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Abstract

:

In this paper, we prove some common fixed-point theorems for two self-mappings in the context of a complete b-metric space by proposing a new contractive type condition. Further, we derive a result for three self-mappings in the same setting. We provide two examples to demonstrate the validity of the obtained results.
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1. Introduction and Preliminaries


It would not be wrong to say that fixed-point theory was a results of the investigation of the existence and uniqueness of a solution of certain differential equations. In this aspect, the roots of metric fixed-point theory can be attributed back to the results of renowned mathematicians, J. Liouville [1], E. Picard [2] and H. Poincaré [3]. Roughly speaking, these famous mathematicians used the method of successive approximation to solve the differential equation that they dealt with. In 1922, Banach [4] reported an elegant fixed-point theorem which was an abstraction of the successive approximation method. Formally, metric fixed-point theory appeared with this renowned result of Banach [4] that is mostly known as the Banach Contraction Mapping Principle in the literature. As an another historical note, we emphasize that Banach’s original proof is in the framework of normed space. The corresponding form in the setting of metric space was formulated by Caccioppoli [5]. After then, in some sources, it has been called Banach–Caccioppoli fixed-point theorem.



Due to its origin, fixed-point theory has a wide application potential in most quantitative sciences. Many real world problems can be easily characterized in the framework of fixed-point theory. For example, a fixed-point equation h(x)=x can be considered H(x)=x−h(x)=0. Regarding the requirements of the applications; intrinsically, the structure of Banach–Caccioppoli fixed-point theorem has been improved in several aspects. On one hand, the properties of the operator have been weakened, while on the other hand, metric space structure has been replaced by some other abstract spaces. Among all, in 1993, Czerwik [6] suggested a successful and proper generalization of the metric space notion by introducing the concept of b-metric space. Following this famous result in the setting of b-metric spaces, several extensions in distinct aspects have been released in this direction (see e.g., [7,8,9,10,11,12,13,14,15] and references therein). In this paper, we study certain common fixed-point theorems for three maps in the setting of complete b-metric spaces.



Firstly, we recall the notion of b-metric.



Definition 1 

(Czerwik [6]). Let X be a nonempty set. A function d:X×X→[0,∞) is called a b-metric if the following axioms are fulfilled:

	(b1)

	
d is reflexive, that is, d(x,y)=0 if and only if x=y.




	(b2)

	
d has a symmetry, that is, d(x,y)=d(y,x) for all x,y∈X.




	(b3)

	
d(x,y)≤s[d(x,z)+d(z,y)] for all x,y,z∈X, where s≥1.









Here, (X,d) is called a b-metric space, in short, bMS.





Remark 1.

Incase of s=1, the b-metric coincide the standard metric. Notice also that b-metric does not need to be continuous in general. In this manuscript, we deal with continuous b-metrics only [16].





The following is a constructive example of b-metric.



Example 1.

Let X={xi:1≤i≤M} for some M∈N and s≥2. Define d:X×X→∞ as


d(xi,xj)=0if i=j,sif (i,j)=(1,2) or (i,j)=(2,1),1otherwise.











Consequently, we derive that


d(xi,xj)≤s2[d(xi,xk)+d(xk,xj)],








for all i,j,k∈{1,M}. Thus, (X,d) forms a b-metric for s>2 where the ordinary triangle inequality does not hold.





For more examples for b-metric, we may refer e.g., [7,8,10,11,12,13,14,15] and the corresponding references therein.



Example 2.

(See e.g., [12]) For 0<q<1, the space Lq[0,1] of all real-vauled functions f(t), t∈[0,1] such that ∫01|f(t)|qdt<∞, endowed with


d(f,h):=(∫01|f(t)−h(t)|qdt)1/q,for each x,y∈Lp[0,1],








forms a b-metric space. Notice that s=21/q.





Definition 2.

(see e.g., [17,18]) Suppose that f and g are self mappings on a non-empty set X. A point x is names as a coincidence point of f and g incase fx=gx, for x in X. Moreover, z is called a point of coincidence of f and g whenever z=fx=gx for some x in X. In addition, f and g are said to be weakly compatible, if


fx=gx⇒f(gx)=g(fx)








holds for every x∈X.





Proposition 1.

(see Lemma 3 in [19]) Let f,g,h be self mappings on a non-empty set X and v∈X is the a unique coincidence point of f,g and h. These self-mappings, f,g,h, have a unique common fixed point if {f,h} and {g,h} are weakly compatible.





Definition of comparison function, defined by Rus [20], is the following:



Definition 3.

[20,21] A function ϕ:[0,∞)→[0,∞) is called a comparison function if it is increasing and ϕn(t)→0 as n→∞ for every t∈[0,∞), where ϕn is the n-th iterate of ϕ.





Lemma 1.

([20,21]) If ϕ:[0,∞)→[0,∞) is a comparison function, then

	
each iterate ϕk of ϕ, k≥1 is also a comparison function;



	
ϕ is continuous at 0;



	
ϕ(t)<t for all t>0.










Definition 4.

Let s≥1 be a real number. A function ψ:[0,∞)→[0,∞) is called a (b)-comparison function if

	
ψ is increasing;



	
there exist k0∈N, a∈(0,1) and a convergent nonnegative series ∑k=1∞vk such that sk+1ψk+1(t)≤askψk(t)+vk, for k≥k0 and any t≥0.










Let Ψ={ψ:[0,∞)→[0,∞):ψis b−comparison function}. Note that in case of s=1, a (b)-comparison function is named as (c)-comparison.



Lemma 2.

([22]) For ϕ∈Ψ,

	
the series ∑k=0∞skϕk(t) converges for any t∈[0,∞);



	
the function bs:[0,∞)→[0,∞) defined as bs=∑k=0∞skϕk(t) is increasing and continuous at t=0.










Remark 2.

On account of Lemma 2 and Lemma 1, any (b)-comparison function, we have ψ satisfies ψ(t)<t.





Fisher [23] proved the following existence theorem:



Theorem 1.

[23] Let T be a mapping of the complete metric space X into itself satisfying the inequality


[d(Tx,Ty)]2≤a(d(x,Tx)d(y,Ty))+b(d(x,Ty)d(y,Tx))








∀x,y∈X, 0≤a<1, 0≤b then T has a fixed point in X.





In 1980, Pachpatte [24] extended the result of Fisher [23] in the following way.



Theorem 2.

[24] Let T be a mapping of the complete metric space X into itself satisfying the inequality


[d(Tx,Ty)]2≤a[d(x,Tx)d(y,Ty)+d(x,Ty)d(y,Tx)]+b[d(x,Tx)d(y,Tx)+d(x,Ty)d(y,Ty))








∀x,y∈X, where a,b≥0 and a+2b<1 then T has a unique fixed point in X.





This trend has been followed by Sharma and Sahu [25], Popa [26], Ali and Arshad [27] and so on. By following the trend, initiated by [23] and succeeded by [24,25,26,27], we introduce a new type contraction for three maps via auxiliary function ψ. We examined the existence and uniqueness of a common fixed point for such contractions in the framework of b-metric space.




2. Main Results


Let (X,d) be a complete b-metric space and let f,g,h be mappings from X into itself satisfying the condition:


f(X)∪g(X)⊆h(X).



(1)







Let x0∈X. By (1) there exists a point x1∈X such that hx1=fx0 and for x1 there exists x2∈X such that hx2=gx1. Inductively we can define the sequences xn and yn in X such that


y2n=hx2n+1=fx2n,y2n+1=hx2n+2=gx2n+1∀n≥0.



(2)







Lemma 3.

Let f,g,h be mappings from a b-metric space (X,d) into itself satisfying (1) and such that for all x,y∈X


d(fx,gy)]2≤ψ(F(x,y)),



(3)




where, ψ∈Ψ and


F(x,y)=max{d(fx,gy)d(hx,fx),d(fx,gy)d(hy,gy),d(hy,fx)d(hx,gy),12sd(hy,gy)d(hx,gy)},








ψ∈Ψ. Then, the sequence yn defined by (2) is a Cauchy sequence in X.





Proof. 

For an arbitrary x0∈X, we shall construct a sequence {xn} and {yn} in (2). If there exists n0 such that y2n0=y2n0+1 we obtain: hx2n0+1=fx2n0=hx2n0+2=gx2n0+1 and hence, x2n0+1 forms a common fixed point of h and g.



Without loss of generality, we suppose that y2n≠y2n+1. Accordingly, from (2) and (3) we find that


[d(y2n,y2n+1)]2=[d(fx2n,gx2n+1)]2≤ψ(F(x2n,x2n+1))



(4)




where


F(x2n,x2n+1)=maxd(fx2n,gx2n+1)d(hx2n,fx2n),d(fx2n,gx2n+1)d(hx2n+1,gx2n+1),d(hx2n+1,fx2n)d(hx2n,gx2n+1),12sd(hx2n+1,gx2n+1)d(hx2n,gx2n+1)≤maxd(hx2n+1,hx2n+2)d(hx2n,hx2n+1),d(hx2n+1,hx2n+2)d(hx2n+1,hx2n+2)d(hx2n+1,hx2n+1)d(hx2n,hx2n+2),12sd(hx2n+1,hx2n+2)d(hx2n,hx2n+2)≤maxd(y2n,y2n+1)d(y2n−1,y2n),d(y2n,y2n+1)d(y2n,y2n+1)d(y2n,y2n)d(y2n−1,y2n+1),12sd(y2n,y2n+1)d(y2n−1,y2n+1)≤maxd(y2n,y2n+1)d(y2n−1,y2n),d(y2n,y2n+1)d(y2n,y2n+1)d(y2n,y2n)d(y2n−1,y2n+1),12d(y2n,y2n+1)[d(y2n−1,y2n)+d(y2n,y2n+1)].











Suppose d(y2n0−1,y2n0)<d(y2n0,y2n0+1) for some n0. Since the function then the inequality (4) turns into


[d(y2n0,y2n0+1)]2≤ψ([d(y2n0,y2n0+1)]2)<[d(y2n0,y2n0+1)]2,








which is a contradiction. Thus, we have


d(y2n,y2n+1)≤d(y2n−1,y2n) for all n∈N.











Keeping in mind that ψ is non-decreasing, and by taking the inequality (4) into account and employing Remark 2 recursively, we conclude also that


[d(y2n,y2n+1)]2≤ψ([d(y2n−1,y2n)]2)<[d(y2n−1,y2n)]2≤ψ2([d(y2n−2,y2n−1)]2)<[d(y2n−2,y2n−1)]2⋯≤ψ2n([d(y0,y1)]2).











By using the same arguments, similarly, we find that


d(y2n−1,y2n)≤d(y2n−2,y2n−1),








and moreover,


[d(y2n−1,y2n)]2≤ψ([d(y2n−2,y2n−1)]2)<[d(y2n−2,y2n−1)]2≤ψ2([d(y2n−3,y2n−2)]2)<[d(y2n−3,y2n−2)]2⋯≤ψ2n−1([d(y0,y1)]2).











As a result, for all n∈N, we get


[d(yn,yn+1)]2≤ψ([d(yn−1,yn)]2)<[d(yn−1,yn)]2≤⋯<ψn([d(y0,y1)]2).



(5)







On the account of Lemma 2, we conclude that


limn→∞d(yn+1,yn)=0.



(6)







Now, we shall indicate that the sequence {yn} is Cauchy.



By using the modified triangle inequality (b3) recursively, and keeping the fact that (α+β)2≤2(α2+β2) in mind, we observe the following estimation for the distance d(yn,yn+k) for k≥1 and s≥1


[d(yn,yn+k)]2≤[s(d(yn,yn+1)+d(yn+1,yn+k))]2≤2s2[d(yn,yn+1)]2+2s2[d(yn+1,yn+k)]2≤2s2[d(yn,yn+1)]2+2s2s[d(yn+1,yn+2)+d(yn+2,yn+k)]2≤2s2[d(yn,yn+1)]2+(2s2)2[d(yn+1,yn+2)]2+(2s2)2[d(yn+2,yn+k)]2⋮≤2s2[d(yn,yn+1)]2+(2s2)2[d(yn+1,yn+2)]2+⋯+(2s2)k[d(yn+k−1,yn+k)]2



(7)







Applying (5) and (7) we derive that


[d(yn,yn+k)]2≤(2s2)ψn([d(y0,y1)]2)+(2s2)2ψn+1([d(y0,y1)]2)+⋯+(2s2)kψn+k−1([d(y0,y1)]2)=1(2s2)n−1(2s2)nψn([d(y0,y1)]2)+(2s2)n+1ψn+1([d(y0,y1)]2)+⋯+(2s2)n+k−1ψn+k−1([d(y0,y1)]2).



(8)







Consequently, we have


d2(yn,yn+k)≤1(2s2)n−1Pn+k−1−Pn−1,n≥1,k≥1,



(9)




where Pn=∑j=0n(2s2)jψj([d(y0,y1)]2), n≥1. On the account of Lemma 2, we guarantee that the series ∑j=0∞(2s2)jψj([d(y0,y1)]2) is convergent. Since s≥1, letting limit n→∞ in (9) we deduce that


limn→∞d2(yn,yn+k)≤limn→∞1(2s2)n−1Pn+k−1−Pn−1=0.



(10)







We find that the constructive sequence {yn} is Cauchy in (X,d). □





Theorem 3.

Let (X,d) be a complete b-metric space, f,g,h be self mappings of X satisfying the conditions (1) and (3). We suppose also that h(X) is a closed subspace of X. Then the maps f,g and h have a coincidence point z in X. Moreover, if the pairs {f,h} and {g,h} are weakly compatible then f,g and h have a unique common fixed point in X.





Proof. 

Let us consider now the sequence yn defined by (2). By Lemma 3, we have that yn is a Cauchy sequence in X and since X is complete, the sequence yn converges to a point z in X. But, h(X) is complete, being a closed subspace of X and since f(X)∪g(X)⊆h(X), the subsequences y2n and y2n which are contained in h(X) must have a limit z in h(X), i.e.


limn→∞fx2n=limn→∞gx2n+1=limn→∞hx2n+1=limn→∞hx2n+2=z.











Let u∈h−1z. Then hu=z and we suppose that gu≠z. From (3) we have


[d(fx2n,gu)]2≤ψ(F(x2n,u)),



(11)




where


F(x2n,u)=max[d(fx2n,gu)d(hx2n,fx2n)],[d(fx2n,gu)d(hu,gu)][d(hu,fx2n)d(hx2n,gu)],12s[d(hu,gu)d(hx2n,gu)].











Keeping Remark 2 in mind and by taking lim sup in (11) as n→∞, we find that


[d(z,gu)]2≤ψ([d(z,gu)]2)<[d(z,gu)]2,








a contradiction. Hence, we have [d(z,gu)]2=0 which gives that gu=z=hu. Using the similar reasoning, supposing that fu≠z we have


[d(fu,gx2n+1)]2≤ψ(F(u,x2n+1)),



(12)




where


F(u,x2n+1)=max[d(fu,gx2n+1)d(hu,fu)],[d(fu,gx2n+1)d(hx2n+1,gx2n+1)],[d(hx2n+1,fu)d(hu,gx2n+1)],12s[d(hx2n+1,gx2n+1)d(hu,gx2n+1)].











Again, by taking Remark 2 into account and by letting lim sup in (12) as n→∞,


[d(fu,z)]2≤ψ([d(fu,z)]2)<[d(fu,z)]2,








which is a contradiction. Therefore, fu=z=hu=gu, i.e., the maps f,g and h have a coincidence point. If we consider the supplementary assumption, then the pairs g,h and f,h are weakly compatible, we have


hgu=ghu⇒gz=hzhfu=fhu⇒fz=hz,








so


h(z)=g(z)=f(z).



(13)







We shall show that z is the common fixed point of f,g and h. Without loss of generality, suppose, on the contrary, that z≠gz. Hence, by (3) we get


[d(fx2n,gz)]2≤ψ(F(x2n,z)),



(14)




where


F(x2n,z)=max[d(fx2n,gz)d(hx2n,fx2n)],[d(fx2n,gz)d(hz,gz)],[d(hz,fx2n)d(hx2n,gz)],12s[d(hz,gz)d(hx2n,gz)].











By letting lim sup in (14) as n→∞, together with applying Remark 2, we find that


[d(z,gz)]2≤ψ([d(z,gz)]2)<[d(z,gz)]2,








a contradiction. Thus, we have d(z,gz)=0, that is, z=gz. By combining with (13) we get fz=gz=hz=z which shows that z is a common fixed point of the mappings f,g and h.



For the uniqueness, we suppose, on the contrary, that f,g and h have two common fixed points z1 and z2 such that z1≠z2. Then, by using (3) we get


[d(z1,z2)]2=[d(fz1,gz2)]2ψ(F(fz1,gz2)),



(15)




where


F(fz1,gz2)=max[d(fz1,gz2)d(hz1,fz1)],[d(fz1,gz2)d(hz2,gz2)][d(hz2,fz1)d(hz1,gz2)],12s[d(hz2,gz2)d(hz1,gz2)]≤max[d(z1,z2)d(z1,z1)],[d(z1,z2)d(z2,z2)][d(z2,z1)d(z1,z2)],12s[d(z2,z2)d(z1,z2)]≤[d(z1,z2)]2.











Thus, (14) yields that


[d(z1,z2)]2=[d(fz1,gz2)]2ψ(F(fz1,gz2))=ψ([d(z1,z2)]2)<[d(z1,z2)]2,



(16)




a contradiction that completes the proof. □





We will now give some immediate consequences of the main result. By replacing the mapping h with the identity mapping on X, in Theorem 3 we deduce the first consequence of the main result.



Corollary 1.

Let (X,d) be a complete b-metric space, ψ∈Ψ and f,g be the mappings of X such that for x,y∈X the following inequality is satisfied:


[d(fx,gy)]2≤F(x,y)



(17)




where


F(x,y)=(d(fx,gy)d(x,fx)),(d(fx,gy)d(y,gy))(d(y,fx),d(x,gy)),12s(d(y,gy),d(x,gy))













If in the Corollary 1 we take f=g we derive the next consequence.



Corollary 2.

Let (X,d) be a complete b-metric space, ψ∈Ψ and a mapping f:X→X such that for x,y∈X the following inequality is satisfied:


[d(fx,gy)]2≤F(x,y)



(18)




where


F(x,y)=(d(fx,y)d(x,fx)),(d(fx,y)d(y,y))(d(y,fx),d(x,y)),12s(d(y,y),d(x,y))













Theorem 4.

Let (X,d) be a complete b-metric space,ψ∈Ψ and let f,g,h be mappings from X into itself satisfying the condition:


[d(fx,gy)]3≤G(x,y)



(19)




where


G(x,y)=d(fx,gy)2d(hx,hy),(d(fx,gy)d(hy,gy)d(hx,gy))



(20)






(d(hx,fx)d(hy,fx),d(hx,gy)).



(21)







Suppose that h(X) is a closed subspace of X and f(X)∪g(X)⊆h(X). Then, f,g and h have a coincidence point. In addition, incase of the pairs {f,h} and {g,h} are weakly compatible, these maps have a unique common fixed point.





The details of the proof of Theorem 4 are very close to the proof of Theorem 3, with suitable modification, so we skip it.



Example 3.

Let X=[0,1] be a set endowed with a b-metric d(x,y)=(x−y)2 with s=2 and we define three mappings f,g,h:X→X, by


fx=x16,gx=x8if x∈[0,1)0if x=1hx=x2if x∈[0,1)0if x=1








Clearly, f(X)∪g(X)⊂h(X), hf0=0=fh0, hg0=0=gh0 and hg1=0=gh1 which shows that the pairs f,h, g,h are weakly compatible. Let ψ(t)=t4.



For any x∈[0,1] and y∈[0,1) we have


[d(fx,gy)]2=(x−2y)164≤14max(x−2y)162·49x2256,(x−2y)162·36y2256=14maxd(fx,gy)d(hx,fx),d(fx,gy)d(hy,gy)≤F(x,y)4=ψ(F(x,y)).








For x∈[0,1] and y=1


[d(fx,g1)]2=x4164<14·x2162·49x2162=14d(fx,g1)·d(hx,fx)≤F(x,1)4=ψ(F(x,1))








for any x,y∈X. Consequently, we deduce that 0 is the unique common fixed point of the maps f,g and h since all assumptions of Theorem 3 are fulfilled.





Example 4.

Let the set X=m,n,p,q and a function d:X×X→[0,∞) defined as follows:



	d(x,y)
	m
	n
	p
	q



	m
	0
	3
	1
	4



	n
	3
	0
	3
	1



	p
	1
	3
	0
	2



	q
	4
	1
	2
	0








By a simple calculation, one can verify that the function d is a b-metric, for s=2. We define the self mappings f,g,h on X as



	x
	m
	n
	p
	q



	f
	m
	m
	p
	m



	g
	m
	m
	m
	p



	h
	m
	p
	n
	n








Since f(X)=m,p, g(X)=m,p and h(X)=m,n,p, the condition (1) is satisfied. Moreover,


hfm=m=fhm,hgm=m=ghm.











Let also ψ(t)=t2



Thus, m is the unique common fixed point of the maps f,g and h since all the conditions of Theorem 3 are satisfied.






3. Conclusions


By choosing ψ in a proper way in Theorem 3, Corollarys 1 and 2, we can derive further consequences.







Author Contributions


All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.




Acknowledgments


The authors are grateful to the handling editor and reviewers for their careful reviews and useful comments. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this group No. RG-1437-017.




Conflicts of Interest


The authors declare that they have no competing interests.




References


	



Liouville, J. Second mémoire sur le développement des fonctions ou parties de fonctions en séries dont divers termes sont assujettis á satisfaire a une m eme équation différentielle du second ordre contenant un paramétre variable. J. Math. Pure Appl. 1837, 2, 16–35. [Google Scholar]

	



Picard, E. Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures Appl. 1890, 6, 145–210. [Google Scholar]

	



Poincaré, H. Surless courbes define barles equations differentiate less. J. Math. 1886, 2, 54–65. [Google Scholar]

	



Banach, S. Sur les opérations dans les ensembles abstraits et leur application auxéquations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]

	



Caccioppoli, R. Un teorema generale sullésistenza de elemente uniti in una transformazione funzionale. Rend. Acad. Naz. Linzei 1930, 11, 31–49. [Google Scholar]

	



Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]

	



Afshari, H.; Aydi, H.; Karapınar, E. Existence of Fixed Points of Set-Valued Mappings in b-Metric Spaces. East Asian Math. J. 2016, 32, 319–332. [Google Scholar] [CrossRef]

	



Aksoy, U.; Karapınar, E.; Erhan, Y.M. Fixed points of generalized alpha-admissible contractions on b-metric spaces with an application to boundary value problems. J. Nonlinear Convex Anal. J. 2016, 17, 1095–1108. [Google Scholar]

	



Ali, M.; Arshad, M. b-metric generalization of some fixed-point theorems. J. Funct. Spaces 2018, 2018, 2658653. [Google Scholar] [CrossRef]

	



Aydi, H.; Bota, M.; Karapınar, E.; Mitrović, S. A fixed-point theorem for set-valued quasi-contractions in b-metric spaces. fixed-point theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef]

	



Aydi, H.; Bota, M.; Karapınar, E.; Moradi, S. A common fixed point for weak ϕ-contractions in b-metric spaces. fixed-point theory 2012, 13, 337–346. [Google Scholar]

	



Boriceanu, M. Strict fixed-point theorems for multivalued operators in b-metric spaces. Int. J. Mod. Math. 2009, 4, 285–301. [Google Scholar]

	



Bota, M.F.; Karapinar, E. A note on “Some results on multi-valued weakly Jungck mappings in b-metric space”. Cent. Eur. J. Math. 2013, 11, 1711–1712. [Google Scholar] [CrossRef]

	



Bota, M.; Karapınar, E.; Mleşniţe, O. Ulam-Hyers stability for fixed point problems via α-ϕ-contractive mapping in b-metric spaces. Abstr. Appl. Anal. 2013, 2013, 855293. [Google Scholar] [CrossRef]

	



Bota, M.; Chifu, C.; Karapinar, E. fixed-point theorems for generalized (α*-ψ)-Ciric-type contractive multivalued operators in b-metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 1165–1177. [Google Scholar] [CrossRef]

	



Mohanta, S.K. Coincidence Points and Common Fixed Points for Expansive Type Mappings in b-Metric Spaces. Iran. J. Math. Sci. Informat. 2016, 11, 101–113. [Google Scholar] [CrossRef]

	



Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings without continuity in cone metric space. J. Math. Anal. Appl. 2008, 341, 416–420. [Google Scholar] [CrossRef]

	



Jungck, G. Common fixed points for noncontinuous nonself maps on nonmetric spaces. Far East J. Math. Sci. 1996, 4, 199–215. [Google Scholar]

	



Arshad, M.; Azam, A.; Vetro, P. Some fixed point results in cone metric space. Fixed-Point Theory Appl. 2009, 2009, 493965. [Google Scholar] [CrossRef]

	



Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Cluj-Napoca, Romania, 2001. [Google Scholar]

	



Berinde, V. Contracţii Generalizate şi Aplicaţii; Editura Cub Press: Baie Mare, Romania, 1997; Volume 2. [Google Scholar]

	



Berinde, V. Generalized contractions in quasi-metric spaces. In Seminar on Fixed-Point Theory; Babeş-Bolyai University: Cluj-Napoca, Romania, 1993; pp. 3–9. [Google Scholar]

	



Fisher, B. Fixed point and constant mappings on metric spaces. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 1977, 61, 329–332. [Google Scholar]

	



Pachpatte, B.G. On certain fixed point mappings in metric spaces. J. Maulana Azad Coll. Technol. 1980, 13, 59–63. [Google Scholar]

	



Sharma, P.L.; Sahu, M.K. A unique fxed point theorem in complete metric space. Acta Cienc. Indic. Math. 1991, 17, 685–688. [Google Scholar]

	



Popa, V. A general fixed-point theorem for mappings in pseudocompact Tichonoff spaces. Math. Morav. 2002, 6, 93–96. [Google Scholar] [CrossRef]

	



Gulyaz, S. On some alpha-admissible contraction mappings on Branciari b-metric spaces. Adv. Theory Nonlinear Anal. Appl. 2017, 1, 1–13. [Google Scholar]







© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  mathematics-07-00102


  
    		
      mathematics-07-00102
    


  




  





media/file0.png





