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Abstract: The conventional concept of α-level sets of fuzzy sets will be treated as the upper α-level
sets. In this paper, the concept of lower α-level sets of fuzzy sets will be introduced, which can also
be regarded as a dual concept of upper α-level sets of fuzzy sets. We shall also introduce the concept
of dual fuzzy sets. Under these settings, we can establish the so-called dual decomposition theorem.
We shall also study the dual arithmetics of fuzzy sets in R and establish some interesting results
based on the upper and lower α-level sets.
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1. Introduction

The properties of fuzzy numbers and the arithmetic of fuzzy quantities (or fuzzy numbers) have
been studied for a long time. The interesting issue for studying the additive inverse of a fuzzy number
may refer to Hong and Do [1], Vrba [2] and Wu [3,4]. Also, Anzilli and Facchinetti [5], Bodjanova [6],
Dubois and Prade [7] investigated the median, mean and variance of fuzzy numbers. Wang et al. [8]
studied the two-dimensional discrete fuzzy numbers. Mitchell and Schaefer [9] and Yager and Filev [10]
studied the orderings of fuzzy numbers. On the other hand, Deschrijver [11,12] studied the arithmetic
operators in interval-valued fuzzy set. Ban and Coroianu [13] investigated the approximation of
fuzzy numbers. Guerra and Stefanini [14] studied the approximation of arithmetic of fuzzy numbers.
Holčapek and Štěpnička [15] studied a new framework for arithmetics of extensional fuzzy numbers.
Stupňanová [16] used a probabilistic approach to study the arithmetics of fuzzy numbers. Wu [17]
used the decomposition and construction of fuzzy sets to study the arithmetic operations on fuzzy
quantities. In this paper, we shall study the dual arithmetic of fuzzy sets by considering the dual
membership function.

The α-level set of a fuzzy set will be called the upper α-level set. In this paper, we shall define the
so-called lower α-level set. The well-known (primal) decomposition theorem says that the membership
function of a fuzzy set can be expressed in terms of the characteristic function of (upper) α-level sets.
In this paper, we are going to establish the so-called dual decomposition theorem by showing that the
membership function can be expressed in terms of lower α-level sets.

On the other hand, the concept of dual fuzzy set will be proposed by considering theso-called dual
membership function. Based on the dual membership functions, we shall also study the so-called dual
arithmetic of fuzzy sets in R. The definition of arithmetic operations is based on the supremum and
minimum of membership functions. Inspired by its form, we shall define the so-called dual arithmetic
operations based on the infimum and maximum of dual membership functions. A duality relation is
also established between the arithmetics and dual arithmetics.

In Section 2, we introduce the concept of lower α-level sets and present some interesting properties
that will be used in the subsequent discussion. In Section 3, we introduce the concept of dual fuzzy
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set and present some interesting results based on the lower α-level sets. In Section 4, we establish the
so-called dual decomposition theorem. In Section 5, we introduce the dual arithmetics of fuzzy sets in
R and establish some interesting results based on the upper and lower α-level sets.

2. Lower and Upper Level Sets

Let Ã be a fuzzy subset of a universal set U with membership function denoted by ξ Ã. For α ∈
(0, 1], the α-level set of Ã is denoted and defined by

Ãα = {x ∈ U : ξ Ã(x) ≥ α} . (1)

For α ∈ [0, 1), we also define

Ãα+ = {x ∈ U : ξ Ã(x) > α} .

The support of a fuzzy set Ã within a universal set U is the crisp set defined by

Ã0+ = {x ∈ U : ξ Ã(x) > 0}.

The definition of 0-level set is an important issue in fuzzy sets theory. If the universal set U
is endowed with a topology τ, then the 0-level set Ã0 can be defined as the closure of the support
of Ã, i.e.,

Ã0 = cl
(

Ã0+
)

. (2)

If U is not endowed with a topological structure, then the intuitive way for defining the 0-level
set is to follow the equality (1) for α = 0. In this case, the 0-level set of Ã is the whole universal set U.
This kind of 0-level set seems not so useful. Therefore, we always endow a topological structure to the
universal set U when the 0-level set should be seriously considered.

Let Ã be a fuzzy set in U with membership function ξ Ã. The range of ξ Ã is denoted by
R(ξ Ã) that is a subset of [0, 1]. We see that the range R(ξ Ã) can be a proper subset of [0, 1] with
R(ξ Ã) 6= [0, 1]. Define

α∗Ã = supR(ξ Ã) = sup
x∈Ã0

ξ Ã(x) and α◦Ã = infR(ξ Ã) = inf
x∈Ã0

ξ Ã(x).

Remark 1. We have the following observations.

• For any 0 ≤ α ≤ α◦Ã, even though α 6∈ R(ξ Ã), we have Ãα = Ãα◦
Ã
6= ∅.

• For any α◦Ã < α < α∗Ã, even though α 6∈ R(ξ Ã), we have Ãα 6= ∅. It is also obvious that Ãα = ∅ for
α > α∗Ã.

• If the maximum maxR(ξ Ã) exists, i.e., supR(ξ Ã) = maxR(ξ Ã), then we have Ãα∗
Ã
6= ∅.

If maxR(ξ Ã) does not exist, then Ãα∗
Ã
= ∅.

Therefore we have the following interesting and useful result.

Proposition 1. Let Ã be a fuzzy set in U with membership function ξ Ã. Define α∗Ã = supR(ξ Ã) and

I∗Ã =


[
0, α∗Ã

)
is a half-open interval, if the maximum maxR(ξ Ã) does not exist[

0, α∗Ã

]
is a closed interval, if the maximum maxR(ξ Ã) exists.

(3)

Then Ãα 6= ∅ for all α ∈ I∗Ã and Ãα = ∅ for all α 6∈ I∗Ã. Moreover, we haveR(ξ Ã) ⊆ I∗Ã.
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Remark 2. Recall that Ã is called a normal fuzzy set in U if and only if there exists x ∈ U such that ξ Ã(x) = 1.
In this case, we have I∗Ã = [0, 1]. However, the rangeR(ξ Ã) is not necessarily equal to [0, 1] even though Ã is
normal, since the membership function of Ã is not necessarily a continuous function.

The 0-level set Ã0 of Ã is also called the proper domain of Ã, since ξ Ã(x) = 0 for all x 6∈ Ã0.
For α ∈ I∗Ã, the α-level set Ãα of Ã may be called the upper α-level set (or upper α-cut) of Ã. We also
see that

Ãα = {x ∈ U : ξ Ã(x) ≥ α} =
{

x ∈ Ã0 : ξ Ã(x) ≥ α
}

and
Ãα+ = {x ∈ U : ξ Ã(x) > α} =

{
x ∈ Ã0 : ξ Ã(x) > α

}
(4)

Next we shall consider the so-called lower α-level set (or lower α-cut) of Ã.

Definition 1. Let Ã be a fuzzy set in a topological space U with proper domain Ã0. For α ∈ [0, 1],
the following set

α Ã =
{

x ∈ Ã0 : ξ Ã(x) ≤ α
}

is called the lower α-level set of Ã. For α ∈ (0, 1], we also define

α− Ã =
{

x ∈ Ã0 : ξ Ã(x) < α
}

.

We remark that the lower α-level set α Ã is considered in the proper domain Ã0 rather than the
whole universal set U. In general, it is clear to see that

α Ã =
{

x ∈ Ã0 : ξ Ã(x) ≤ α
}
6= {x ∈ U : ξ Ã(x) ≤ α} .

Next, we present some interesting observations. We first recall that the notation x ∈ A \ B means
x ∈ A and x 6∈ B.

Remark 3. Let Ã be a fuzzy set in U with rangeR(ξ Ã). Recall the notations

α∗Ã = supR(ξ Ã) and α◦Ã = infR(ξ Ã).

Then we have the following observations.

• For any 0 ≤ α < α◦Ã, we have α Ã = ∅. For any α > α◦Ã, even though α 6∈ R(ξ Ã), using (4), we have

α Ã = Ã0
∖{

x ∈ Ã0 : ξ Ã(x) > α
}
= Ã0 \{x ∈ U : ξ Ã(x) > α} = Ã0 \ Ãα+ 6= ∅.

It is also obvious that α Ã = Ã0 for α ≥ α∗Ã. If the minimum minR(ξ Ã) exists, i.e., infR(ξ Ã) =

minR(ξ Ã), then we have α◦
Ã

Ã 6= ∅ and if minR(ξ Ã) does not exist, then α◦
Ã

Ã = ∅.
• If x ∈ 0 Ã then x ∈ Ã0 and ξ Ã(x) = 0.
• For any α, β ∈ [0, 1] with α < β, we have α Ã ⊆ β Ã.
• From Proposition 1, for α ∈ I∗Ã with α > 0, we have

∅ 6= Ãα =
{

x ∈ Ã0 : ξ Ã(x) ≥ α
}
= Ã0

∖{
x ∈ Ã0 : ξ Ã(x) < α

}
= Ã0 \ α− Ã.

Regarding the lower α-level sets, from the first observation of Remark 3, we have the following
interesting and useful result.
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Proposition 2. Let Ã be a fuzzy set in U with membership function ξ Ã. Define α◦Ã = infR(ξ Ã) and

I◦Ã =


(

α◦Ã, 1
]

is a half-open interval, if the minimum minR(ξ Ã) does not exist[
α◦Ã, 1

]
is a closed interval, if the minimum minR(ξ Ã) exists.

(5)

Then α Ã 6= ∅ for all α ∈ I◦Ã and α Ã = ∅ for all α 6∈ I◦Ã.

Remark 4. If α◦Ã = 0 in Proposition 2, then I◦Ã = [0, 1]. However, the rangeR(ξ Ã) is not necessarily equal to
[0, 1] when Ã is normal, since the membership function of Ã is not necessarily a continuous function.

Based on the interval I◦Ã in Proposition 2, we present some basic properties of lower α-level sets,
which will be used in the further study.

Proposition 3. Let Ã be a fuzzy set in U. Then we have the following results.

(i) If α ∈ I◦Ã with α < 1 and {αn}∞
n=1 is a decreasing sequence in [0, 1] such that αn ↓ α, then

α Ã =
∞⋂

n=1
αn Ã.

(ii) For α ∈ I◦Ã with α > 0, the following statements hold true.

• If αn ↑ α, then
∞⋃

n=1
αn Ã ⊆ α Ã and α− Ã ⊆

∞⋃
n=1

αn− Ã ⊆
∞⋃

n=1
αn Ã.

• If αn ↑ α with αn < α for all n, then

α− Ã =
∞⋃

n=1
αn− Ã =

∞⋃
n=1

αn Ã.

(iii) If α ∈ I◦Ã with α < 1, then

α Ã =
⋂

α<β≤1
β Ã =

⋂
α≤β≤1

β Ã.

(iv) If α ∈ I◦Ã with α > 0, then

α− Ã =
⋃

0≤β<α

β Ã.

Proof. To prove part (i), since αn ≥ α for all n = 1, 2, · · · , we have α Ã ⊆ αn Ã for all n = 1, 2, · · · , which
implies α Ã ⊆ ⋂∞

n=1 αn Ã. On the other hand, for x ∈ ⋂∞
n=1 αn Ã, we have ξ Ã(x) ≤ αn for all n = 1, 2, · · · ,

which implies ξ Ã(x) ≤ infn αn = α. Therefore, we conclude that x ∈ α Ã.
To prove part (ii), given x ∈ α− Ã, we have ξ Ã(x) < α. Since αn ↑ α, given any 0 < ε ≤

α− ξ Ã(x), there exists N such that 0 < α− αN < ε, which says that ξ Ã(x) < αN , i.e., x ∈ ⋃∞
n=1 αn− Ã.

Therefore, we obtain the inclusion α− Ã ⊆ ⋃∞
n=1 αn− Ã. On the other hand, since αn ↑ α, we have the

following cases.

• If αn ≤ α for all n = 1, 2, · · · , then αn Ã ⊆ α Ã, which implies
⋃∞

n=1 αn Ã ⊆ α Ã.
• If αn < α for all n = 1, 2, · · · , we see that x ∈ αn Ã implies ξ Ã(x) ≤ αn < α, which says that

αn Ã ⊆ α− Ã for all n = 1, 2, · · · . Therefore, we have
⋃∞

n=1 αn Ã ⊆ α− Ã.

Then we obtain the desired equalities and inclusions.
To prove part (iii), for 1 ≥ β > α ≥ 0, we have α Ã ⊆ β Ã. Therefore, we have the inclusion

α Ã ⊆ ⋂β∈(α,1] β Ã. On the other hand, given any ε > 0, for x ∈ ⋂β∈(α,1] β Ã, we have x ∈ α+ε Ã, since
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α + ε > α. This says that ξ Ã(x) ≤ α + ε, which also implies ξ Ã(x) ≤ α, since ε is an arbitrary positive
number (i.e., we can take ε→ 0). Therefore, we conclude that x ∈ α Ã.

To prove part (iv), for β < α, if x ∈ β Ã, i.e., ξ Ã(x) ≤ β < α, then x ∈ α− Ã. Therefore we
obtain β Ã ⊆ α− Ã, which implies the inclusion

⋃
0≤β<α β Ã ⊆ α− Ã. On the other hand, given any

x ∈ α− Ã, we have ξ Ã(x) < α. By the denseness, there exists β0 such that ξ Ã(x) ≤ β0 < α, i.e.,
x ∈ ⋃0≤β<α β Ã. Therefore, we obtain α− Ã ⊆ ⋃

0≤β<α β Ã. This shows the desired equality, and the
proof is complete.

Based on the interval I∗Ã in Proposition 1, we can similarly obtain the following results.

Proposition 4. Let Ã be a fuzzy set in U. Then we have the following results.

(i) If α ∈ I∗Ã with α > 0 and {αn}∞
n=1 is an increasing sequence in [0, 1] such that αn ↑ α, then

Ãα =
∞⋂

n=1

Ãαn .

(ii) For α ∈ I∗Ã with α < 1, we have the following results.

• If α ∈ [0, 1) and αn ↓ α, then
⋃∞

n=1 Ãαn ⊆ Ãα and Ãα+ ⊆
⋃∞

n=1 Ãαn .
• If α ∈ [0, 1) and αn ↓ α with αn > α for all n, then Ãα+ =

⋃∞
n=1 Ãαn .

(iii) If α ∈ I∗Ã with α > 0, then
Ãα =

⋂
β∈[0,α]

Ãβ =
⋂

β∈[0,α)

Ãβ.

(iv) If α ∈ I∗Ã with α < 1, then
Ãα+ =

⋃
α<β≤1

Ãβ.

Let f : S → R be a real-valued function defined on a convex subset S of a real vector space U.
Recall that f is quasi-convex on S if and only if, for each x, y ∈ S, the following inequality is satisfied:

f (λx + (1− λ)y) ≤ max { f (x), f (y)}

for each 0 < λ < 1. It is well-known that f is quasi-convex on S if and only if the set {x ∈ S : f (x) ≤ α}
is convex for each α ∈ R. We also recall that f is quasi-concave on S if and only if − f is quasi-convex
on S. More precisely, the real-valued function f is quasi-concave on S if and only if

f (λx + (1− λ)y) ≥ min { f (x), f (y)}

for each 0 < λ < 1. We also have that f is quasi-concave on S if and only if the set {x ∈ S : f (x) ≥ α}
is convex for each α ∈ R.

Let U be a vector space endowed with a topology, and let Ã be a fuzzy subset of U with
membership function ξ Ã. It is well-known that the membership function ξ Ã is quasi-concave if
and only if the α-level set Ãα is a convex subset of U for each α ∈ (0, 1]. In this case, the union⋃

0<α≤1 Ãα is also a convex subset of U. This says that the upper zero-level set

Ã0 = cl

( ⋃
0<α≤1

Ãα

)

is a closed and convex subset of U. In particular, if U = R then the convex set Ãα is reduced to be an
interval for α ∈ [0, 1].

Let f : (U, τU)→ R be a real-valued function defined on a topological space (U, τU). Recall that
f is upper semi-continuous on U if and only if {x ∈ U : f (x) ≥ λ} is a closed subset of U for all λ ∈ R,
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and f is lower semi-continuous on U if and only if {x ∈ U : f (x) ≤ λ} is a closed subset of U for all
λ ∈ R. It is clear to see that if f is upper semi-continuous on U then − f is lower semi-continuous on
U, and if f is lower semi-continuous on U then − f is upper semi-continuous on U.

Definition 2. Let U be a vector space endowed with a topology, and let Ã be a fuzzy subset of U with
membership function ξ Ã. We denote by Fcc(U) the family of all fuzzy subsets of U such that each Ã ∈ Fcc(U)

satisfies the following conditions.

• The membership function ξ Ã is upper semi-continuous and quasi-concave on U.
• The upper 0-level set Ã0 is a compact subset of U.

In particular, if U = R then each Ã ∈ Fcc(R) is called a fuzzy interval. If the fuzzy interval ã is normal
and the upper 1-level set ã1 is a singleton set {a}, where a ∈ R, then ã is also called a fuzzy number with core
value a. Usually, we write the upper case Ã to denote the fuzzy interval, and write the lower case ã to denote the
fuzzy number.

The upper semi-continuity and quasi-concavity says that each upper α-level set Ãα is a closed and
convex subset of U for α ∈ [0, 1]. Recall that, in a topological space, each closed subset of a compact
set is a compact set. Since Ãα ⊆ Ã0 for α ∈ (0, 1], it follows that each upper α-level set Ãα is also
a compact set for α ∈ (0, 1].

Suppose that Ã is a fuzzy interval. Then the upper 0-level set Ã0 is a closed and bounded subset
of R. Also, the convexity, boundedness and closedness of each upper α-level set Ãα says that it is
a bounded closed interval for α ∈ [0, 1]. More precisely, we have

Ãα =

{
∅ if α 6∈ I∗Ã[
ÃL

α , ÃU
α

]
if α ∈ I∗Ã.

In particular, if ã is a fuzzy number, then ãα = [ãL
α , ãU

α ] for all α ∈ [0, 1] and ãL
1 = ãU

1 for α = 1, i.e.,
the upper 1-level set ã1 = {ãL

1 = ãU
1 = a} is a singleton set, where a is the core value.

Example 1. Let Ã be a fuzzy interval. Then the upper α-level set Ãα is a closed interval given by
Ãα = [ÃL

α , ÃU
α ] for all α ∈ [0, 1]. From part (iv) of Proposition 4, for α ∈ I∗Ã with α < 1, we have

Ãα+ =
⋃

α<β≤1

Ãβ =
⋃

α<β≤1

[
ÃL

β, ÃU
β

]
.

Since Ãα ⊆ Ãβ for β < α, if we further assume that the end-points ÃL
α and ÃU

α are continuous functions
with respect to α on [0, 1], then Ãα+ = (ÃL

α , ÃU
α ) is an open interval. In this case, from Remark 3, for α ∈ I◦Ã

with α > α◦Ã, the lower α-level set α Ã is given by

α Ã = Ã0 \ Ãα+ =
[

ÃL
0 , ÃU

0

]
\
(

ÃL
α , ÃU

α

)
=
[

ÃL
0 , ÃL

α

]
∪
[

ÃU
α , ÃU

0

]
that is also a closed set in R, where α◦Ã = infR(ξ Ã). This also says that the membership function ξ Ã of Ã is
lower semi-continuous. Therefore we conclude that the membership function of Ã is continuous. We also see
that the lower 1-level set is

1 Ã = Ã0 =
[

ÃL
0 , ÃU

0

]
.

Suppose that the minimum minR(ξ Ã) exists, i.e.,

α◦Ã = infR(ξ Ã) = minR(ξ Ã).
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Then the lower α◦Ã-level set of Ã consists of two points as

α◦
Ã

Ã =
{

ÃL
α◦

Ã
, ÃU

α◦
Ã

}
.

We also see that α Ã = ∅ for 0 ≤ α < α◦Ã.

3. Dual Fuzzy Sets

Let Ã be a fuzzy set in U with membership function ξ Ã defined on U. Recall that the membership
function of complement fuzzy set of Ã is denoted and defined by ξ Ãc = 1− ξ Ã that is also defined
on U. Since the 0-level set Ã0 is treated as the proper domain of Ã, we consider the restrict function
ξ Ãc |Ã0

of ξ Ãc on Ã0 and define a function ξ Ã? : Ã0 → [0, 1] on Ã0 by

ξ Ã?(x) = ξ Ãc |Ã0
(x) = 1− ξ Ã(x). (6)

Then we use the notation Ã? to denote the dual fuzzy set of Ã. The membership function of Ã? is
given in (6) that is also called a dual membership function. We also remark that ξ Ã? 6= ξ Ãc , since their
domains are different.

Remark 5. The relationships between the α-level sets of Ã and Ã? are given below

• If Ãα 6= ∅ and 1−α Ã? 6= ∅, then

Ãα = {x ∈ U : ξ Ã(x) ≥ α} = {x ∈ U : ξ Ã?(x) ≤ 1− α} = 1−α Ã?

• If α Ã 6= ∅ and Ã?
1−α 6= ∅, then

α Ã = {x ∈ U : ξ Ã(x) ≤ α} = {x ∈ U : ξ Ã?(x) ≥ 1− α} = Ã?
1−α

• If Ã?
α 6= ∅ and 1−α Ã 6= ∅, then

Ã?
α = {x ∈ U : ξ Ã?(x) ≥ α} = {x ∈ U : ξ Ã(x) ≤ 1− α} = 1−α Ã

• If α Ã? 6= ∅ and Ã1−α 6= ∅, then

α Ã? = {x ∈ U : ξ Ã?(x) ≤ α} = {x ∈ U : ξ Ã(x) ≥ 1− α} = Ã1−α.

Let us recall that notation I∗Ã in Proposition 1 and the notation I◦Ã in Proposition 2. Then we have
the following interesting results.

Proposition 5. Let Ã be a fuzzy set in U with the dual fuzzy set Ã?. For α, β ∈ [0, 1] with α + β = 1, we have
the following properties.

(i) α ∈ I∗Ã if and only if β ∈ I◦Ã? .
(ii) If α ∈ I∗Ã or β ∈ I◦Ã? then Ãα = β Ã?.

Proof. We first have

1− α∗Ã = 1− sup
x∈Ã0

ξ Ã(x) = 1 + inf
x∈Ã0

(−ξ Ã(x)) = inf
x∈Ã0

(1− ξ Ã(x)) = inf
x∈Ã0

ξ Ã?(x) = α◦Ã? . (7)

The equalities (7) also say that the maximum maxR(ξ Ã) exists if and only if the minimum
minR(ξ Ã?) exists. To prove part (i), suppose that α ∈ I∗Ã. We have two cases.
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• Assume that the maximum maxR(ξ Ã) exists. Then the minimum minR(ξ Ã?) exists and
0 ≤ α ≤ α∗Ã, Therefore we obtain 1 ≥ β ≥ 1− α∗Ã, which also says that 1 ≥ β ≥ α◦Ã by using (7).
This shows that β ∈ I◦Ã? .

• Assume that the maximum maxR(ξ Ã) doe not exist. Then the minimum minR(ξ Ã?) does not
exist and 0 ≤ α < α∗Ã. Therefore we obtain 1 ≥ β > 1− α∗Ã, which also says that 1 ≥ β > α◦Ã by
using (7). This shows that β ∈ I◦Ã? .

For the converse, suppose that β ∈ I◦Ã? . Then we can similarly show that α ∈ I∗Ã. Part (ii) follows
from Remark 5 and part (i) immediately. This completes the proof.

Let Ã ∈ Fcc(U). Then the membership function ξ Ã is upper semi-continuous and quasi-concave
on Ã0. It is also clear to see that the membership function ξ Ã? = 1− ξ Ã of dual fuzzy set Ã? is lower
semi-continuous and quasi-convex on Ã0. This says that the lower α-level set α Ã? is a closed and
convex subset of Ã0 for α ∈ (0, 1].

Example 2. Let Ã be a fuzzy interval with dual fuzzy set Ã?. Since the upper 0-level set Ã0 is bounded and
the lower α-level set α Ã? is a closed and convex subset of R for α ∈ (0, 1], it follows that α Ã? is also a bounded
closed interval given by

α Ã? =

{
∅ if α 6∈ I◦Ã?[

α Ã?L, α Ã?U] if α ∈ I◦Ã? ,

Using part (ii) of Proposition 5, we also have

α Ã? =

{
∅ if α 6∈ I◦Ã?

Ã1−α if α ∈ I◦Ã?

=

{
∅ if α 6∈ I◦Ã?[
ÃL

1−α, ÃU
1−α

]
if α ∈ I◦Ã? .

This shows that
α Ã?L = ÃL

1−α and α Ã?U = ÃU
1−α.

From part (iv) of Proposition 3, for α ∈ I◦Ã? with α > 0, we have

α− Ã? =
⋃

0≤β<α

β Ã? =
⋃

0≤β<α

[
β Ã?L, β Ã?U

]
.

Since β Ã? ⊆ α Ã? for β < α, if we further assume that the end-points β Ã?L and β Ã?U are continuous
functions with respect to β on [0, 1], then α− Ã? = (α Ã?L, α Ã?U) is an open interval. In this case, from
Remark 3, for α ∈ I∗Ã? with α > 0, the upper α-level set Ã?

α is given by

Ã?
α = Ã?

0 \ α− Ã? =
[

Ã?L
0 , Ã?U

0

]
\
(

α Ã?L, α Ã?U
)
=
[

ÃL
0 , α Ã?L

]
∪
[

α Ã?U , ÃU
0

]
that is a closed set in R. This also says that the membership function of Ã? is upper semi-continuous. Therefore,
we conclude that the membership functions of Ã? and Ã are continuous.

4. Dual Decomposition Theorems

Let A be a subset of U. The characteristic function χA of A is defined to be

χA(x) =

{
1 if x ∈ A
0 if x 6∈ A.

Now we define the so-called dual characteristic function χ?
A of A as follows

χ?
A(x) =

{
0 if x ∈ A
1 if x 6∈ A.
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It is clear to see that
χA(x) + χ?

A(x) = 1 for each x ∈ U.

Let Ã be a normal fuzzy set in U. The well-known (primal) decomposition theorem says that the
membership function ξ Ã can be expressed as

ξ Ã(x) = sup
α∈[0,1]

α · χÃα
(x) = sup

α∈(0,1]
α · χÃα

(x),

where χÃα
is the characteristic function of the α-level set Ãα. If Ã is not normal, then we can also

show that
ξ Ã(x) = sup

α∈I∗
Ã

α · χÃα
(x) = sup

α∈R(ξ Ã)

α · χÃα
(x).

The (primal) decomposition theorem says that the membership function can be expressed in terms
of upper α-level sets. In the sequel, we are going to show that the membership function can also be
expressed in terms of lower α-level sets as the following form

ξ Ã(x) = sup
α∈I◦

Ã

α · χ?
α Ã(x) = sup

α∈R(ξ Ã)

α · χ?
α Ã(x),

where χ?
α Ã is the dual characteristic function of lower α-level set α Ã.

Proposition 6. Let Ã be a fuzzy set in a vector space U that is also endowed with a topology. Given any fixed
x ∈ U, we have the following results.

(i) Suppose that the minimum minR(ξ Ã) exists. Then the function ζx(α) = α · χ
α Ã(x) is lower

semi-continuous on I◦Ã.
(ii) Suppose that the maximum maxR(ξ Ã) exists. Then the function ηx(α) = α · χÃα

(x) is upper
semi-continuous on I∗Ã.

Proof. To prove part (i), from Proposition 2, we see that I◦Ã is a closed interval. We need to show that
the following set

Fr =
{

α ∈ I◦Ã : ζx(α) ≤ r
}
=
{

α ∈ I◦Ã : α · χ
α Ã(x) ≤ r

}
is closed for each r ∈ R. If r < 0 then Fr = ∅ is closed. If r = 0 then Fr = {0} a singleton set is closed.
If r ≥ 1 then Fr = I◦Ã is also closed. Therefore we remain to show that Fr is closed for each r ∈ (0, 1).
Now, for each α ∈ cl(Fr), there exists a sequence {αn}∞

n=1 in Fr such that αn → α, i.e., αn ≤ r and
x ∈ αn Ã for all n. Then we have

α = lim
n→∞

αn ≤ r < 1.

We also see that there exists a subsequence {αnk}∞
k=1 of {αn}∞

n=1 such that αnk ↓ α or αnk ↑ α.

• Suppose that αnk ↑ α, i.e., α ≥ αnk for all k. Then we have x ∈ α Ã, since αnk
Ã ⊆ α Ã for all k.

This says that α ∈ Fr, since α ≤ r.
• Suppose that αnk ↓ α. Since x ∈ αnk

Ã for all k, using part (i) of Proposition 3, we have x ∈ α Ã.
This says that α ∈ Fr, since α ≤ r.

Therefore, we conclude that cl(Fr) ⊆ Fr, i.e., Fr is closed.
To prove part (ii), from Proposition 1, we see that I∗Ã is a closed interval. We need to show that the

following set
Fr =

{
α ∈ I∗Ã : ηx(α) ≥ r

}
=
{

α ∈ I∗Ã : α · χÃα
(x) ≥ r

}
is closed for each r ∈ R. If r ≤ 0 then Fr = I∗Ã is closed. If r > 1 then Fr = ∅ is closed. If r = 1 then
Fr = ∅ or Fr = {1} a singleton set is also closed. Therefore we remain to show that Fr is closed for
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each r ∈ (0, 1). Now, for each α ∈ cl(Fr), since r > 0, we have α > 0. Therefore, there exists a sequence
{αn}∞

n=1 such that αn → α and αn ∈ Fr for all n, i.e., αn ≥ r and x ∈ Ãαn for all n. Then we have α ≥ r.
We also see that there exists a subsequence {αnk}∞

k=1 of {αn}∞
n=1 such that αnk ↓ α or αnk ↑ α.

• If αnk ↓ α, i.e., α ≤ αnk for all k, then x ∈ Ãα, since Ãαnk
⊆ Ãα for all k by part (i) of Proposition 4.

This says that α ∈ Fr, since α ≥ r.
• If αnk ↑ α, Then since x ∈ Ãαnk

for all k by part (ii) of Proposition 4, we have x ∈ Ãα. This says
that α ∈ Fr, since α ≥ r.

Therefore, we conclude that cl(Fr) ⊆ Fr, i.e., Fr is closed. This completes the proof.

Theorem 1. (Dual Decomposition Theorem) Let Ã be a fuzzy set in U with proper domain Ã0. For x ∈ Ã0,
the membership degree ξ Ã(x) can be expressed in terms of lower α-level sets as follows

ξ Ã(x) = sup
α∈R(ξ Ã)

α · χ?
α Ã(x) = max

α∈R(ξ Ã)
α · χ?

α Ã(x) = max
α∈R(ξ Ã)

α ·
[
1− χ

α Ã(x)
]

= sup
α∈I◦

Ã

α · χ?
α Ã(x) = max

α∈I◦
Ã

α · χ?
α Ã(x) = max

α∈I◦
Ã

α ·
[
1− χ

α Ã(x)
]

, (8)

where I◦Ã is given in (5).

Proof. Let α0 = ξ Ã(x) ∈ R(ξ Ã) ⊆ I◦Ã, i.e., α0 ∈ I◦Ã. Suppose that α0 = 0. If x 6∈ α Ã 6= ∅ for some
α ∈ I◦Ã, then ξ Ã(x) > α ≥ 0, which contradicts ξ Ã(x) = α0 = 0. Therefore x ∈ α Ã for all α ∈ I◦Ã, which
says that α · χ?

α Ã(x) = 0 for all α ∈ I◦Ã. This shows that the equalities in (8) are satisfied. Now we

assume α0 > 0. Then x ∈ α0 Ã. For α ∈ I◦Ã with α < α0, if x ∈ α Ã, then ξ Ã(x) ≤ α < α0, which
contradicts α0 = ξ Ã(x). Therefore, we have x 6∈ α Ã for α ∈ I◦Ã with α < α0. If α ∈ I◦Ã with α ≥ α0, then
x ∈ α0 Ã ⊆ α Ã, which says that x ∈ α Ã for α ≥ α0. Then we obtain

sup
α∈I◦

Ã

α · χ?
α Ã(x) = max

 sup
{α∈I◦

Ã
:α<α0}

α · χ?
α Ã(x), sup

{α∈I◦
Ã

:α≥α0}
α · χ?

α Ã(x)


= max

 sup
{α∈I◦

Ã
:α<α0}

α, 0

 = max{α0, 0} = α0 = ξ Ã(x).

Since α0 ∈ I◦Ã, the above supremum is attained. It means that

ξ Ã(x) = max
α∈I◦

Ã

α · χ?
α Ã(x).

The above arguments are still valid when I◦Ã is replaced by R(ξ Ã). Therefore we obtain the
desired equalities. This completes the proof.

Remark 6. The decomposition theorem for dual fuzzy set Ã? based on the upper α-level sets of Ã? is given by

ξ Ã?(x) = sup
α∈R(ξ Ã? )

α · χÃ?
α
(x).

According to Theorem 1, the dual decomposition theorem for Ã? based on the lower α-level sets of Ã? is
given by
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ξ Ã?(x) = sup
α∈R(ξ Ã? )

α · χ?
α Ã?(x) = max

α∈R(ξ Ã? )
α · χ?

α Ã?(x) = max
α∈R(ξ Ã? )

α ·
[
1− χ

α Ã?(x)
]

= sup
α∈I◦

Ã?

α · χ?
α Ã?(x) = max

α∈I◦
Ã?

α · χ?
α Ã?(x) = max

α∈I◦
Ã?

α ·
[
1− χ

α Ã?(x)
]

.

Next we are going to present the dual decomposition theorem on a countable set. We write
Q(0, 1] = Q∩ (0, 1], where Q denotes the set of all rational numbers. It well-known that the countable
set Q is dense in R. This means that, given any r ∈ R, there exist two sequences {pn}∞

n=1 and {qn}∞
n=1

in the countable set Q such that pn ↑ r and qn ↓ r as n→ ∞.

Theorem 2. (Dual Decomposition Theorem) Let Ã be a fuzzy set in U with proper domain Ã0. Suppose that
infR(ξ Ã) = 0. For x ∈ Ã0, the membership degree ξ Ã(x) can be expressed in terms of lower α-level sets
as follows

ξ Ã(x) = sup
α∈[0,1]

α · χ?
α Ã(x) = max

α∈[0,1]
α · χ?

α Ã(x) = max
α∈[0,1]

α ·
[
1− χ

α Ã(x)
]

(9)

= sup
α∈Q(0,1]

α · χ?
α Ã(x) = max

α∈Q(0,1]
α · χ?

α Ã(x) = max
α∈Q(0,1]

α ·
[
1− χ

α Ã(x)
]

. (10)

Proof. From Remark 4, it follows that I◦Ã = [0, 1]. Using Theorem 1, we can obtain the equalities (9).
To prove the equalities (10), let ξ Ã(x) = α0. We first assume that α0 = 0. From the proof of Theorem 1,
we have x ∈ α Ã for all α ∈ I◦Ã = [0, 1], which says that α · χ?

α Ã(x) = 0 for all α ∈ Q(0, 1]. It follows that

ξ Ã(x) = α0 = 0 = sup
α∈Q(0,1]

α · χ?
α Ã(x).

Now we assume that 0 < α0. Using (9), we have

0 < ξ Ã(x) = α0 = sup
α∈[0,1]

α · χ?
α Ã(x) ≥ sup

α∈Q(0,1]
α · χ?

α Ã(x). (11)

Since α0 > 0, from the proof of Theorem 1 we have x 6∈ α Ã for α ∈ I◦Ã = [0, 1] with α < α0.
The denseness also says that there exists a sequence {αn}∞

n=1 in Q(0, 1] such that αn ↑ α0 with αn < α0.
It follows that x 6∈ αn Ã for all n. Let Γ = {αn}∞

n=1 ⊂ Q(0, 1]. Then we have

ξ Ã(x) = α0 = lim
n

αn = sup
n

αn = sup
n

αn · χ?
αn Ã(x) = sup

α∈Γ
α · χ?

α Ã(x) ≤ sup
α∈Q(0,1]

α · χ?
α Ã(x). (12)

Combining (11) and (12), we obtain the equality

ξ Ã(x) = sup
α∈Q(0,1]

α · χ?
α Ã(x).

This completes the proof.

5. Dual Arithmetics of Fuzzy Sets

Let Ã and B̃ be fuzzy numbers in R; that is, Ã and B̃ are normal fuzzy sets in R satisfying some
elegant structures such that their α-level sets turn into the bounded closed intervals in R. Then we
have the following well-known equality

(Ã� B̃)α = Ãα ◦ B̃α ≡
{

a ◦ b : a ∈ Ãα and b ∈ B̃α

}
for α ∈ [0, 1],

where the upper α-level sets are considered. For convenience, we use the same notation ◦ to denote
the operations for the α-level sets Ãα ◦ B̃α and the real numbers a ◦ b. In this paper, we shall consider
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the general fuzzy sets in R rather than the fuzzy numbers to establish the similar equality based on the
lower α-level sets.

Let � denote any one of the four basic arithmetic operations ⊕,	,⊗,� between fuzzy sets Ã and
B̃ in R. The membership function of Ã� B̃ is defined by

ξ Ã�B̃(z) = sup
{(x,y)∈U×U:z=x◦y}

min{ξ Ã(x), ξ B̃(y)}

for all z ∈ R, where the operation ◦ ∈ {+,−,×, /}, respectively. Since the 0-level sets Ã0 and B̃0

are the proper domain of Ã and B̃, respectively, i.e., ξ Ã(x) = 0 for x 6∈ Ã0 and ξ B̃(x) = 0 for x 6∈ B̃0,
we have

ξ Ã�B̃(z) = sup
{(x,y)∈U×U:z=x◦y}

min{ξ Ã(x), ξ B̃(y)} = sup
{(x,y)∈Ã0×B̃0 :z=x◦y}

min{ξ Ã(x), ξ B̃(y)}. (13)

Inspired by the above expression (13), we define a new operation between Ã and B̃ using the dual
membership functions as follows

ξ Ã�B̃(z) = inf
{(x,y)∈Ã0×B̃0 :z=x◦y}

max{ξ Ã?(x), ξ B̃?(y)} = inf
{(x,y)∈Ã0×B̃0 :z=x◦y}

max{ξ Ãc(x), ξ B̃c(y)}.

We need to emphasize that

inf
{(x,y)∈Ã0×B̃0 :z=x◦y}

max{ξ Ã?(x), ξ B̃?(y)} 6= inf
{(x,y):z=x◦y}

max{ξ Ã?(x), ξ B̃?(y)}.

However, this operation Ã � B̃ is reasonable, since we consider the proper domains as shown
in (13). Then we have

ξ Ã�B̃(z) = inf
{(x,y)∈Ã0×B̃0 :z=x◦y}

max{1− ξ Ã(x), 1− ξ B̃(y)}

= 1− sup
{(x,y)∈Ã0×B̃0 :z=x◦y}

min{ξ Ã(x), ξ B̃(y)}

= 1− ξ Ã�B̃(z),

which implies
ξ Ã�B̃(z) + ξ Ã�B̃(z) = 1. (14)

Therefore we say that Ã� B̃ is the dual arithmetic of Ã� B̃. This means that, instead of calculating
Ã� B̃, we can alternatively calculate Ã � B̃ and use the duality (14) to recover Ã� B̃. We are going to
study the lower α-level sets of dual arithmetic Ã � B̃ and establish the relationships between Ã� B̃
and Ã � B̃.

Let Ã and B̃ be two fuzzy sets in R with membership functions ξ Ã and ξ B̃, respectively. Let

α∗Ã = supR(ξ Ã) and α∗B̃ = supR(ξ B̃). (15)

From Proposition 1 and (3), we see that Ãα 6= ∅ for α ∈ I∗Ã, where I∗Ã is given by

I∗Ã =


[
0, α∗Ã

)
, if maxR(ξ Ã) does not exist[

0, α∗Ã

]
, if maxR(ξ Ã) exists.

Similarly, we also see that B̃α 6= ∅ for α ∈ I∗B̃, where I∗B̃ is given by
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I∗B̃ =


[
0, α∗B̃

)
, if maxR(ξ B̃) does not exist[

0, α∗B̃

]
, if maxR(ξ B̃) exists.

For further discussion, we need a simple lemma.

Lemma 1. Let f be a real-valued function defined on A, and let k be a constant. Then

sup
x∈A

min { f (x), k} = min

{
sup
x∈A

f (x), k

}

and

inf
x∈A

max { f (x), k} = max
{

inf
x∈A

f (x), k
}

.

Proof. We have

min

{
sup
x∈A

f (x), k

}
=

 k, if there exists x ∈ A such that f (x) > k
sup
x∈A

f (x), if f (x) ≤ k for all x ∈ A.

and

sup
x∈A

min { f (x), k} =


max

{
sup

{x∈A: f (x)>k}
min { f (x), k} , sup

{x∈A: f (x)≤k}
min { f (x), k}

}
,

if there exists x ∈ A such that f (x) > k
sup
x∈A

f (x), if f (x) ≤ k for all x ∈ A .

=


max

{
k, sup
{x∈A: f (x)≤k}

f (x)

}
,

if there exists x ∈ A such that f (x) > k
sup
x∈A

f (x), if f (x) ≤ k for all x ∈ A .

=

 k, if there exists x ∈ A such that f (x) > k
sup
x∈A

f (x), if f (x) ≤ k for all x ∈ A.

Another equality can be similarly obtained. This completes the proof.

Proposition 7. Let Ã and B̃ be two fuzzy sets in R. Then the following statements hold true.

(i) We have
α∗Ã�B̃ ≡ supR(ξ Ã�B̃) = min {supR(ξ Ã), supR(ξ B̃)} (16)

with

I∗Ã�B̃ =


[
0, α∗Ã�B̃

)
, if maxR(ξ Ã�B̃) does not exist[

0, α∗Ã�B̃

]
, if maxR(ξ Ã�B̃) exists

We also have (Ã� B̃)α 6= ∅ for α ∈ I∗Ã�B̃ and (Ã� B̃)α = ∅ for α 6∈ I∗Ã�B̃.
(ii) We have

α◦Ã�B̃ ≡ infR(ξ Ã�B̃) = max {infR(ξ Ã?), infR(ξ B̃?)}
= max {1− supR(ξ Ã), 1− supR(ξ B̃)} . (17)
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with

I◦Ã�B̃ =


(

α◦Ã�B̃, 1
]
, if minR(ξ Ã�B̃) does not exist[

α◦Ã�B̃, 1
]
, if minR(ξ Ã�B̃) exists

We also have α(Ã � B̃) 6= ∅ for α ∈ I◦Ã�B̃ and α(Ã � B̃) = ∅ for α 6∈ I◦Ã�B̃.

Proof. To prove part (i), let α∗Ã and α∗B̃ be defined in (15). Then ξ Ã(x) ≤ α∗Ã and ξ B̃(y) ≤ α∗B̃ for all
x ∈ Ã0 and y ∈ B̃0. It follows that

min {ξ Ã(x), ξ B̃(y)} ≤ min
{

α∗Ã, α∗B̃
}

for all x ∈ Ã0 and y ∈ B̃0, which implies

ξ Ã�B̃(z) = sup
{(x,y):z=x◦y}

min{ξ Ã(x), ξ B̃(y)}

= sup
{(x,y)∈Ã0×B̃0 :z=x◦y}

min{ξ Ã(x), ξ B̃(y)} ≤ min
{

α∗Ã, α∗B̃
}

for all z ∈ U. This says that min{α∗Ã, α∗B̃} is an upper bound of function ξ Ã�B̃. Suppose that
η ≥ ξ Ã�B̃(z) for all z ∈ U. Then η ≥ min{ξ Ã(x), ξ B̃(y)} for all x ∈ Ã0, y ∈ B̃0 and z ∈ U.
Using Lemma 1, we have

η ≥ sup
x∈Ã0

sup
y∈B̃0

min{ξ Ã(x), ξ B̃(y)} = min

{
sup
x∈Ã0

ξ Ã(x), sup
y∈B̃0

ξ B̃(y)

}
= min

{
α∗Ã, α∗B̃

}
.

This says that min{α∗Ã, α∗B̃} is a least upper bound of function ξ Ã�B̃. By the definition of
supremum, we obtain the desired equality (16). The interval I∗Ã�B̃ follows from Proposition 1
immediately.

To prove part (ii), we first note that

inf
x∈Ã0

ξ Ã?(x) = 1− sup
x∈Ã0

ξ Ã(x) = 1− α∗Ã and inf
x∈Ã0

ξ B̃?(x) = 1− sup
x∈Ã0

ξ B̃(x) = 1− α∗B̃.

Since
ξ Ã?(x) ≥ inf

x∈Ã0

ξ Ã?(x) = 1− α∗Ã and ξ B̃?(x) ≥ inf
x∈Ã0

ξ B̃?(x) = 1− α∗B̃

for all x ∈ Ã0 and y ∈ B̃0, it follows that

max {ξ Ã?(x), ξ B̃?(y)} ≥ max
{

1− α∗Ã, 1− α∗B̃
}

for all x ∈ Ã0 and y ∈ B̃0, which implies

ξ Ã�B̃(z) = inf
{(x,y)∈Ã0×B̃0 :z=x∗y}

max{ξ Ã?(x), ξ B̃?(y)} ≥ max
{

1− α∗Ã, 1− α∗B̃
}

for all z ∈ U. This says that max{1− α∗Ã, 1− α∗B̃} is a lower bound of function ξ Ã�B̃. Suppose that
ζ ≤ ξ Ã�B̃(z) for all z ∈ U. Then ζ ≤ max{ξ Ã?(x), ξ B̃?(y)} for all x ∈ Ã0, y ∈ B̃0 and z ∈ U.
Using Lemma 1, we have

ζ ≤ inf
x∈Ã0

inf
y∈B̃0

max{ξ Ã?(x), ξ B̃?(y)} = max

{
inf

x∈Ã0

ξ Ã?(x), inf
y∈B̃0

ξ B̃?(y)

}
= max

{
1− α∗Ã, 1− α∗B̃

}
.
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This says that max
{

1− α∗Ã, 1− α∗B̃

}
is a greatest lower bound of function ξ?Ã�B̃. By the definition

of infimum, we obtain the desired equality (17). The interval I◦Ã�B̃ follows from Proposition 2
immediately. This completes the proof.

We write I∗,∩ = I∗Ã ∩ I∗B̃. Then I∗,∩ 6= ∅ is given by

I∗,∩ =



[
0, α∗Ã

)
∩
[
0, α∗B̃

)
, if maxR(ξ Ã) and maxR(ξ B̃) does not exist[

0, α∗Ã

]
∩
[
0, α∗B̃

)
, if maxR(ξ Ã) exists and maxR(ξ B̃) does not exist[

0, α∗Ã

)
∩
[
0, α∗B̃

]
, if maxR(ξ Ã) does not exist and maxR(ξ B̃) exists[

0, α∗Ã

]
∩
[
0, α∗B̃

]
, if maxR(ξ Ã) and maxR(ξ B̃) exist.

(18)

From part (i) of Proposition 7 by referring to (16), we see that

I∗,∩ = I∗Ã�B̃. (19)

Let S be a nonempty subset in a topological space (U, τ). Recall that S is compact if and only if,
for every sequence {xn}∞

n=1 in S, there exists a convergent subsequence {xnk}∞
k=1 in S. If the limit of

{xnk}∞
k=1 is denoted by x0, then x0 is in S. In particular, if U = Rn, then S is compact if and only if S is

closed and bounded. We need a useful lemma.

Lemma 2. (Royden ([18] p. 161)). Let U be a topological space, and let K be a compact subset of U. Let f be
a real-valued function defined on U.

(i) If f is lower semi-continuous, then f assumes its minimum on a compact subset of U; that is, the infimum
is attained in the following sense

inf
x∈K

f (x) = min
x∈K

f (x).

(ii) If f is upper semi-continuous, then f assumes its maximum on a compact subset of U; that is, the supremum
is attained in the following sense

sup
x∈K

f (x) = max
x∈K

f (x).

If α 6∈ I∗,∩ then Ãα = ∅ or B̃α = ∅. Therefore, in order to consider the operation

Ãα ◦ B̃α ≡
{

a ◦ b : a ∈ Ãα and b ∈ B̃α

}
,

we need to take α ∈ I∗,∩. We also remark that if Ã and B̃ are normal fuzzy sets then I∗,∩ = [0, 1].

Theorem 3. Let Ã and B̃ be two fuzzy sets in R with the dual fuzzy sets Ã? and B̃?, respectively. Suppose that
the arithmetic operations � ∈ {⊕,	,⊗} correspond to the operations ◦ ∈ {+,−, ∗}. Then the following
statements hold true.

(i) We have (Ã� B̃)α = ∅ for α 6∈ I∗,∩.
(ii) We have the following inclusion

(Ã� B̃)α ⊇ Ãα ◦ B̃α = 1−α Ã? ◦ 1−α B̃? for all α ∈ I∗,∩.

(iii) Suppose that the membership functions of Ã and B̃ are upper semi-continuous. Then

(Ã� B̃)α = Ãα ◦ B̃α for all α ∈ I∗,∩ with α > 0
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and

(Ã� B̃)0 = cl(Ã� B̃)0+ = cl

( ⋃
0<α∈I∗,∩

(
Ãα ◦ B̃α

))
.

(iv) Suppose that the membership functions of Ã and B̃ are upper semi-continuous, and that the supports Ã0+

and B̃0+ are bounded. Then

(Ã� B̃)α = Ãα ◦ B̃α = 1−α Ã? ◦ 1−α B̃? for all α ∈ I∗,∩.

Proof. To prove part (i), since I∗,∩ = I∗Ã�B̃ by (19), Proposition 1 says that (Ã � B̃)α = ∅ for
α 6∈ I∗Ã�B̃ = I∗,∩.

To prove part (ii), for α ∈ I∗,∩ with α > 0 and zα ∈ Ãα ◦ B̃α, since Ãα 6= ∅ and B̃α 6= ∅, there
exist xα ∈ Ãα and yα ∈ B̃α such that zα = xα ◦ yα for ◦ ∈ {+,−, ∗}, where ξ Ã(xα) ≥ α and ξ B̃(yα) ≥ α.
Therefore, we have

ξ Ã�B̃(zα) = sup
{(x,y):zα=x◦y}

min{ξ Ã(x), ξ B̃(y)} ≥ min{ξ Ã(xα), ξ B̃(yα)} ≥ α,

which says that zα ∈ (Ã� B̃)α. This shows that Ãα ◦ B̃α ⊆ (Ã� B̃)α for α ∈ I∗,∩ with α > 0.
Now, for α = 0 and z0 ∈ Ã0 ◦ B̃0, there also exist x0 ∈ Ã0 and y0 ∈ B̃0 such that z0 = x0 ◦ y0 for

◦ ∈ {+,−, ∗}. Since

Ã0 = cl ({x ∈ R : ξ Ã(x) > 0}) and B̃0 = cl ({y ∈ R : ξ B̃(y) > 0}) ,

there exist sequence {xn}∞
n=1 in {x ∈ R : ξ Ã(x) > 0} and sequence {yn}∞

n=1 in {y ∈ R : ξ B̃(y) > 0}
such that xn → x0 and yn → y0 as n→ ∞. Let zn = xn ◦ yn. Then we see that zn → x0 ◦ y0 = z0, since
the binary operation ◦ ∈ {+,−, ∗} is continuous. We also have

ξ Ã�B̃(zn) = sup
{(x,y):zn=x◦y}

min{ξ Ã(x), ξ B̃(y)} ≥ min{ξ Ã(xn), ξ B̃(yn)} > 0,

which says that zn ∈ {z ∈ R : ξ Ã�B̃(z) > 0}. Since zn → z0, it means that

z0 ∈ cl
(
{z ∈ R : ξ Ã�B̃(z) > 0}

)
= (Ã� B̃)0.

This shows that Ã0 ◦ B̃0 ⊆ (Ã� B̃)0. Therefore we conclude that Ãα ◦ B̃α ⊆ (Ã� B̃)α for α ∈ I∗,∩.
To prove part (iii), in order to prove another direction of inclusion, we further assume that the

membership functions of Ã and B̃ are upper semi-continuous; that is, the nonempty α-level sets Ãα

and B̃α are closed subsets of R for all α ∈ I∗,∩. Given any α ∈ I∗,∩ with α > 0 and zα ∈ (Ã� B̃)α,
we have

sup
{(x,y):zα=x◦y}

min{ξ Ã(x), ξ B̃(y)} = ξ Ã�B̃(zα) ≥ α. (20)

Since zα is finite, it is clear to see that F ≡ {(x, y) : zα = x ◦ y} is a bounded subset of R2. We also
see that the function g(x, y) = x ◦ y is continuous on R2. Since the singleton set {zα} is a closed subset
of R, it follows that the inverse image F = g−1({zα}) of {zα} is also a closed subset of R2. This says
that F is a compact subset of R2. Now we want to show that the function f (x, y) = min{ξ Ã(x), ξ B̃(y)}
is upper semi-continuous, i.e., we want to show that {(x, y) : f (x, y) ≥ α} is a closed subset of R2 for
any α ∈ R.

• For α ∈ I∗,∩ with α > 0, i.e., Ãα 6= ∅ and B̃α 6= ∅, we have

{(x, y) : f (x, y) ≥ α} = {(x, y) : ξ Ã(x) ≥ α and ξ B̃(y) ≥ α}
=
{
(x, y) : x ∈ Ãα and y ∈ B̃α

}
= Ãα × B̃α,
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which is a closed subset of R2, since Ãα and B̃α are closed subsets of R.
• If α ≤ 0, then {(x, y) : f (x, y) ≥ α} = R2 is a closed subset of R2.
• If α 6∈ I∗,∩ with α > 0 then Ãα = ∅ or B̃α = ∅. Suppose that Ãα = ∅. Then ξ Ã(x) < α for all

x ∈ R. Similarly, if B̃α = ∅, then ξ B̃(y) < α for all y ∈ R. Therefore we conclude that f (x, y) < α

for all (x, y) ∈ R2, which implies {(x, y) : f (x, y) ≥ α} = ∅ that is also a closed subset of R2.

Therefore the function f (x, y) is indeed upper semi-continuous. By Lemma 2, the function f
assumes maximum on F; that is, from (20), we have

max
(x,y)∈F

f (x, y) = max
{(x,y):zα=x◦y}

f (x, y) = sup
{(x,y):zα=x◦y}

f (x, y) ≥ α. (21)

In other words, there exists (xα, yα) ∈ F such that zα = xα ◦ yα and

min{ξ Ã(xα), ξ B̃(yα)} = f (xα, yα) = max
(x,y)∈F

f (x, y) ≥ α,

i.e., ξ Ã(xα) ≥ α and ξ B̃(yα) ≥ α. Therefore, we obtain xα ∈ Ãα and yα ∈ B̃α, which says that
zα ∈ Ãα ◦ B̃α, i.e., (Ã� B̃)α ⊆ Ãα ◦ B̃α for all α ∈ I∗,∩ with α > 0. Using part (i), we obtain the desired
equality. We also have

(Ã� B̃)0 = cl(Ã� B̃)0+ = cl

( ⋃
0<α≤1

(Ã� B̃)α

)
(using part (iv) of Proposition 4)

= cl

( ⋃
0<α∈I∗,∩

(
Ãα ◦ B̃α

))
(using part (i))

= cl

( ⋃
0<α∈I∗,∩

(
Ãα ◦ B̃α

))
.

To prove part (iv), for α = 0 and

z0 ∈ (Ã� B̃)0 = cl
(
(Ã� B̃)0+

)
= cl

({
z ∈ R : ξ Ã�B̃(z) > 0

})
,

there exists a sequence {zn}∞
n=1 in the set {z ∈ R : ξ Ã�B̃(z) > 0} such that zn → z0 as n → ∞.

Using the above same arguments by referring to (21), we also have

0 < ξ Ã�B̃(zn) = sup
{(x,y):zn=x◦y}

min{ξ Ã(x), ξ B̃(y)} = max
{(x,y):zn=x◦y}

min{ξ Ã(x), ξ B̃(y)}.

Therefore, there exist xn and yn such that zn = xn ◦ yn and

min{ξ Ã(xn), ξ B̃(yn)} = max
{(x,y):zn=x◦y}

min{ξ Ã(x), ξ B̃(y)} > 0,

i.e., ξ Ã(xn) > 0 and ξ B̃(yn) > 0. This shows that the sequences {xn}∞
n=1 and {yn}∞

n=1 are in the
supports Ã0+ and B̃0+, respectively. Since Ã0+ and B̃0+ are bounded, i.e., {xn}∞

n=1 and {yn}∞
n=1

are bounded sequences, there exist convergent subsequences {xnk}∞
k=1 and {ynk}∞

k=1 of {xn}∞
n=1 and

{yn}∞
n=1, respectively. In other words, we have xnk → x0 and ynk → y0 as k → ∞, where x0 ∈

cl(Ã0+) = Ã0 and y0 ∈ cl(B̃0+) = B̃0. Let znk = xnk ◦ ynk . Then {znk}∞
k=1 is a subsequence of {zn}∞

n=1,
i.e., znk → z0 as k→ ∞. Since

z0 = lim
k→∞

znk = lim
k→∞

(xnk ◦ ynk ) =

(
lim
k→∞

xnk

)
◦
(

lim
k→∞

ynk

)
= x0 ◦ y0,
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which shows that z0 ∈ Ã0 ◦ B̃0. Therefore we obtain the inclusion (Ã� B̃)0 ⊆ Ã0 ◦ B̃0. Using parts (i)
and (ii), we obtain the desired equalities. This completes the proof.

We do not consider the operation� in Theorem 3. The reasons is that the case of zero denominator
should be avoided. We also remark that the arguments in the proof of Theorem 3 are still available for
the operation � by carefully excluding the zero denominator. In order not to complicate the proof of
Theorem 3, we omit the case of operation �.

Let Ã and B̃ be two fuzzy sets in R with the dual fuzzy sets Ã? and B̃?, respectively. We define

α◦Ã? = infR(ξ Ã?) and α◦B̃? = infR(ξ B̃?). (22)

From Proposition 2 and (5), we see that α Ã? 6= ∅ for α ∈ I◦Ã? , where I◦Ã? 6= ∅ is given by

I◦Ã? =


(

α◦Ã? , 1
]
, if minR(ξ Ã?) does not exist[

α◦Ã? , 1
]
, if minR(ξ Ã?) exists.

Similarly, we also see that α B̃? 6= ∅ for α ∈ I◦B̃? , where I◦B̃? is given by

I◦B̃? =


(

α◦B̃? , 1
]
, if minR(ξ B̃?) does not exist[

α◦B̃? , 1
]
, if minR(ξ B̃?) exists.

We write I◦,∩ = I◦Ã? ∩ I◦B̃? . Then I◦,∩ is given by

I◦,∩ =



(
α◦Ã? , 1

]
∩
(

α◦B̃? , 1
]
, if minR(ξ Ã?) and minR(ξ B̃?) does not exist[

α◦Ã? , 1
]
∩
(

α◦B̃? , 1
]
, if minR(ξ Ã?) exists and minR(ξ B̃?) does not exist(

α◦Ã? , 1
]
∩
[
α◦B̃? , 1

]
, if minR(ξ Ã?) does not exist and minR(ξ B̃?) exists[

α◦Ã? , 1
]
∩
[
α◦B̃? , 1

]
, if minR(ξ Ã?) and minR(ξ B̃?) exist.

From part (ii) of Proposition 7 by referring to (17), we see that

I◦,∩ = I◦Ã�B̃. (23)

Let (U, τU) be a topological space, and let A be a subset of U. Then the subset A can be endowed
with a topology τA such that (A, τA) is a topological subspace of (U, τU). In other words, the subset
C of A is a τA-closed subset of A if and only if C = A ∩ D for some τU-closed subset D of U. In this
case, we say that f : (A, τA)→ R is upper semi-continuous on A if and only if {x ∈ A : f (x) ≥ λ} is
a τA-closed subset of A for all λ ∈ R. We also see that if f is upper semi-continuous on A then − f is
lower semi-continuous on A, and if f is lower semi-continuous on A then− f is upper semi-continuous
on A. We have the following observations.

• Suppose that Ã is a fuzzy set in U such that its membership function ξ Ã is upper semi-continuous
on U. Then ξ Ã is also upper semi-continuous on the proper domain Ã0. Indeed, the set{

x ∈ Ã0 : ξ Ã(x) ≥ λ
}
= Ã0 ∩ {x ∈ U : ξ Ã(x) ≥ λ}

is a τÃ0
-closed subset of Ã0.

• Suppose that Ã is a fuzzy set in U such that its membership function ξ Ã is upper semi-continuous
on the proper domain Ã0. Then it is clear to see that the dual membership function ξ Ã? = 1− ξ Ã
of Ã? is lower semi-continuous on Ã0.
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Theorem 4. Let Ã and B̃ be two fuzzy sets in R with the dual fuzzy sets Ã? and B̃?, respectively. Suppose that
the dual arithmetic operations � ∈ {�,�,�} correspond to the operations ◦ ∈ {+,−, ∗}. Then the following
statements hold true.

(i) We have α(Ã � B̃) = ∅ for α 6∈ I◦,∩.
(ii) We have the inclusion

α(Ã � B̃) ⊇ α Ã? ◦ α B̃? = Ã1−α ◦ B̃1−α for all α ∈ I◦,∩.

(iii) Suppose that the membership functions of Ã and B̃ are upper semi-continuous on Ã0 and B̃0, respectively.
Then

α(Ã � B̃) = α Ã? ◦ α B̃? = Ã1−α ◦ B̃1−α for all α ∈ I◦,∩.

Proof. To prove part (i), since I◦,∩ = I◦Ã�B̃ by (23), Proposition 2 says that α(Ã � B̃) = ∅ for
α 6∈ I◦Ã�B̃ = I◦,∩.

To prove part (ii), for α ∈ I◦,∩ and zα ∈ α Ã? ◦ α B̃, there exist xα ∈ α Ã? and yα ∈ α B̃? such that
zα = xα ◦ yα for ◦ ∈ {+,−, ∗}, where ξ Ã?(xα) ≤ α and ξ B̃?(yα) ≤ α. Therefore, we have

ξ Ã�B̃(zα) = inf
{(x,y)∈Ã0×B̃0 :zα=x◦y}

max{ξ Ã?(x), ξ B̃?(y)} ≤ max{ξ Ã?(xα), ξ B̃?(yα)} ≤ α,

which says that zα ∈ α(Ã � B̃). This shows that α Ã? ◦ α B̃? ⊆ α(Ã � B̃) for α ∈ I◦,∩.
To prove part (iii), in order to prove another direction of inclusion, we further assume that

the membership functions ξ Ã and ξ B̃ of Ã and B̃ are upper semi-continuous on Ã0, which imply
that the dual membership functions ξ Ã? and ξ B̃? are lower semi-continuous functions on Ã0; that
is, the nonempty lower α-level sets α Ã? and α B̃? are τÃ0

-closed subsets of Ã0 for all α ∈ I◦,∩.
Since α(Ã � B̃) 6= ∅ for α ∈ I◦Ã�B̃ = I◦,∩, given any zα ∈ α(Ã � B̃), we have

inf
{(x,y)∈Ã0×B̃0 :zα=x◦y}

max{ξ Ã?(x), ξ B̃?(y)} = ξ Ã�B̃(zα) ≤ α. (24)

Since zα is finite, it is clear to see that

F ≡ {(x, y) ∈ Ã0 × B̃0 : zα = x ◦ y}

is a bounded subset of Ã0 × B̃0. We also see that the function g(x, y) = x ◦ y is continuous on Ã0 × B̃0.
Since the singleton set {zα} is a closed subset of R, it follows that the inverse image F = g−1({zα}) of
{zα} is also a closed subset of Ã0 × B̃0. This says that F is a compact subset of Ã0 × B̃0. Now we want
to show that the function f (x, y) = max{ξ Ã?(x), ξ B̃?(y)} is lower semi-continuous on Ã0 × B̃0, i.e., we
want to show that

{(x, y) ∈ Ã0 × B̃0 : f (x, y) ≤ α}

is a closed subset of Ã0 × B̃0 for any α ∈ R.

• For α ∈ I◦,∩ = I◦Ã�B̃ = I◦Ã? ∩ I◦B̃? with α ≥ 0, i.e., α Ã? 6= ∅ and α B̃? 6= ∅, we have

{(x, y) ∈ Ã0 × B̃0 : f (x, y) ≤ α} =
{
(x, y) ∈ Ã0 × B̃0 : ξ Ã?(x) ≤ α and ξ B̃?(y) ≤ α

}
=
{
(x, y) ∈ Ã0 × B̃0 : x ∈ α Ã? and y ∈ α B̃?

}
= α Ã? × α B̃?

that is a closed subset of Ã0 × B̃0, since α Ã? and α B̃? are closed subsets of Ã0 and B̃0, respectively.
• If α < 0, then {(x, y) : f (x, y) ≤ α} = ∅ is a closed subset of Ã0 × B̃0.
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• If α 6∈ I◦,∩ with α ≥ 0 then α Ã? = ∅ or α B̃? = ∅. Suppose that α Ã? = ∅. Then ξ Ã?(x) > α for
all x ∈ Ã0. Similarly, if α B̃? = ∅, then ξ B̃?(y) > α for all y ∈ B̃0. Therefore we conclude that
f (x, y) > α for all (x, y) ∈ Ã0 × B̃0,which implies{

(x, y) ∈ Ã0 × B̃0 : f (x, y) ≤ α
}
= ∅

that is also a closed subset of Ã0 × B̃0.

Therefore the function f (x, y) is indeed lower semi-continuous on Ã0 × B̃0. By Lemma 2,
the function f assumes minimum on the compact subset F of Ã0 × B̃0; that is, from (24), we have

min
(x,y)∈F

f (x, y) = min
{(x,y)∈Ã0×B̃0 :zα=x◦y}

f (x, y) = inf
{(x,y)∈Ã0×B̃0 :zα=x◦y}

f (x, y) ≤ α.

In other words, there exists (xα, yα) ∈ F such that zα = xα ◦ yα and

max{ξ Ã?(xα), ξ B̃?(yα)} = f (xα, yα) = min
(x,y)∈F

f (x, y) ≤ α,

i.e., ξ Ã?(xα) ≤ α and ξ B̃?(yα) ≤ α. Therefore, we obtain xα ∈ α Ã? and yα ∈ α B̃?, which says that
zα ∈ α Ã? ◦ α B̃?, i.e., α(Ã � B̃) ⊆ α Ã? ◦ α B̃? for all α ∈ I◦Ã�B̃ = I◦,∩. This completes the proof.

The related results regarding the mixed lower and upper α-level sets are presented below. Recall
that the 0-level set (Ã� B̃)0 is the proper domain of the membership function ξ Ã�B̃ of Ã� B̃.

Theorem 5. Let Ã and B̃ be two fuzzy sets in R. Consider that the arithmetic operations � ∈ {⊕,	,⊗}
correspond to the operations ◦ ∈ {+,−, ∗}. Suppose that the membership functions of Ã and B̃ are upper
semi-continuous. Then we have the following results.

• If α ≥ min {supR(ξ Ã), supR(ξ B̃)}, then α(Ã � B̃) = (Ã � B̃)0 that is the proper domain of the
membership function ξ Ã�B̃ of Ã� B̃.

• If 0 ≤ α < infR(ξ Ã�B̃), then α(Ã� B̃) = ∅.
• If infR(ξ Ã�B̃) < α < min {supR(ξ Ã), supR(ξ B̃)}, then

α(Ã� B̃) = (Ã� B̃)0

∖ ⋃
{β∈I∗,∩ :β>α}

(Ãβ ◦ B̃β) =
⋃

{β∈I∗,∩ :β>α}

(
(Ã� B̃)0 \ (Ãβ ◦ B̃β)

)
. (25)

• Let α = infR(ξ Ã�B̃). If the minimum minR(ξ Ã�B̃) does not exist, then α(Ã � B̃) = ∅. If the
minimum minR(ξ Ã�B̃) exist, then α(Ã� B̃) 6= ∅ and can be obtained from (25).

We further assume that the supports Ã0+ and B̃0+ are bounded. Then the above 0-level set (Ã� B̃)0 can
be replaced by Ã0 ◦ B̃0.

Proof. From the first observation of Remark 3, we see that α(Ã� B̃) = ∅ for 0 ≤ α < infR(ξ Ã�B̃).
Also, from (16), if

α ≥ α∗Ã�B̃ ≡ supR(ξ Ã�B̃) = min {supR(ξ Ã), supR(ξ B̃)}
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then α(Ã� B̃) = (Ã� B̃)0. For infR(ξ Ã�B̃) < α < α∗Ã�B̃, we have

α(Ã� B̃) = (Ã� B̃)0
∖
(Ã� B̃)α+ (using the first observation of Remark 3)

= (Ã� B̃)0

∖ ⋃
α<β≤1

(Ã� B̃)β (using part (iv) of Proposition 4)

= (Ã� B̃)0

∖ ⋃
{β∈I∗,∩ :β>α}

(Ãβ ◦ B̃β) (using parts (i) and (iii) of Theorem 3).

Finally, using part (iv) of Theorem 3, the 0-level set (Ã � B̃)0 can be replaced by Ã0 ◦ B̃0.
This completes the proof.

Theorem 6. Let Ã and B̃ be two fuzzy sets in R with the dual fuzzy set Ã? and B̃?, respectively. Consider
the dual arithmetic operations � ∈ {�,�,�} correspond to the operations ◦ ∈ {+,−, ∗}. Suppose that the
membership functions of Ã and B̃ are upper semi-continuous on Ã0 and B̃0, respectively. Then we have the
following results.

• If 0 ≤ α ≤ α◦Ã�B̃ ≡ max{1− supR(ξ Ã), 1− supR(ξ B̃)}, then (Ã � B̃)α = (Ã � B̃)α◦
Ã�B̃

.
• If α > supR(ξ Ã�B̃), then (Ã � B̃)α = ∅.
• If max{1− supR(ξ Ã), 1− supR(ξ B̃)} < α < supR(ξ Ã�B̃), then

(Ã � B̃)α = (Ã � B̃)0

∖ ⋃
{β∈I◦,∩ :0≤β<α}

(β Ã? ◦ β B̃?)

=
⋃

{β∈I◦,∩ :0≤β<α}

(
(Ã � B̃)0 \ (β Ã? ◦ β B̃?)

)
. (26)

• Let α = supR(ξ Ã�B̃). If the maximum maxR(ξ Ã�B̃) does not exist, then (Ã � B̃)α = ∅. If the
maximum maxR(ξ Ã�B̃) exist, then (Ã � B̃)α 6= ∅ and can be obtained from (26).

Proof. From Remark 1, we see that (Ã � B̃)α = ∅ for α > supR(ξ Ã�B̃). Also, from (17), if

0 ≤ α ≤ α◦Ã�B̃ ≡ infR(ξ Ã�B̃) = max {1− supR(ξ Ã), 1− supR(ξ B̃)}

then (Ã � B̃)α = (Ã � B̃)α◦
Ã�B̃

. For α◦Ã�B̃ < α < supR(ξ Ã�B̃), we have

(Ã � B̃)α = (Ã � B̃)0
∖

α−(Ã � B̃) (using Remark 3)

= (Ã � B̃)0

∖ ⋃
0≤β<α

β(Ã � B̃) (using part (iv) of Proposition 3)

= (Ã � B̃)0

∖ ⋃
{β∈I◦,∩ :0≤β<α}

(β Ã? ◦ β B̃?) (using parts (i) and (iii) of Theorem 4).

This completes the proof.

Example 3. Let ã and b̃ be two fuzzy numbers. Then we have

supR(ξ ã) = supR(ξ b̃) = 1 and I∗,∩ = [0, 1].

Using Theorem 3, for α ∈ [0, 1], the upper α-level set of ã� b̃ is given by

(ã� b̃)α = ãα ◦ b̃α =
[

ãL
α , ãU

α

]
◦
[
b̃L

α , b̃U
α

]
.
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Now we consider the lower α-level set of ã� b̃. From Theorem 5, the lower 1-level set of ã� b̃ is given by

1(ã� b̃) = ã0 � b̃0 =
[

ãL
0 , ãU

0

]
◦
[
b̃L

0 , b̃U
0

]
.

For infR(ξ ã�b̃) < α < 1, we have

α(ã� b̃) = ã0 � b̃0

∖ ⋃
α<β≤1

(ãβ ◦ b̃β) = ã0 � b̃0

∖ ⋃
α<β≤1

([
ãL

β, ãU
β

]
◦
[
b̃L

β , b̃U
β

])
.

Suppose that we take ◦ = + and � = ⊕. Then we have

1(ã⊕ b̃) = ã0 + b̃0 =
[

ãL
0 , ãU

0

]
+
[
b̃L

0 , b̃U
0

]
=
[

ãL
0 + b̃L

0 , ãU
0 + b̃U

0

]
.

For infR(ξ ã⊕b̃) < α < 1, we have

α(ã⊕ b̃) =
[

ãL
0 + b̃L

0 , ãU
0 + b̃U

0

]∖ ⋃
α<β≤1

[
ãL

β + b̃L
β , ãU

β + b̃U
β

]
.

In order to obtain a more simplified form of α(ã⊕ b̃), we further assume that the end-points ãL
α , ãU

α , b̃L
α

and b̃U
α are continuous on [0, 1] with respect to α. Therefore the endpoints ãL

β + b̃L
β and ãU

β + b̃U
β are continuous

functions on [0, 1] with respect to β, it follows that

⋃
α<β≤1

[
ãL

β + b̃L
β , ãU

β + b̃U
β

]
=
(

ãL
α + b̃L

α , ãU
α + b̃U

α

)
is an open interval. Therefore, for infR(ξ ã⊕b̃) < α < 1, we obtain

α(ã⊕ b̃) =
[

ãL
0 + b̃L

0 , ãL
α + b̃L

α

]
∪
[

ãU
α + b̃U

α , ãU
0 + b̃U

0

]
.

Example 4. Let ã and b̃ be two fuzzy numbers with dual fuzzy set ã? and b̃? in R, respectively. According to
Example 2 and (23), for I◦,∩ = I◦ã? ∩ I◦

b̃?
, the lower α-level sets of ã? and b̃? are nonempty and given by

α ã? =
[

α ã?L, α ã?U
]
=
[

ãL
1−α, ãU

1−α

]
and α b̃? =

[
α b̃?L, α ã?U

]
=
[
b̃L

1−α, b̃U
1−α

]
.

Using part (iii) of Theorem 4, the lower α-level set of the dual arithmetic ã � b̃ is given by

α(ã � b̃) = α ã? ◦ α b̃? =
[

α ã?L, α ã?U
]
◦
[

α b̃?L, α b̃?U
]
=
[

ãL
1−α, ãU

1−α

]
◦
[
b̃L

1−α, b̃U
1−α

]
.

Using Theorem 6, for 0 < α < supR(ξ ã�b̃), we have

(ã � b̃)α = (ã � b̃)0

∖ ⋃
0≤β<α

(β ã? ◦ β b̃?)

= (ã � b̃)0

∖ ⋃
0≤β<α

([
β ã?L, β ã?U

]
◦
[

β b̃?L, β b̃?U
])

= (ã � b̃)0

∖ ⋃
0≤β<α

([
ãL

1−β, ãU
1−β

]
◦
[
b̃L

1−β, b̃U
1−β

])
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For 0 < α < supR(ξ ã�b̃), we can similarly show that

⋃
0≤β<α

([
β ã?L + β b̃?L, β ã?U + β b̃?U

])
=
(

α ã?L + α b̃?L, α ã?U + α b̃?U
)

=
(

ãL
1−α + b̃L

1−α, ãU
1−α + b̃U

1−α

)
is an open interval. Therefore, for 0 < α < supR(ξ ã�b̃), we obtain

(ã � b̃)α = (ã � b̃)0

∖(
α ã?L + α b̃?L, α ã?U + α b̃?U

)
= (ã � b̃)0

∖(
ãL

1−α + b̃L
1−α, ãU

1−α + b̃U
1−α

)
.

6. Conclusions

Let Ã be a fuzzy subset of a universal set U with membership function denoted by ξ Ã.
The conventional α-level set is called the upper α-level set in this paper. Therefore, we define the
so-called lower α-level set that is based on the 0-level set Ã0 rather than on the whole universal set U.
The well-known (primal) decomposition theorem given below

ξ Ã(x) = sup
α∈[0,1]

α · χÃα
(x) = sup

α∈(0,1]
α · χÃα

(x)

is based on the normality of Ã. If Ã is not normal, then we have

ξ Ã(x) = sup
α∈R(ξ Ã)

α · χÃα
(x).

The (primal) decomposition theorem says that the membership function can be expressed in terms
of upper α-level sets. In this paper, we establish the so-called dual decomposition theorem by showing
that the membership function can be expressed in terms of lower α-level sets as shown below

ξ Ã(x) = sup
α∈[0,1]

α · χ?
α Ã(x) = max

α∈[0,1]
α · χ?

α Ã(x) = max
α∈[0,1]

α ·
[
1− χ

α Ã(x)
]

= sup
α∈Q(0,1]

α · χ?
α Ã(x) = max

α∈Q(0,1]
α · χ?

α Ã(x) = max
α∈Q(0,1]

α ·
[
1− χ

α Ã(x)
]

by referring to Theorem 2.
On the other hand, the conventional arithmetic operation between fuzzy sets Ã and B̃ in R is

defined by
ξ Ã�B̃(z) = sup

{(x,y)∈U×U:z=x◦y}
min{ξ Ã(x), ξ B̃(y)}

for all z ∈ R. Using the dual membership functions, the dual arithmetic operation is defined by

ξ Ã�B̃(z) = inf
{(x,y)∈Ã0×B̃0 :z=x◦y}

max{ξ Ã?(x), ξ B̃?(y)}.

Then the following interesting duality relation is established

ξ Ã�B̃(z) + ξ Ã�B̃(z) = 1 for all z ∈ U.

The advantage of considering dual arithmetic is, when Ã � B̃ is easier to calculate than that of
Ã� B̃, we can just first calculate Ã � B̃ and then to recover the arithmetic by using the duality relation.

In future study, we shall apply the dual decomposition theorem and dual arithmetic of fuzzy
numbers to investigate the fuzzy real analysis. We also expect to use the results obtained in this paper
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to study the fuzzy problems arisen from the topic of operations research, which are always used to
model the engineering problems.
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16. Stupňanová, A. A Probabilistic Approach to the Arithmetics of Fuzzy Numbers. Fuzzy Sets Syst. 2015, 264,

64–75. [CrossRef]
17. Wu, H.-C. Decomposition and Construction of Fuzzy Sets and Their Applications to the Arithmetic

Operations on Fuzzy Quantities. Fuzzy Sets Syst. 2013, 233, 1–25. [CrossRef]
18. Royden, H.L. Real Analysis, 2nd ed.; Macmillan: London, UK, 1968.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0020-0255(95)00163-8
http://dx.doi.org/10.1016/0165-0114(92)90225-S
http://dx.doi.org/10.3390/math6070108
http://dx.doi.org/10.1016/j.fss.2018.01.002
http://dx.doi.org/10.1016/j.ijar.2017.09.001
http://dx.doi.org/10.1016/j.ins.2004.07.018
http://dx.doi.org/10.1016/0165-0114(87)90028-5
http://dx.doi.org/10.1016/j.ins.2015.07.045
http://dx.doi.org/10.1002/1098-111X(200011)15:11<981::AID-INT1>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1098-111X(199912)14:12<1249::AID-INT6>3.0.CO;2-C
http://dx.doi.org/10.1016/j.ins.2007.02.003
http://dx.doi.org/10.1016/j.fss.2009.05.002
http://dx.doi.org/10.1016/j.ijar.2015.05.004
http://dx.doi.org/10.1016/j.fss.2004.06.007
http://dx.doi.org/10.1016/j.fss.2014.02.016
http://dx.doi.org/10.1016/j.fss.2014.08.013
http://dx.doi.org/10.1016/j.fss.2013.04.014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Lower and Upper Level Sets
	Dual Fuzzy Sets
	Dual Decomposition Theorems
	Dual Arithmetics of Fuzzy Sets
	Conclusions
	References

