order nonlinear ordinary differential equation. If we apply:


Ψ=f′uu2f′2u+u2+h2,



(7)




into the equation, then we obtain the first-order linear ordinary differential equation:


HφgF=2u−u3Ψ+u22Ψ′.



(8)







Then, the general solution of Equation (8) is:


Ψ=1e−u2u4∫e−u2u4HφgFdu+c1,



(9)




where c1∈R. Using Equations (7) and (9), we obtain:


1−u21e−u2u4∫e−u2u4HφgFdu+c12f′2=u2+h21e−u2u4∫e−u2u4HφgFdu+c12.



(10)







From the above equation, we obtain:


f′=±u2+h2Ψ1−u2Ψ2.



(11)







By integrating Equation (11), we obtain:


f=±∫u2+h2Ψ1−u2Ψ2du+c2,



(12)




where c2∈R.



By contrast, for a given constant h∈R−0, a real-valued smooth function HφgFu defined on an open interval I⊂R+ and an arbitrary u0∈I, there exists an open subinterval u0∈I′⊂I and an open interval J⊂R which contains:


c˜1=−∫e−u2u4HφgFduu0,








such that:


Su,c1=1−u21e−u2u4∫e−u2u4HφgFdu+c12>0,








for arbitrary u,c1. Since Su0,c˜1=1>0 and S is continuous, S is positive on I′×J⊂R2. Thus, the two-parameter family of the curves can be given as:


γu,HφgF(u),h,c1,c2=u,0,fu,








where:


f=±∫u2+h21e−u2u4∫e−u2u4HφgFdu+c11−u21e−u2u4∫e−u2u4HφgFdu+c12du+c2.








☐





The following corollary is an immediate consequence of Theorem 1 and the definition of a minimal surface.



Corollary 1.

Let M be a minimal helicoidal surface in a complete manifold with density eφ. Then, M is an open part of either a helicoid or a surface parametrized by:


Xu,v=ucosv,usinv,±∫c1u2+h2e−2u2u8−u2c12du+c2+hv,








where c1,c2∈R.





Example 1.

Consider a helicoidal surface with the weighted mean curvature:


HφgF=5e−u2u4−2e−u2u6e−u2u4,








and the pitch h=1 in a complete manifold with density. Using Equation (12), we get γu. Thus, we obtain the parametrization of the surface as follows:


Xu,v=ucosv,usinv,−1−u2+v,








and the figure of the domain:


0<u<1−4<v<4,








is given in Figure 1.



The difference between Hφg0 and HφgF of the helicoidal surface with density can be seen in Figure 2.





Example 2.

Consider a helicoidal surface with the weighted mean curvature:


HφgF=1−2u2u4,








and the pitch h=1 in a complete manifold with density. Using Equation (12), we get γu. Thus, we obtain the parametrization of the surface as follows:


Xu,v=ucosv,usinv,−−1+u4arctan1+u2−1+u41−1u4u2+v,








and the figure of the domain:


2<u<10−5<v<5,








is given in Figure 3.





Theorem 2.

Let γu=u,0,fu be a profile curve of the helicoidal surface given by Xu,v=ucosv,usinv,fu+hv in a 3-dimensional complete manifold with density and GφgF(u) be the weighted extrinsic curvature at the point u,0,fu. Then, there exists a two-parameter family of the helicoidal surface, which is given by the curves:


γu,GφgF,h,c1,c2=u,0,±∫e−u2u5h2+2u2−1−h22u+u2+h2Be−u2u5h2+2u2−1−h22u−u2B12du+c2,








where:


B=∫e−u2u5h2+2u2−1−h22−4−8h2−12u22u2+h2+2u2GφgFdu+c1,








and c1 and c2 are constants. Conversely, for a given smooth function GφgF, one can obtain the two-parameter family of curves γu,GφgF(u),h,c1,c2, being the two-parameter family of the helicoidal surfaces, accepting GφgF as the weighted extrinsic curvature h as a pitch.





Proof. 

Let’s solve the second-order nonlinear ordinary differantial Equation (6). We can rewrite Equation (6) as follows:


Φ′+5h2+6u2−4h2u2−4u42u3+uh2Φ=−4−8h2−12u22u2+h2+2u2GφgF,



(13)




where:


Φ=uf′2u−uu2f′2u+u2+h2.



(14)







The general solution of Equation (13) is:


Φ=∫e−u2u5h2+2u2−1−h22−4−8h2−12u22u2+h2+2u2GφgFdu+c1e−u2u5h2+2u2−1−h22,



(15)




where c1∈R. Combining Equations (14) and (15), we get:


e−u2u5h2+2u2−1−h22u−u2∫e−u2u5h2+2u2−1−h22−4−8h2−12u22u2+h2+2u2GφgFdu+c1f′2u=ue−u2u5h2+2u2−1−h22+u2+h2∫e−u2u5h2+2u2−1−h22−4−8h2−12u22u2+h2+2u2GφgFdu+c1.











If we set:


B=∫e−u2u5h2+2u2−1−h22−4−8h2−12u22u2+h2+2u2GφgFdu+c1,








then:


f′2=e−u2u5h2+2u2−1−h22u+u2+h2Be−u2u5h2+2u2−1−h22u−u2B.



(16)







It follows that:


fu=±∫e−u2u5h2+2u2−1−h22u+u2+h2Be−u2u5h2+2u2−1−h22u−u2B12du+c2



(17)




where c2∈R.



Conversely, for a given h∈R and a smooth function GφgFu, defined on an open interval I⊂R+ and an arbitrary u0∈I, there exists an open subinterval I′⊂I containing u0 and an open interval J⊂R containing:


c˜1=−∫e−u2u5h2+2u2−1−h22−4−8h2−12u22u2+h2+2u2GφgFduu0,








such that:


Su,c1=e−u2u5h2+2u2−1−h22−uB>0,








which is defined on I′×J. Thus, a two-parameter family of the curves can be given as:


γu,GφgF,h,c1,c2=u,0,±∫e−u2u5h2+2u2−1−h22u+u2+h2Be−u2u5h2+2u2−1−h22u−u2B12du+c2,








where u,c1∈I′×J;c2,h∈R and GφgF is a smooth function. ☐





Example 3.

Consider a helicoidal surface with the weighted extrinsic curvature:


GφgF(u)=4+11u2+14u4+4u62+u22,








in a complete manifold with density. Using Equation (17), we obtain fu=lnu for h=1,c1=0,c2=0 and the parametrization of the surface as follows:


Xu,v=ucosv,usinv,lnu+v.











The figure of the surface of the domain:


0<u<3−4<v<4,








is given in Figure 4.



The difference between Gφg0 and GφgF of the helicoidal surface with density can be seen in Figure 5.






4. Conclusions and Future Work


In this paper, using the conformal factor function F=x12+x22, we constructed a helicoidal surface with a prescribed weighted mean curvature and Gaussian curvature in a complete manifold with a positive density function. Different helicoidal surfaces can be obtained in a complete manifold with density using different conformal factor functions. In addition, if conformal factor function F is bounded, a manifold is called a conformally flat space. Thus, by considering a bounded function, one can study helicoidal surface in a conformally flat space with density.
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Figure 1. The helicoidal surface with the weighted mean curvature. 






Figure 1. The helicoidal surface with the weighted mean curvature.
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Figure 2. Hφg0 (Green) and HφgF (Blue). 






Figure 2. Hφg0 (Green) and HφgF (Blue).



[image: Mathematics 07 00027 g002]







[image: Mathematics 07 00027 g003 550]





Figure 3. The helicoidal surface with the weighted mean curvature. 






Figure 3. The helicoidal surface with the weighted mean curvature.



[image: Mathematics 07 00027 g003]







[image: Mathematics 07 00027 g004 550]





Figure 4. The helicoidal surface with the weighted Gaussian curvature. 






Figure 4. The helicoidal surface with the weighted Gaussian curvature.
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Figure 5. Gφg0 (Green) and GφgF (Blue). 






Figure 5. Gφg0 (Green) and GφgF (Blue).
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