
mathematics

Article

Stability Analysis of Quaternion-Valued
Neutral-Type Neural Networks with
Time-Varying Delay

Jinlong Shu 1, Lianglin Xiong 1,*, Tao Wu 1 and Zixin Liu 2

1 School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650500, China;
shujinlong819@126.com (J.S.); taowu520136@126.com (T.W.)

2 Department of Mathematics and Statistics, Guizhou University of Finance and Economics,
Guiyang 550025, China; sangchengxuezi@163.com

* Correspondence: lianglin_5318@126.com; Tel.: +86-18988440506

Received: 28 November 2018; Accepted: 15 January 2019; Published: 18 January 2019
����������
�������

Abstract: This paper addresses the problem of global µ-stability for quaternion-valued neutral-type
neural networks (QVNTNNs) with time-varying delays. First, QVNTNNs are transformed into two
complex-valued systems by using a transformation to reduce the complexity of the computation
generated by the non-commutativity of quaternion multiplication. A new convex inequality in a
complex field is introduced. In what follows, the condition for the existence and uniqueness of the
equilibrium point is primarily obtained by the homeomorphism theory. Next, the global stability
conditions of the complex-valued systems are provided by constructing a novel Lyapunov–Krasovskii
functional, using an integral inequality technique, and reciprocal convex combination approach.
The gained global µ-stability conditions can be divided into three different kinds of stability forms by
varying the positive continuous function µ(t). Finally, three reliable examples and a simulation are
given to display the effectiveness of the proposed methods.

Keywords: quaternion-valued neutral-type neural network; homeomorphism theory; new reciprocal
convex combination approach; linear matrix inequality; global µ-stability

1. Introduction

As is well known, with the rapid development of electronic information science, complex-valued
signals appear frequently in engineering practice. The application fields of complex-valued neural
networks (CVNNs) are also becoming increasingly extensive: for instance, automatic control, eddy
current defect detection, image processing, object recognition, frequency-domain blind source
separation, and signal processing (see, e.g., [1–6]). Hence, many scholars are directing much attention
to studying the dynamic behavior of CVNNs, and lots of important results have been reported in the
literature. The exponential stability of complex-valued BAM neural networks was studied based on the
differential inclusion theory and the properties of homeomorphism [7]. The synchronization problem
for CVNNs with time delays was discussed in [8,9]. Following these results, in [10,11], the problem of
extended dissipative synchronization of CVNNs was also discussed. In [12], the Lagrange stability of
CVNNs was studied by using a transformation in which the CVNN is rewritten as a first-order
differential system. In [13–16], the authors studied the impact of impulses on the stability of
CVNNs with time-varying delays, and they obtained ample conditions for the CVNNs to ensure
exponential convergence. Moreover, fractional complex-valued neural networks (FCVNNs) have
certain advantages when describing dynamical properties. In [17], Huang studied local asymptotical
stability and Hopf bifurcation, and the condition for the emergence of bifurcation was obtained.
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In fact, the quaternion as an extension of a complex-valued system can also be applied to
engineering practices. This issue has aroused the interest of scholars. After an active exploration,
scholars found that the quaternion can also play a very important role in engineering, mainly on the
basis of its advantages in rotation and direction modeling. For example, a data covariance model using
a quaternion form was proposed to estimate its wavenumber and polarization parameters, similar to a
music algorithm [18]. In addition, quaternions are used to define Fourier transforms that are suitable
for color images. It was also shown that the transformation can be calculated using two standard
complex fast Fourier transforms [19].

In recent years, it has become gradually more common to discuss the quaternion-valued neural
network (QVNN) as an extension of the CVNN because of the following facts. On the basis of
Liouville’s theorem [20], each bounded function must be constant, i.e., the activation function of
CVNNs cannot have boundaries and be analytic at the same time unless it is a constant. However,
the activation function of QVNNs can be bounded and analytic at the same time, as applied in [21],
but how to choose the activation function of QVNN is a difficult problem. The analyticity of
general quaternion-valued functions has not been rigorously examined in the quaternion field.
To ensure that the class of quaternion-valued functions is analyzed, strict Cauchy–Riemann–Fueter
(CRF) and generalized Cauchy–Riemann (GCR) conditions only pledge that the global analysis
of quaternion-valued functions is a linear function and a constant, respectively. To overcome
this difficulty, References [22,23] give some very important conditions for a partial change to the
Cauchy–Riemann–Fueter condition and the local analysis condition—namely, the local analyticity
condition (LAC)—to ensure that the quaternion-valued functions are bounded and analytic at the same
time. This technique, which provides more flexibility in choosing the activation function of QVNNs, is
significant progress. Until now, quaternion algebra has been successfully applied to communications
problems and signal processing, such as color image processing [24] and wind forecasting [25].
Since then, numerous scholars have produced many excellent results in the field of QVNNs (see,
e.g., [26–29] and literature referenced therein). QVNN was changed into two complex-valued systems
by using a simple transformation, and [26] reduced the complexity of computation generated by the
non-commutativity of quaternion multiplication. With homeomorphism theory, Reference [27] proved
the existence of the equilibrium point of QVNNs and provided ample conditions for global robust
stability. In [28], the pseudo-major period synchronization problem of quaternion-valued cellular
neural networks (QVCNNs) was also studied. The existence of pseudo almost periodic functions
was proved, and the global exponential synchronization of QVCNNs was obtained by designing the
controller and combining Lyapunov functions.

On the other hand, the neutral-type systems not only consider the past state but also specifically
involve the influence of changes in past states on the current state. Due to this feature, neutral-type
systems have become the subject of extensive research by many scholars (see [30–38]). Furthermore,
neutral systems have many applications in practical engineering, including heat exchangers,
population ecology, and so on (see [39,40]). Many neural networks can be regarded as special cases
of neutral neural networks, and most of the neural networks can be transformed into neutral neural
networks for research (see [41–43]). It can be seen that the neutral neural network has great research
value and potential significance. Nevertheless, to the best of the authors’ knowledge, for QVNNs with
time-varying delays, there is no research in the literature for the global µ-stability of quaternion-valued
neutral-type neural networks (QVNTNNs) at this time.

All of the above factors motivate our research. This article is intended to discuss the µ-stability
of QVNTNNs. The remainder is divided into the following sections to elaborate. In the second part,
the fundamental definition of quaternion is given. In the third part, we first introduce the QVNTNN
model. Then, some important definitions and lemmas are provided, and the new extended convex
inequality is obtained for the first time in this paper. In the fourth part, using the homeomorphism
theory, we firstly obtain a new condition for the existence and uniqueness of the equilibrium point,
and the global µ-stability criterion for QVNTNNs is provided using the Lyapunov functional theory
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combined with some inequality techniques. Based on the obtained stability results, power-stability,
log-stability, and exponential stability are given as corollaries. In the fifth part, the effectiveness and
feasibility of the method in this paper are illustrated by three examples. In the sixth part, we draw
conclusions of the article.

Notations: Some significant symbols used throughout this paper are considerably standard.
Rn×m denotes the collection of all n× m real-valued matrices. Cn×m denotes the collection of all
n×m complex-valued matrices. Qn×m denotes the collection of all n×m quaternion-valued matrices.
diag(· · · ) denotes a block-diagonal matrix. ‖ · ‖ denotes the Euclidean vector norm. SCn(Q) denotes
the collection of all quaternion positive matrices and quaternion self-conjugate matrices. p denotes a
quaternion-valued function, and p̄ denotes the conjugate of p. The superscript ∗ denotes the transpose
of a matrix or a vector. For any matrix G, λmax(G)(λmin(G)) denotes the largest (smallest) eigenvalue
of G.

2. Definition of Quaternion

The quaternion consists of four parts, one of which is a real number and three of which are
imaginary numbers, (i, j, and k). Generally, the quaternion is defined by a vector q, where q belongs to
the four-dimensional vector space. We use the following form to represent the quaternion

q = q0 + q1i + q2j + q3k,

where qv(v = 0, 1, 2, 3) are real numbers and i, j, k satisfy the multiplication table formed by

i2 = j2 = k2 = −1; ij = −ji = k; kj = −jk = i; ik = −ki = j.

The above representations are said to be the Hamilton rule. We see that the multiplication of the
quaternion is not interchangeable.

Similar to the definition of complex, q̄ is defined as the conjugate of the quaternion q ∈ Qn.

q̄ = q0 − q1i− q2j− q3k,

For any q ∈ Qn, |q| = √qq̄ =
√

q2
0 + q2

1 + q2
2 + q2

3. q can be expressed as q = c1 + c2j with each
q ∈ Qn, where c1, c2 ∈ Cn.

3. Problem Statement and Preliminaries

Firstly, the delayed QVNTNN is introduced by the following

ẏ(t)− C ẏ(t− ν(t)) = −Dy(t) +Ap(y(t)) + Bp(y(t− ν(t))) + κ. (1)

where y(t) = (y1(t), y2(t), . . . , yn(t))∗ ∈ Qn is the state vector, and p(?) = (p(?), . . . , pn(?))∗ ∈ Qn

is the feedback function of a neuron. κ = (κ1, κ2, . . . , κn)∗ ∈ Qn is the external input function. D =

diag(d1, d2, . . . , dn) ∈ Rn×n is the diagonal matrix with di > 0(i = 1, 2, . . . , n). C = (cij)n×n ∈ Qn×n

is the suitable dimensional quaternion matrix. A = (aij)n×nQ
n×n, B = (bij)n×n ∈ Qn×n stand for

the connection weight matrix and delayed connection weight matrix, respectively. ν(t) represents
the time-varying delay and satisfies 0 ≤ ν(t) ≤ ν, ν̇(t) ≤ ς. The initial condition of the QVNTNNs
(Equation (1)) is y(t) = ψ(t), t ∈ [−ν, 0], where ψ(t) ∈ Qn.

Assumption 1. For any y ∈ Q, y can be expressed as

y = y11 + iy12 + jy21 + ky22 = y1 + y2j,
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where y1 = y11 + iy12, y2 = y21 + iy22.
Similarly,

A = A1 +A2j, B = B1 + B2j, C = C1 + C2j, p(y(t)) = p1(y1(t)) + p2(y2(t))j,

p(y(t− ν(t))) = p1(y1(t− ν(t))) + p2(y2(t− ν(t)))j, p̄(y(t)) = p̄1(y1(t)) + p̄2(y2(t))j,

p̄(y(t− ν(t))) = p̄1(y1(t− ν(t))) + p̄2(y2(t− ν(t)))j.

where A1 = AR
1 + iAI

1, B1 = BR
1 + iB I

1, C1 = CR
1 + iC I

1. Note that (·)R on behalf of Re(·), (·)I on behalf of
Im(·). pv(·) ∈ Cn (v = 1, 2), p̄v(·) ∈ Cn (v = 1, 2). Particularly, jT = T̄ j or jT j = T̄ for any complex
matrix T ∈ Cn×n.

Assumption 2. The neuron activation function pv(·) and p̄v(y(·)) (v = 1, 2) satisfy the Lipschitz condition
for any y, y

′ ∈ Cn, y 6= y
′
. There exist constants Lγ(γ = 1, 2, . . . , n) such that

‖pv(y)− pv(y
′
)‖ ≤ Lγ‖y− y

′‖, ‖ p̄v(y)− p̄v(y
′
)‖ ≤ Lγ‖y− y

′‖.

Assumption 3. According to the stability of the theorem in [44] for neutral systems, we assume that the radius
of C is smaller than 1.

Definition 1 ([45]). The QVNTNNs (Equation (1)) is called µ-stable. For a function µ(t), which is positive
and continuous, µ(t)→ +∞ when t→ +∞. Then, there exists a positive constant ϕ such that the following
inequality holds:

‖y(t)‖ ≤ ϕ

µ(t)
,

for all t > 0.

Remark 1. The gained µ-stable conditions can be transformed as power-stability, log-stability, and exponential
stability by varying the positive continuous function µ(t).

Definition 2 ([45]). For a function evt, which is positive and continuous, let t → +∞; it is clear that
evt → +∞. Then, there exists a positive constant ϕ for all t > 0 such that the following inequality holds:

‖y(t)‖ ≤ ϕ

evt ,

and the QVNTNN (Equation (1)) is called exponentially stable.

Definition 3 ([45]). For a function tv , which is positive and continuous, let t→ +∞; it is clear that tv → +∞
if there exists a constant ϕ > 0 such that the following inequality holds:

‖y(t)‖ ≤ ϕ

tv
, (t > 0)

and the QVNTNN (Equation (1)) is power-stable.

Definition 4 ([45]). There exists a positive constant ϕ and a positive and continuous function ln(vt + 1).
While t→ +∞, we have ln(vt + 1)→ +∞ such that the following inequality holds:

‖y(t)‖ ≤ ϕ

ln(vt + 1)
, (t > 0)

and the QVNTNN (Equation (1)) is called log-stable.
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Lemma 1 ([46]). For given a Hermitian matrixW > 0, the following inequality holds for all continuously
differentiable functions φ in [f, g]→ Cn×n:∫ g

f
φ̇∗(u)W φ̇(u)du ≥ 1

g− f
(φ(g)− φ(f))∗W(φ(g)− φ(f)) +

3
g− f

Ξ∗WΞ,

where

Ξ = φ(g) + φ(f)− 2
g− f

∫ g

f
φ(u)du.

Lemma 2 ([26]). If each given matrix G ∈ SCn(Q), then each eigenvalue of matrix G is real.

Lemma 3 ([47]). If there exists a continuous mapping M(y): Cn → Cn and it satisfies the following conditions

(1) M(y): Cn → Cn is an injective mapping,
(2) while ‖ y ‖→ ∞, then ‖M(y) ‖→ ∞,

then, ‖M(y) ‖→ is called a homeomorphism of Cn.

Lemma 4. For ρi(t) ∈ [0, 1], ∑n
i=1 ρi(t) = 1, and vectors ξi which satisfy ξi = 0, with ρi(t) = 0,

matricesMi > 0,Mi ∈ Cn×n, if there exist Hermitian matrices Sij(i = 1, 2, . . . ,m− 1, j = i + 1, . . . ,m),
Sij ∈ Cn×n satisfying [

Mi Sij
S∗ij Mi

]
≥ 0,

then, the following inequality holds:

n

∑
i=1

1
ρi(t)

ξ∗iMiξi ≥

ξi
...

ξi


∗ Mi . . . Sij

∗ . . .
...

∗ ∗ Mi


ξi

...
ξi


Proof. For i = 2, it is easy to see that the following inequality

√
ρ2(t)
ρ1(t)

ξ1

−
√

ρ1(t)
ρ2(t)

ξ2


∗ [
Mi Sij
S∗ij Mi

] 
√

ρ2(t)
ρ1(t)

ξ1

−
√

ρ1(t)
ρ2(t)

ξ2

 ≥ 0

always holds. Then, one has

1
ρ1(t)

ξ∗1M1ξ1 +
1

ρ2(t)
ξ∗2M2ξ2 =

1
ρ1(t)

ξ∗1(ρ1(t) + ρ2(t))M1ξ1 +
1

ρ2(t)
ξ∗2(ρ1(t) + ρ2(t))M2ξ2

= ξ∗1M1ξ1 + ξ∗2M2ξ2 +
ρ2(t)
ρ1(t)

ξ∗1M1ξ1 +
ρ1(t)
ρ2(t)

ξ∗2M2ξ2 ≥ ξ∗1M1ξ1 + ξ∗2M2ξ2 + ξ∗1Sijξ2 + ξ∗2S∗ijξ1

=

[
ξ1

ξ2

]∗ [
Mi Sij
S∗ij Mi

] [
ξ1

ξ2

]
.

The situation of i = n can also be established with a similar method. Here, the proof processing
is omitted. �
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Remark 2. Clearly, Lemma 4 is an extension of Lemma 2 in [48], which just considers the application in the
real number field. Lemma 4 can be applied to the complex field. Therefore, the range of application of Lemma 4
is wider than that given in [48]. This paper is further extended by the literature [48] so that it can be applied
to the complex number field. Thus, one can conclude that the range of application for Lemma 4 is wider and
more practical.

4. Main Results

In the following content, we first present the condition for the existence and uniqueness of the
equilibrium point for the system in Equation (1).

Theorem 1. On the basis of Assumptions 1 and 2, the system in Equation (1) has a unique equilibrium point if
there exists a positive diagonal matrix Vi(i = 1, 2, . . . , 6) and the following LMIs are satisfied

Ξ8×8 < 0 (2)

where

Ξ1,1 = D∗D − 2DV1 + L∗1V3L1 + L∗3V5L3, Ξ1,3 = 2V1(A1 + B1)−D∗(A1 + B1),

Ξ1,6 = D∗(A2 + B2)− 2V2(A2 + B2), Ξ1,7 = 2CV1 −D∗C, Ξ2,2 = D∗D − 2DV2 + L∗2V4L2 + L∗4V6L4,

Ξ2,4 = 2V2(A1 + B1)−D∗(A1 + B1), Ξ2,5 = 2V2(A2 + B2)−D∗(A2 + B2), Ξ2,8 = 2CV2 −D∗C,

Ξ3,3 = (A∗1 + B∗1 )(A1 + B1)− V3, Ξ3,6 = −(A∗1 + B∗1 )(A2 + B2), Ξ3,7 = (A∗1 + B∗1 )C,

Ξ4,4 = (A∗1 + B∗1 )(A1 + B1)− V4, Ξ4,5 = (A∗1 + B∗1 )(A2 + B2), Ξ4,8 = (A∗1 + B∗1 )C,

Ξ5,5 = (A∗2 + B∗2 )(A2 + B2)− V5, Ξ5,8 = (A∗2 + B∗2 )C, Ξ6,6 = (A∗2 + B∗2 )(A2 + B2)− V6,

Ξ6,7 = −(A∗2 + B∗2 )C, Ξ7,7 = C∗C − I, Ξ8,8 = C∗C − I.

Proof. According to Assumption 1, Equation (1) can be rewritten in the following form
ẏ1(t) = −Dy1(t) + C ẏ1(t− ν(t)) +A1 p1(y1(t))−A2 p̄2(y2(t)) + B1 p1(y1(t− ν(t))−B2 p̄2(y2(t− ν(t)) + κ1,

ẏ2(t) = −Dy2(t) + C ẏ2(t− ν(t)) +A1 p2(y2(t)) +A2 p̄1(y1(t)) + B1 p2(y2(t− ν(t)) + B2 p̄1(y1(t− ν(t)) + κ2.
(3)

To prove the existence and uniqueness of the solution, we need to construct a mapping which
combines the information of the system in Equation (3), and it can be written as follows:

M(y1, y2) =

[
−Dy1 + CMν

1(y1, y2) +A1 p1(y1)−A2 p̄2(y2) + B1 p1(y1)−B2 p̄2(y2) + κ1

−Dy2 + CMν
2(y1, y2) +A1 p2(y2) +A2 p̄1(y1) + B1 p2(y2) + B2 p̄1(y1) + κ2

]
(4)

where

M(y1, y2) = (M1(y1, y2),M2(y1, y2))
∗,

M1(y1, y2) = −Dy1 + CMν
1(y1, y2) +A1 p1(y1)−A2 p̄2(y2) + B1 p1(y1)−B2 p̄2(y2) + κ1,

M2(y1, y2) = −Dy2 + CMν
2(y1, y2) +A1 p2(y2(t)) +A2 p̄1(y1) + B1 p2(y2) + B2 p̄1(y1) + κ2.

If y̆ is an equilibrium point of the system in Equation (1), in light of Assumptions 1 and 3,
let y̆ = y̆1 + y̆2j; then, y̆ satisfies the following equation
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[
0
0

]
=

[
−Dy̆1 +A1 p1(y̆1)−A2 p̄2(y̆2) + B1 p1(y̆1)−B2 p̄2(y̆2) + κ1

−Dy̆2 +A1 p2(y̆2) +A2 p̄1(y̆1) + B1 p2(y̆2) + B2 p̄1(y̆1) + κ2

]
(5)

In light of Lemma 4, if M(y) satisfies the homeomorphic mapping on Cn, then we can find conditions
to guarantee that there exists a unique equilibrium point for the system in Equation (1).

Next, the proof is divided into two sections.
In the first place, we need to prove that M(y1, y2) is an injective. If we choose two points,

(y1, y2)
∗, (y

′
1, y

′
2)
∗ ∈ Cn and (y1, y2) 6= (y

′
1, y

′
2), in light of the definition of the activation function given

by Assumption 2, we have p(y1, y2) 6= p(y
′
1, y

′
2).

From Equation (4), we have

M(y1, y2)−M(y
′
1, y

′
2) =


−D(y1 − y

′
1) + C(M1(y1, y2)−M1(y

′
1, y

′
2)) +A1(p1(y1)− p1(y

′
1))

−A2( p̄2(y2)− p̄2(y
′
2)) + B1(p1(y1)− p1(y

′
1))−B2( p̄2(y2)− p̄2(y

′
2))

−D(y2 − y
′
2) + C(M2(y1, y2)−M2(y

′
1, y

′
2)) +A1(p2(y2)− p2(y

′
2))

+A2( p̄1(y1)− p̄1(y
′
1)) + B1(p2(y2)− p2(y

′
2)) + B2( p̄1(y1)− p̄1(y

′
1))

 (6)

Let us multiply both sides of Equation (6) by{
2

[
(y1 − y

′
1)
∗ (y2 − y

′
2)
∗
] [
V1 0
0 V2

]
+

[
(M1(y1, y2)−M1(y

′
1, y

′
2))
∗(M2(y1, y2)−M2(y

′
1, y

′
2))
∗
]}

. (7)

We can get{
2

[
(y1 − y

′
1)
∗ (y2 − y

′
2)
∗
] [
V1 0
0 V2

]
+

[
(M1(y1, y2)−M1(y

′
1, y

′
2))
∗ (M2(y1, y2)−M2(y

′
1, y

′
2))
∗
]}

×
[
M(y1, y2)−M(y

′
1, y

′
2)

]
(8)

= 2

[
(y1 − y

′
1)
∗ (y2 − y

′
2)
∗
] [
V1 0
0 V2

] [
M(y1, y2)−M(y

′
1, y

′
2)

]

+

[
(M1(y1, y2)−M1(y

′
1, y

′
2))
∗ (M2(y1, y2)−M2(y

′
1, y

′
2))
∗
][

M(y1, y2)−M(y
′
1, y

′
2)

]
.

For the sake of providing a clean and succinct representation of the equation, some symbols are defined
as follows:

z1 = [e∗1 e∗2 e∗3 e∗4 e∗5 e∗6 e∗7 e∗8 ], e1 = y1 − y
′
1, e2 = y2 − y

′
2, e3 = p1(y1)− p1(y

′
1),

e4 = p2(y2)− p2(y
′
2), e5 = p̄1(y1)− p̄1(y

′
1), e6 = p̄2(y2)− p̄2(y

′
2), e7 = M1(y1, y2)−M1(y

′
1, y

′
2), (9)

e8 = M2(y1, y2)−M2(y
′
1, y

′
2).

To make a transformation for Equation (8), we have
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2

[
e∗1 e∗2

] [
V1 0
0 V2

] [
M(y1, y2)−M(y

′
1, y

′
2)

]

= 2e∗1V1e∗7 + 2e∗2V2e∗8 +

[
e∗7 e∗8

][
M(y1, y2)−M(y

′
1, y

′
2)

]
−
[

e∗7 e∗8

][
M(y1, y2)−M(y

′
1, y

′
2)

]
= − e∗7e7 − e∗8e8 + 2e∗1V1[−De1 + Ce7 +A1e3 −A2e6 + B1e3 −B2e6] + 2e∗2V2[−De2 + Ce8 +A1e4

+A2e5 + B1e4 + B2e5] + [−De1 + Ce7 +A1e3 −A2e6 + B1e3 −B2e6]
∗[−De1 + Ce7 +A1e3 −A2e6 (10)

+ B1e3 −B2e6] + [−De2 + Ce8 +A1e4 +A2e5 + B1e4 + B2e5]
∗[−De2 + Ce8 +A1e4 +A2e5 + B1e4

+ B2e5].

= − e∗7e7 − e∗8e8 − 2e∗1V1De1 + 2e∗1V1Ce7 + 2e∗1V1A1e3 − 2e∗1V1A2e6 + 2e∗1V1B1e3 − 2e∗1V1B2e6

− 2e∗2V2De2 + 2e∗2V2Ce8 + 2e∗2V2A1e4 + 2e∗2V2A2e5 + 2e∗2V2B1e4 + 2e∗2V2B2e5 + e∗1D∗De1

− e∗1D∗(A1 + B1)e3 + e∗1D∗(A2 + B2)e6 − e∗1D∗Ce7 − e∗3(A∗1 + B∗1 )De1 + e∗3(A∗1 + B∗1 )(A1 + B1)e3

− e∗3(A∗1 + B∗1 )(A2 + B2)e6 + e∗3(A∗1 + B∗1 )Ce7 + e∗6(A∗2 + B∗2 )De1 − e∗6(A∗2 + B∗2 )(A1 + B1)e3

+ e∗6(A∗2 + B∗2 )(A2 + B2)e6 − e∗6(A∗2 + B∗2 )Ce7 − e∗7C∗De1 + e∗7C∗(A1 + B1)e3 − e∗7C∗(A2 + B2)e6 (11)

+ e∗7C∗Ce7 + e∗2D∗De2 − e∗2D∗(A1 + B1)e4 + e∗2D∗(A2 + B2)e5 − e∗2D∗Ce8 − e∗4(A∗1 + B∗1 )De2

+ e∗4(A∗1 + B∗1 )(A1 + B1)e4 + e∗4(A∗1 + B∗1 )(A2 + B2)e5 + e∗4(A∗1 + B∗1 )Ce8 + e∗5(A∗2 + B∗2 )De2

+ e∗5(A∗2 + B∗2 )(A1 + B1)e4 + e∗5(A∗2 + B∗2 )(A2 + B2)e5 + e∗5(A∗2 + B∗2 )Ce8 − e∗8C∗De2 + e∗8C∗(A1 + B1)e4

+ e∗8C∗(A2 + B2)e5 + e∗8C∗Ce8.

On the basis of Assumption 2, for diagonal matrices Vi > 0 (i = 3, 4, 5, 6), we can obtain

0 ≤ e∗1 L∗1V3L1e1 − e∗3V3e3, 0 ≤ e∗2 L∗2V4L2e2 − e∗4V4e4, (12)

0 ≤ e∗1 L∗3V5L3e1 − e∗5V5e5, 0 ≤ e∗2 L∗4V6L4e2 − e∗6V6e6.

Combining Equation (10) with Equation (12), one can obtain

2

[
e∗1 e∗2

] [
V1 0
0 V2

] [
M(y1, y2)−M(y

′
1, y

′
2)

]
≤e∗1(D∗D − 2DV1 + L∗1V3L1 + L∗3V5L3)e1 + e∗1 [2V1(A1 + B1)−D∗(A1 + B1)]e3 + e∗1 [D∗(A2 + B2)

− 2V2(A2 + B2)]e6 + e∗1(2CV1 −D∗C)e7 + e∗2(D∗D − 2DV2 + L∗2V4L2 + L∗4V6L4)e2 + e∗2 [2V2(A1 + B1)

−D∗(A1 + B1)]e4 + e∗2 [2V2(A2 + B2)−D∗(A2 + B2)]e5 + e∗2(2CV2 −D∗C)e8 + e∗3 [(A∗1 + B∗1 )(A1 + B1)

− V3]e3 − e∗3 [(A∗1 + B∗1 )(A2 + B2)]e6 + e∗3 [(A∗1 + B∗1 )C]e7 + e∗4 [(A∗1 + B∗1 )(A1 + B1)− V4]e4

+ e∗4 [(A∗1 + B∗1 )(A2 + B2)]e5 + e∗4 [(A∗1 + B∗1 )C]e8 + e∗5 [(A∗2 + B∗2 )(A2 + B2)− V5]e5 + e∗5 [(A∗2 + B∗2 )C]e8

+ e∗6 [(A∗2 + B∗2 )(A2 + B2)− V6]e6 − e∗6 [(A∗2 + B∗2 )C]e7 + e∗7(C∗C − I)e7 + e∗8(C∗C − I)e8

= z∗1Ξz1.

In light of Theorem 1 and (y1, y2) 6= (y
′
1, y

′
2), the following inequality is established

2

[
e∗1 e∗2

] [
V1 0
0 V2

] [
M(y1, y2)−M(y

′
1, y

′
2)

]
< 0

One can draw the conclusion that M(y1, y2) 6= M(y
′
1, y

′
2) for all (y1, y2) 6= (y

′
1, y

′
2). Accordingly,

M(y1, y2) is an injective.
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In the second place, we need to prove that ‖M(y1, y2) ‖→ ∞ as (y1, y2)→ ∞. Let (y
′
1, y

′
2) = (0, 0);

then, we have

−2

[
y∗1 y∗2

] [
V1 0
0 V2

] [
M(y1, y2)−M(0, 0)

]
≥ λmin(−Ξ) ‖ (y1, y2) ‖2

From the Cauchy–Schwarz inequality, we have

2 ‖ (y1, y2) ‖ ‖ V1 ‖ ‖ V2 ‖ (‖M(y1, y2) ‖ + ‖M(0, 0) ‖) ≥ λmin(−Ξ) ‖ (y1, y2) ‖2

while (y1, y2) 6= 0. So, we have

‖M(y1, y2) ‖≥
λmin(−Ξ) ‖ (y1, y2) ‖

2 ‖ V1 ‖ ‖ V2 ‖
− ‖M(0, 0) ‖

Therefore, we clearly know that ‖ M(y1, y2) ‖→ ∞ as ‖ (y1, y2) ‖→ ∞. Thus, the conditions of
Lemma 3 are satisfied, and ‖ M(y1, y2) ‖ is a homeomorphism mapping. Hence, from Corollary 1
in [49], the condition for the existence of a unique equilibrium point of the system in Equation (1) is
proved.

In the following content, we present the conditions for global µ-stability criteria for the system in
Equation (1). Firstly, suppose that y̌ is the unique equilibrium point of the QVNTNN (Equation (1)),
where y̌ = (y̌, y̌, . . . , y̌)∗. According to Assumption 1 and the transformation ỹ = y− y̌, the system in
Equation (1) can be rewritten as the following:

˙̃y1(t) = −Dỹ1(t) + C ˙̃y1(t− ν(t)) +A1(p1(ỹ1(t) + y̆1)− p1(y̆1))−A2( p̄2(ỹ2(t) + y̆2)− p̄2(y̆2))

+B1(p1(ỹ1(t− ν(t)) + y̆1)− p1(y̆1))−B2( p̄2(ỹ2(t− ν(t)) + y̆2)− p̄2(y̆2)),
˙̃y2(t) = −Dỹ2(t) + C ˙̃y2(t− ν(t)) +A1(p2(ỹ2(t) + y̆2)− p2(y̆2)) +A2( p̄1(ỹ1(t) + y̆1)− p̄1(y̆1))

+B1(p2(ỹ2(t− ν(t)) + y̆2)− p2(y̆2)) + B2( p̄1(ỹ1(t− ν(t)) + y̆1)− p1(y̆1)).

(13)

For the sake of convenience, in this paper, some symbols are defined as follows:

k1 = [I∗1 I∗2 I∗3 I∗4 I∗5 I∗6 I∗7 I∗8 I∗9 I∗10 I∗11 I∗12]
∗,

k2 = [h∗1 h∗2 h∗3 h∗4 h∗5 h∗6 h∗7 h∗8 h∗9 h∗10 h∗11 h∗12]
∗,

I1 = ỹ1(t), I2 = ỹ1(t− ν(t)), I3 = (p1(ỹ1(t) + y̆1)− p1(y̆1)),

I4 = ( p̄2(ỹ2(t) + y̆2)− p̄2(y̆2)), I5 = (p1(ỹ1(t− ν(t)) + y̆1)− p1(y̆1)),

I6 = ( p̄2(ỹ2(t− ν(t)) + y̆2)− p̄2(y̆2)), I7 = ˙̃y1(t− ν(t)), I8 = ˙̃y1(t),

I9 = ỹ1(t− ν), I10 =
2

ν(t)

∫ t

t−ν(t)
ỹ1(u)du, I11 =

2
ν− ν(t)

∫ t−ν(t)

t−ν
ỹ1(u)du,

I12 = (p1(ỹ1(t− ν) + y̆1)− p1(y̆1)), h1 = ỹ2(t), h2 = ỹ2(t− ν(t)),

h3 = (p2(ỹ2(t) + y̆2)− p2(y̆2)), h4 = ( p̄1(ỹ1(t) + y̆1)− p̄1(y̆1)),

h5 = (p2(ỹ2(t− ν(t)) + y̆2)− f2(y̆2)), h6 = ( p̄1(ỹ1(t− ν(t)) + y̆1)− p̄1(y̆1)),

h7 = ˙̃y2(t− ν(t)), h8 = ˙̃y2(t), h9 = ỹ2(t− ν), h10 =
2

ν(t)

∫ t

t−ν(t)
ỹ2(u)du,

h11 =
2

ν− ν(t)

∫ t−ν(t)

t−ν
ỹ2(u)du, h12 = (p2(ã2(t− ν) + y̆2)− p2(y̆2)).

Now, we present our main results in the following theorem.�

Theorem 2. Assume that Assumptions 1 and 2 hold. For a given positive constant ν, the equilibrium point of
QVNTNNs (Equation (1)) is µ-stable if there exist positive definite Hermitian matrices P ∈ Cn×n, Q ∈ Cn×n,
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R ∈ Cn×n, S ∈ Cn×n,W ∈ Cn×n, X ∈ Cn×n, Y ∈ Cn×n, constants β1 ≥ 0, β2 ≥ 0, positive definite real
diagonal matrices Ni(i = 1, 2, . . . , 6), and if µ(t) is a nonnegative function which belongs to L2[0, ∞) for all
t > 0.

µ̇(t)
µ(t)

≤ β1, min
{

µ(t− ν(t))
µ(t)

,
µ(t− ν)

µ(t)

}
≥ β2

such that the following LMIs hold

S̄i > 0 (i = 1, 2), Φ12×12 < 0, Ω12×12 < 0. (14)

where
Φ1,1 = Q+X + β1P − 4β2S−DN ∗6 −N6D∗ + Λ1N1 + Λ5N3,

Φ1,2 = −β2U1 − β2U2 − β2U4 − β2U ∗2 − 2β2S , Φ1,3 = A1N ∗6 , Φ1,4 = −A2N ∗6 ,

Φ1,5 = B1N ∗6 , Φ1,6 = −B2N ∗6 , Φ1,7 = CN ∗6 , Φ1,8 = P −N ∗6 −N5D∗,

Φ1,9 = β2U1 − β2U2 − β2U4 + β2U ∗2 , Φ1,10 = 3β2S , Φ1,11 = β2U2 + 2β2U4

Φ2,2 = β2U1 − β2U4 + β2U ∗1 − β2U ∗4 − 8β2S − β2X + (ς− 1)β2Q+ Λ3β2N2 + Λ7β2N4,

Φ2,9 = β2U2 − β2U1 − β2U4 + β2U ∗2 − 2β2S , Φ2,10 = β2U2 + β2U ∗4 + 3β2S ,

Φ2,11 = β2U4 − β2U2 + 3β2S , Φ3,3 = R+ Y −N3, Φ3,8 = N5A∗1 , Φ4,4 = −N1,

Φ4,8 = −N5A∗2 , Φ5,5 = (ς− 1)β2R−N4, Φ5,8 = N5B∗1 , Φ6,6 = −β2N2, Φ6,8 = −N5B∗2 ,

Φ7,7 = −β2W , Φ7,8 = N5C∗, Φ8,8 =W −N5 −N ∗5 + ν2S , Φ9,9 = −4β2S , Φ9,10 = β2U ∗4 − 2β2U2,

Φ9,11 = 3β2S , Φ10,10 = −3β2S , Φ10,11 = −4β2U4, Φ11,11 = −3β2S , Φ12,12 = −β2Y ,

Ω1,1 = Q+X + β1P − 4β2S −DN ∗6 −N6D∗ + Λ2N1 + Λ6N3,

Ω1,2 = −β2U5 − β2U6 − β2U8 − β2U ∗6 − 2β2S , Ω1,3 = A1N ∗6 , Ω1,4 = A2N ∗6 ,

Ω1,5 = B1N ∗6 , Ω1,6 = B2N ∗6 , Ω1,7 = CN ∗6 , Ω1,8 = P −N ∗6 −N5D∗,

Ω1,9 = β2U5 − β2U6 − β2U8 + β2U ∗6 , Ω1,10 = 3β2S , Ω1,11 = β2U6 + β2U8,

Ω2,2 = β2U5 − β2U8 + β2U ∗5 − β2U ∗8 − 8β2S − β2X + β2(ς− 1)Q+ β2Λ4N2 + β2Λ8N4,

Ω2,9 = β2U6 − β2U5 − β2U8 + β2U ∗6 − 2β2S , Ω2,10 = β2U6 + β2U ∗8 + 3β2S ,

Ω2,11 = β2U8 − β2U6 + 3β2S , Ω3,3 = R+ Y −N3, Ω3,8 = N5A∗1 , Ω4,4 = −N1,

Ω4,8 = N5A∗2 , Ω5,5 = β2(ς− 1)R−N4, Ω5,8 = N5B∗1 , Ω6,6 = −β2N2, Ω6,8 = −N5B∗2 ,

Ω7,7 = −β2W , Ω7,8 = N5C∗, Ω8,8 =W −N5 −N ∗5 + ν2S , Ω9,9 = −4β2S , Ω9,10 = β2U ∗8 − β2U6,

Ω9,11 = 3Sβ2, Ω10,10 = −3β2S , Ω10,11 = −β2U8, Ω11,11 = −3β2S , Ω12,12 = −β2Y ,

S̄1 =

[
diag{S1, 3S3} Ū1

Ū ∗1 diag{S1, 3S3}

]
, Ū1 =

[
U1 U2

U ∗2 U4

]
,

S̄2 =

[
diag{S1, 3S3} Ū2

Ū ∗2 diag{S1, 3S3}

]
, Ū2 =

[
U5 U6

U ∗6 U8

]
.
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Proof. Let us choose a new Lyapunov–Krasovskii functional for the system in Equation (13) as follows:

V(ỹ(t)) =
4

∑
i=1

Vi(ỹ(t)), (15)

where

V1(ỹ(t)) = µ(t)ỹ∗1(t)P ỹ1(t) + µ(t)ỹ∗2(t)P ỹ2(t),

V2(ỹ(t)) =
∫ t

t−ν(t)
µ(u)ỹ∗1(u)Qỹ1(u)du +

∫ t

t−ν(t)
µ(u)ỹ∗2(u)Qỹ2(u)du

+
∫ t

t−ν(t)
µ(u)(p1(ỹ1(u) + y̆1)− p1(y̆1))

∗R(p1(ỹ1(u) + y̆1)− p1(y̆1))du

+
∫ t

t−ν(t)
µ(u)(p2(ỹ2(u) + y̆2)− p2(y̆2))

∗R(p2(ỹ2(u) + y̆2)− p2(y̆2))du

+
∫ t

t−ν
µ(u)ỹ∗1(u)X ỹ1(u)du +

∫ t

t−ν
µ(u)ỹ∗2(u)X ỹ2(u)du

+
∫ t

t−ν
µ(u)(p1(ỹ1(u) + y̆1)− p1(y̆1))

∗Y(p1(ỹ1(u) + y̆1)− p1(y̆1))du

+
∫ t

t−ν
µ(u)(p2(ỹ2(u) + y̆2)− p2(y̆2))

∗Y(p2(ỹ2(u) + y̆2)− p2(y̆2))du,

V3(ỹ(t)) =
∫ t

t−ν(t)
µ(u) ˙̃y∗1(u)W ˙̃y1(u)du +

∫ t

t−ν(t)
µ(u) ˙̃y∗2(u)W ˙̃y2(u)du,

V4(ỹ(t)) = ν
∫ 0

−ν

∫ t

t+θ
µ(u) ˙̃y∗1(u)S ˙̃y1(u)dudθ + ν

∫ 0

−ν

∫ t

t+θ
µ(u) ˙̃y∗2(u)S ˙̃y2(u)dudθ.

Differentiating V(t) leads to

V̇1(ỹ(t)) = µ̇(t)I∗1PI1 + µ̇(t)h∗1Ph1 + µ(t)I∗8PI1 + µ(t)h∗8Ph1 + µ(t)I∗1PI8 + µ(t)h∗8Ph1,

V̇2(ỹ(t)) = µ(t)I∗1QI1 − µ(t− ν(t))(1− ς)I∗2QI2 + µ(t)h∗1Qh1 − µ(t− ν(t))(1− ς)h∗2Qh2

+µ(t)I∗3RI3 − µ(t− ν(t))(1− ς)h∗6Rh6 + µ(t)h∗3Rh3 − µ(t− ν(t))(1− ς)I∗6RI6

+µ(t)I∗1XI1 − µ(t− ν)I∗9XI9 + µ(t)h∗1X h1 − µ(t− ν)h∗9X h9 + µ(t)I∗3YI3

−µ(t− ν)I∗12YI12 + µ(t)h∗3Yh3 − µ(t− ν)h∗12Yh12,

V̇3(ỹ(t)) = µ(t)I∗8WI8 − µ(t− ν(t))I∗7WI7 + µ(t)h∗8Wh8 − µ(t− ν(t))h∗7Wh7,

V̇4(ỹ(t)) =ν2µ(t)I∗8SI8 + ν2µ(t)h∗8Sh8 − ν
∫ t

t−ν
µ(u) ˙̃y∗1(u)S ˙̃y1(u)du− ν

∫ t

t−ν
µ(u) ˙̃y∗2(u)S ˙̃y2(u)du.

≤ν2µ(t)I∗8SI8 + ν2µ(t)h∗8Sh8 − νµ(t− ν)
∫ t

t−ν
˙̃y∗1(u)S ˙̃y1(u)du− νµ(t− ν)

∫ t

t−ν
˙̃y∗2(u)S ˙̃y2(u)du

=ν2µ(t)I∗8SI8 + ν2µ(t)h∗8Sh8 + µ(t− ν)

(
− ν

∫ t

t−ν
˙̃y∗1(u)S ˙̃y1(u)du− ν

∫ t

t−ν
˙̃y∗2(u)S ˙̃y2(u)du

)
. (16)

Applying Lemma 1 to the integral term in Equation (16) yields

−ν
∫ t

t−ν

˙̃y∗1(u)S ˙̃y1(u)du
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= −ν
∫ t

t−ν(t)
˙̃y∗1(u)S ˙̃y1(u)du − ν

∫ t−ν(t)

t−ν

˙̃y∗1(u)S ˙̃y1(u)du

≤ − ν

ν(t)
[E∗1SE1 + 3E∗2SE2]−

ν

ν− ν(t)
[E∗3SE3 + 3E∗4SE4]

= − ν

ν(t)

[
E1

E2

]∗ [
S 0
0 3S

] [
E1

E2

]
− ν

ν− ν(t)

[
E3

E4

]∗ [
S 0
0 3S

] [
E3

E4

]
,

−ν
∫ t

t−ν

˙̃y∗2(u)S ˙̃y2(u)du

= −ν
∫ t

t−ν(t)
˙̃y∗2(u)S ˙̃y2(u)du− ν

∫ t−ν(t)

t−ν

˙̃y∗2(u)S ˙̃y2(u)du

≤ − ν

ν(t)
[E∗5SE5 + 3E∗6SE6]−

ν

ν− ν(t)
[E∗7SE7 + 3E∗8SE8]

= − ν

ν(t)

[
E5

E6

]∗ [
S 0
0 3S

] [
E5

E6

]
− ν

ν− ν(t)

[
E7

E8

]∗ [
S 0
0 3S

] [
E7

E8

]
,

where
E1 = I1 − I2, E2 = I1 + I2 − I10, E3 = I2 − I9, E4 = I2 + I9 − I11,

E5 = h1 − h2, E6 = h1 + h2 − h10 E7 = h2 − h9, E8 = h2 + h9 − h11.

Furthermore, due to S̄i ≥ 0(i = 1, 2), according to Lemma 4, we can easily get

−ν
∫ t

t−ν

˙̃y∗1(u)S ˙̃y1(u)du ≤ −Ẽ∗1 S̄1Ẽ1, −ν
∫ t

t−ν

˙̃y∗2(u)S ˙̃y2(u)du ≤ −Ẽ∗2 S̄2Ẽ2,

with

Ẽ1 =
[

E∗1 E∗2 E∗3 E∗4
]∗

, Ẽ2 =
[

E∗5 E∗6 E∗7 E∗8
]∗

.

On the other hand, for any diagonal matrices Ni ≥ 0(i = 1, 2, 3, 4), it follows from
Assumption 2 that



µ(t)I∗1 Λ1N1I1 − µ(t)h∗4N1h4 ≥ 0, µ(t)h∗1Λ2N1h1 − µ(t)I∗4N1I4 ≥ 0,

µ(t− ν(t))I∗2 Λ3N2I2 − µ(t− ν(t))h∗6N2h6 ≥ 0, µ(t− ν(t))h∗2Λ4N2h2 − µ(t− ν(t))I∗6N2I6 ≥ 0,

µ(t)I∗1 Λ5N3I1 − µ(t)I∗3N3I3 ≥ 0, µ(t)h∗1Λ6N3h1 − µ(t)h∗3N3h3 ≥ 0,

µ(t− ν(t))I∗2 Λ7N4I2 − µ(t− ν(t))I∗5N4I5 ≥ 0, µ(t− ν(t))h∗2Λ8N4h2 − µ(t− ν(t))h∗5N4h5 ≥ 0.

(17)

with Λi = diag(Λ1i, Λ2i, . . . , Λni)(i = 1, 2, . . . , 8). The following zero inequalities are introduced with
appropriate dimensional complex-valued matrices N5 ≥ 0 and N6 ≥ 0:

0 = µ(t)[I∗8N5 + I∗1N6][−I8 −DI1 + CI7 +A1I3 −A2I4 + B1I5 −B2I6]

+µ(t)[−I8 −DI1 + CI7 +A1I3 −A2I4 + B1I5 −B2I6]
∗[I8N5 + I1N6],

0 = µ(t)[h∗8N5 + h∗1N6][−h8 −Dh1 + Ch7 +A1h3 +A2h4 + B1h5 + B2h6]

+µ(t)[−h8 −Dh1 + Ch7 +A1h3 +A2h4 + B1h5 + B2h6]
∗[h8N5 + h1N6].

(18)

Combining ∑4
i=1 V̇i with Equations (17) and (18), we can easily get that

V̇(ỹ(t)) ≤ µ̇(t)I∗1PI1 + µ̇(t)h∗1Ph1 +µ(t)I∗8PI1 +µ(t)h∗8Ph1 +µ(t)I∗1PI8 +µ(t)h∗8Ph1 +µ(t)I∗1QI1

−µ(t− ν(t))(1− ς)I∗2QI2 + µ(t)h∗1Qh1 − µ(t− ν(t))(1− ς)h∗2Qh2 + µ(t)I∗3RI3
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−µ(t− ν(t))(1− ς)h∗6Rh6 + µ(t)h∗3Rh3 − µ(t− ν(t))(1− ς)I∗6RI6 + µ(t)I∗1XI1 − µ(t− ν)I∗9XI9

+µ(t)h∗1X h1 − µ(t− ν)h∗9X h9 + µ(t)I∗3YI3 − µ(t− ν)I∗12YI12 + µ(t)h∗3Yh3 − µ(t− ν)h∗12Yh12

+µ(t)I∗8WI8 − µ(t− ν(t))I∗7WI7 + µ(t)h∗8Wh8 − µ(t− ν(t))h∗7Wh7 + ν2µ(t)I∗8SI8

+ν2µ(t)h∗8Sh8 + µ(t− ν)

(
− ν

ν(t)

[
E1

E2

]∗ [
S 0
0 3S

] [
E1

E2

]
− ν

ν− ν(t)

[
E3

E4

]∗ [
S 0
0 3S

] [
E3

E4

]

− ν

ν(t)

[
E5

E6

]∗ [
S 0
0 3S

] [
E5

E6

]
− ν

ν− ν(t)

[
E7

E8

]∗ [
S 0
0 3S

] [
E7

E8

])
+ µ(t)I∗1 Λ1N1I1 − µ(t)h∗4N1h4

+µ(t)h∗1Λ2N1h1−µ(t)I∗4N1I4 +µ(t− ν(t))I∗2 Λ3N2I2−µ(t− ν(t))h∗6N2h6 +µ(t− ν(t))h∗2Λ4N2h2

−µ(t− ν(t))I∗6N2I6 + µ(t)I∗1 Λ5N3I1 − µ(t)I∗3N3I3 + µ(t)h∗1Λ6N3h1 − µ(t)h∗3N3h3

+µ(t− ν(t))I∗2 Λ7N4I2 − µ(t− ν(t))I∗5N4I5 + µ(t− ν(t))h∗2Λ8N4h2 − µ(t− ν(t))h∗5N4h5

+µ(t)[I∗8N5 + I∗1N6][−I8 −DI1 + CI7 +A1I3 −A2I4 + B1I5 −B2I6]

+µ(t)[−I8 −DI1 + CI7 +A1I3 −A2I4 + B1I5 −B2I6]
∗[I8N5 + I1N6],

+µ(t)[h∗8N5 + h∗1N6][−h8 −Dh1 + Ch7 +A1h3 +A2h4 + B1h5 + B2h6]

+µ(t)[−h8 −Dh1 + Ch7 +A1h3 +A2h4 + B1h5 + B2h6]
∗[h8N5 + h1N6]

≤ µ(t)

{
µ̇(t)
µ(t)
I∗1PI1 +

µ̇(t)
µ(t)

h∗1Ph1 + I∗8PI1 + h∗8Ph1 + I∗1PI8 + h∗8Ph1 + I∗1QI1

−µ(t− ν(t))(1− ς)

µ(t)
I∗2QI2 + h∗1Qh1 −

µ(t− ν(t))(1− ς)

µ(t)
h∗2Qh2 + I∗3RI3

−µ(t− ν(t))(1− ς)

µ(t)
h∗6Rh6 + h∗3Rh3 −

µ(t− ν(t))(1− ς)

µ(t)
I∗6RI6 + I∗1XI1 −

µ(t− ν)

µ(t)
I∗9XI9

+h∗1X h1 −
µ(t− ν)

µ(t)
h∗9X h9 + I∗3YI3 −

µ(t− ν)

µ(t)
I∗12YI12 + h∗3Yh3 −

µ(t− ν)

µ(t)
h∗12Yh12

+I∗8WI8 −
µ(t− ν(t))

µ(t)
I∗7WI7 + h∗8Wh8 −

µ(t− ν(t))
µ(t)

h∗7Wh7 + ν2I∗8SI8

+ν2h∗8Sh8 +
µ(t− ν)

µ(t)

(
− ν

ν(t)

[
E1

E2

]∗ [
S 0
0 3S

] [
E1

E2

]
− ν

ν− ν(t)

[
E3

E4

]∗ [
S 0
0 3S

] [
E3

E4

]

− ν

ν(t)

[
E5

E6

]∗ [
S 0
0 3S

] [
E5

E6

]
− ν

ν− ν(t)

[
E7

E8

]∗ [
S 0
0 3S

] [
E7

E8

])
+ I∗1 Λ1N1I1 − h∗4N1h4

+h∗1Λ2N1h1 − I∗4N1I4 +
µ(t− ν(t))

µ(t)
I∗2 Λ3N2I2 −

µ(t− ν(t))
µ(t)

h∗6N2h6 +
µ(t− ν(t))

µ(t)
h∗2Λ4N2h2

−µ(t− ν(t))
µ(t)

I∗6N2I6 + I∗1 Λ5N3I1 − I∗3N3I3 + h∗1Λ6N3h1 − h∗3N3h3

+
µ(t− ν(t))

µ(t)
I∗2 Λ7N4I2 −

µ(t− ν(t))
µ(t)

I∗5N4I5 +
µ(t− ν(t))

µ(t)
h∗2Λ8N4h2 −

µ(t− ν(t))
µ(t)

h∗5N4h5

+[I∗8N5 + I∗1N6][−I8 −DI1 + CI7 +A1I3 −A2I4 + B1I5 −B2I6]

+[−I8 −DI1 + CI7 +A1I3 −A2I4 + B1I5 −B2I6]
∗[I8N5 + I1N6],

+[h∗8N5 + h∗1N6][−h8 −Dh1 + Ch7 +A1h3 +A2h4 + B1h5 + B2h6]
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+[−h8 −Dh1 + Ch7 +A1h3 +A2h4 + B1h5 + B2h6]
∗[h8N5 + h1N6]

}
≤ µ(t)k∗1Φk1 + µ(t)k∗2Ωk2.

where Φ, Ω, S̄1, and S̄2 are defined in Theorem 2.
Consequently, according to Equation (14), we have

V̇(ỹ(t)) ≤ 0. (19)

Combined with Lemma 2, we claim that Λmin(P) is constant. Then, from Equation (15), one can
get

V(0) ≥ V(ỹ(t)) ≥ µ(t)Λmin(P)‖ỹ(t)‖2, (20)

for 0 ≤ t0 ≤ t, and we have

‖ỹ(t)‖2 ≤ ℘

µ(t)
, (21)

where ℘ = V(0)
Λmin(P)

. By the above derivation, it is obvious that Definition 1 is satisfied, and the origin
point of QVNTNNs (Equation (1)) is µ-stable. �

Corollary 1. Assume that Assumptions 1 and 2 hold. Given a positive constant ν, the equilibrium point of
QVNTNNs (Equation (1)) is globally exponentially stable if there exist positive definite Hermitian matrices
P ∈ Cn×n, Q ∈ Cn×n, R ∈ Cn×n, S ∈ Cn×n, W ∈ Cn×n, X ∈ Cn×n, Y ∈ Cn×n, constants β1 ≥ 0,
β2 ≥ 0, positive definite real diagonal matrices Ni(i = 1, 2, . . . , 6), and if µ(t) is a nonnegative function which
belongs to L2[0, ∞) such that Φ, Ω, and S̄i(i = 1, 2) in Theorem 2 hold, where β1 = v, β2 = e−vν.

Proof. Taking µ(t) = evt, we can obtain

µ̇(t)
µ(t)

= v = β1, min
{

µ(t− ν(t))
µ(t)

,
µ(t− ν)

µ(t)

}
= e−vν = β2. (22)

On the basis of the above discussion, it is clear that the results are derived directly via Theorem 2.
This proof is immediately completed. �

Corollary 2. Assume that Assumptions 1 and 2 hold. Given a positive constant ν, the equilibrium point of
QVNTNNs (Equation (1)) is globally power-stable if there exist positive definite Hermitian matrices P ∈ Cn×n,
Q ∈ Cn×n, R ∈ Cn×n, S ∈ Cn×n, W ∈ Cn×n, X ∈ Cn×n, Y ∈ Cn×n, two constants β1 ≥ 0, β2 ≥ 0,
positive definite real diagonal matrices Ni(i = 1, 2, . . . , 6), and if µ(t) is a nonnegative function which belongs
to L2[0, ∞) such that Φ, Ω, and S̄i(i = 1, 2) in Theorem 2 hold, where β1 = v

2ν , β2 = 1
2v .

Proof. Taking µ(t) = tv, for any t ≥ 2 max{1, ν}, we can obtain

µ̇(t)
µ(t)

≤ v

2ν
= β1, min

{
µ(t− ν(t))

µ(t)
,

µ(t− ν)

µ(t)

}
≥ 1

2v
= β2. (23)

By the above computation, it is concluded that the conditions in Theorem 2 are still satisfied.
The proof is completed. �

Corollary 3. Assume that Assumptions 1 and 2 hold. Given a positive constant ν, the equilibrium point of
QVNTNNs (Equation (1)) is globally log-stable if there exist positive definite Hermitian matrices P ∈ Cn×n,
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Q ∈ Cn×n, R ∈ Cn×n, S ∈ Cn×n,W ∈ Cn×n, X ∈ Cn×n, Y ∈ Cn×n, constants β1 ≥ 0, β2 ≥ 0, positive
definite real diagonal matrices Ni(i = 1, 2, . . . , 6), and if µ(t) is a nonnegative function which belongs to
L2[0, ∞) such that Φ, Ω, and S̄i(i = 1, 2) in Theorem 2 hold, where β1 = v

e , β2 = 1
ln(e+vν)

.

Proof. Taking µ(t) = ln(vt + 1), for any t ≥ ( e−1
v ) + ν, we have

µ̇(t)
µ(t)

≤ v

e
= β1, min

{
µ(t− ν(t))

µ(t)
,

µ(t− ν)

µ(t)

}
≥ 1

ln(e + vν)
= β2. (24)

From the above expressions, and based on the Theorem 2, one can conclude that the conditions in
Corollary 3 can be easily achieved. Thus, this completes the proof. �

Remark 3. Compared with the existing literature (see, e.g., [27,28,30]), we use the reciprocal convex
combination approach combined with the free-weighting matrix method for getting Theorem 2. In this way, the
time-delay information is fully explored and can be a reduced conservative result.

Remark 4. By Theorem 2, we obtain the stability criterion of global µ-stability, and then we can generalize the
results to the global exponential stability, global power-stability, and global log-stability.

Remark 5. Since the delay-dependent stability conditions are always less conservative than the delay-independent
stability conditions, this paper mainly considered the delay-dependent stability for the systems with bounded
time-varying delays. In fact, the stability conditions of QVNTNNs that are unbounded time-varying can also
established with a similar method. Moreover, the stability conditions in this paper are also suitable for unbounded
time-varying delays depending on the properties of the QVNTNN itself.

5. Numerical Example

In order to show the effectiveness and advantages of the proposed method, three interesting
numerical examples are given as follows.

Example 1. The delayed QVNTNN (Equation (1)) is rewritten as follows:

ẏ(t)− C ẏ(t− ν(t)) = −Dy(t) +Ap(y(t)) + Bp(y(t− ν(t))) + κ.

where y = y11 + iy12 + jy21 + ky22 ∈ Q2×1, and

A =

(
0.2 + 0.5i− 0.5j + 0.1k 0.4 + 0.4i− 0.6j + 0.1k
−0.5 + 0.2i− 0.1j + 0.5k 0.3 + 0.4i + 0.1j + 0.6k

)

=

(
0.2 + 0.5i 0.4 + 0.4i
−0.5 + 0.2i 0.3 + 0.4i

)
+

(
−0.5 + 0.1i −0.6 + 0.1i
−0.1 + 0.5i 0.1 + 0.6i

)
j

= A1 +A2j,

B =

(
−0.3 + 0.4i− 0.5j + 0.2k 0.6− 0.2i− 0.3j− 0.5k
0.2 + 0.8i + 0.2j + 0.5k −0.4− 0.3i− 0.5j− 0.3k

)

=

(
−0.3 + 0.4i 0.6− 0.2i
0.2 + 0.8i −0.4− 0.3i

)
+

(
−0.5 + 0.2i −0.3− 0.5i
0.2 + 0.5i −0.5− 0.3i

)
j

= B1 + B2j,

C =
(

0.1 + 0.05i + 0.2j + 0.05k 0.2 + 0.04i + 0.4j + 0.04k
−0.1 + 0.04i− 0.5j + 0.02k 0.2 + 0.04i + 0.03j + 0.04k

)
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=

(
0.1 + 0.05i 0.2 + 0.04i
−0.1 + 0.04i 0.2 + 0.04i

)
+

(
0.2 + 0.05i 0.4 + 0.04i
−0.5 + 0.02i 0.03 + 0.04i

)
j

= C1 + C2j,

D =

(
5 0
0 5

)
, κ = (0, 0)∗.

In this example, we take the activation functions as p(u) = 0.5(|u + 1| − |u− 1|) + 0.5(|u + 1| − |u−
1|)j. Clearly, it can be confirmed that Assumption 2 satisfies Λi = diag(0.01, 0.01)(i = 1, 2, . . . , 8). Assume
the time-varying delay satisfies ν(t) = 12.1566|sin(t)|; then, obviously, it can be computed that ς = 0.5,
ν = 12.1566. In addition, let v = 0.1. It is easy to calculated that β1 = 0.1, β2 = e−0.05. By using the Yalmip
toolbox to solve Corollary 1, we can obtain the following feasible solutions.

P =

(
7.1417 + 0.0000i 1.0375 + 0.1874i
1.0375− 0.1874i 6.9721 + 0.0000i

)
× 102, Q =

(
2.9401 + 0.0000i 1.1097 + 0.2555i
1.1097− 0.2555i 2.4352 + 0.0000i

)
× 103,

R =

(
83.3051 + 0.0000i −18.2915 + 11.0733i
−18.2915− 11.0733i 82.7744 + 0.0000i

)
, S =

(
0.6318 + 0.0000i −0.0028 + 0.0653i
−0.0028− 0.0653i 0.6254 + 0.0000i

)
,

W =

(
51.2573 + 0.0000i 15.4123− 1.1918i
15.4123 + 1.1918i 53.7044 + 0.0000i

)
, N1 =

(
1.2019 0

0 1.2376

)
× 103,

N2 =

(
923.8130 0

0 866.7363

)
, N3 =

(
462.6568 0

0 479.7606

)
, N4 =

(
1.1404 0

0 1.0782

)
× 103,

N5 =

(
1.1850 + 0.2537i 0.2186 + 0.3304i
0.1780 + 0.2630i 1.2111 + 0.2945i

)
× 102,N6 =

(
3.7716 + 1.1880i 0.7546 + 1.5896i
1.0880 + 1.2376i 3.0510 + 1.4867i

)
× 102,

U1 =

(
0.0273 + 0.0000i −0.0052 + 0.0019i
−0.0052− 0.0019i 0.0200 + 0.0000i

)
, U2 =

(
0.7157 + 0.0000i 0.1415 + 0.1018i
0.1415− 0.1018i 0.6476 + 0.0000i

)
× 103,

U4 =

(
−0.0131 + 0.0000i −0.0035− 0.0007i
−0.0035 + 0.0007i −0.0124 + 0.0000i

)
, U5 =

(
0.0264 + 0.0000i −0.0050 + 0.0019i
−0.0050− 0.0019i 0.0192 + 0.0000i

)
,

U6 =

(
0.0012 + 0.0000i −0.0003 + 0.0002i
−0.0003− 0.0002i 0.0009 + 0.0000i

)
, U8 =

(
0.0024 + 0.0000i −0.0210− 0.0019i
−0.0210 + 0.0019i −0.0049 + 0.0000i

)
,

X =

(
−6.0218 + 0.0000i −4.6899− 1.0333i
−4.6899 + 1.0333i −3.9657 + 0.0000i

)
× 102, Y =

(
1.4287 + 0.0000i −0.2653 + 0.1715i
−0.2653− 0.1715i 1.4202 + 0.0000i

)
× 102.

Thus, the equilibrium point of QVNTNNs (Equation (1)) is globally exponentially stable. Figure 1 shows
four parts of the state responses of the QVNTNNs (Equation (1)).

Example 2. The delayed QVNTNN (Equation (1)) is rewritten as follows

ẏ(t)− C ẏ(t− ν(t)) = −Dy(t) +Ap(y(t)) + Bp(y(t− ν(t))) + κ.

where y = y11 + iy12 + jy21 + ky22 ∈ Q2×1, and

A =

(
0.4 + 0.3i− 0.5j + 0.4k −0.7 + 0.7i− 0.6j + 0.14k
−0.6− 0.4i + 0.14j + 0.53k 0.7 + 0.3i + 0.1j + 0.6k

)

=

(
0.4 + 0.3i −0.7 + 0.7i
−0.6− 0.4i 0.7 + 0.3i

)
+

(
−0.5 + 0.4i −0.6 + 0.14i
0.14 + 0.53i 0.1 + 0.6i

)
j
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= A1 +A2j,

B =

(
0.7j + 0.1k 0.5− 0.3i + 0.6j− 0.1k

0.7i + 0.2j + 0.6k −0.1 + 0.6i− 0.3j− 0.3k

)

=

(
0 0.5− 0.3i

0.7i −0.1 + 0.6i

)
+

(
0.7 + 0.1i 0.6− 0.1i
0.2 + 0.6i −0.3− 0.3i

)
j

= B1 + B2j,

C =
(

0.07 + 0.05i− 0.06j + 0.03k 0.06 + 0.02i− 0.04j− 0.02k
0.04 + 0.04i + 0.01j + 0.04k 0.06 + 0.04i− 0.02j− 0.03k

)

=

(
0.07 + 0.05i 0.06 + 0.02i
0.04 + 0.04i 0.06 + 0.04i

)
+

(
−0.06 + 0.03i −0.04− 0.02i
0.01 + 0.04i −0.02− 0.03i

)
j

= C1 + C2j,

D =

(
3 0
0 3

)
, κ = (0, 0)∗.

Here, we use p(u) = 1
25 (|u + 1| − |u− 1|) + 1

10 (|u + 1| − |u− 1|)j as the activation function. Clearly,
it can be confirmed that Assumption 2 satisfies Λ1 = Λ3 = Λ5 = Λ7 = diag(0.08, 0.08), Λ2 = Λ4 =

Λ6 = Λ8 = diag(0.2, 0.2). Assuming that the time-varying delay satisfies ν(t) = 1 + 15.7508sin(t), it can
be obviously computed that ς = 0.2, ν = 15.7506. In addition, let v = 0.1; then, it is easy to calculate that
β1 = 1

20ν , β2 = 0.20.1. Using the Yalmip toolbox, Corollary 2 can be solved. After calculation, a feasible solution
is obtained.

P =

(
8.1305 + 0.0000i 1.6705− 1.3097i
1.6705 + 1.3097i 7.0427 + 0.0000i

)
× 102, Q =

(
1.7466 + 0.0000i 0.6000− 0.3775i
0.6000 + 0.3775i 1.6290 + 0.0000i

)
× 103,

R =

(
1.3109 + 0.0000i 0.2807− 0.2632i
0.2807 + 0.2632i 1.3281 + 0.0000i

)
× 102, S =

(
0.7719 + 0.0000i 0.1719− 0.1559i
0.1719 + 0.1559i 0.6759 + 0.0000i

)
,

W =

(
74.2120 + 0.0000i 23.1226− 14.6231i

23.1226 + 14.6231i 63.5486 + 0.0000i

)
, N1 =

(
1.5729 0

0 1.4706

)
× 103,

N2 =

(
1.3224 0

0 1.2860

)
× 103,N3 =

(
1.0368 0

0 1.0848

)
× 103, N4 =

(
1.2418 0

0 1.1836

)
× 103,

N5 =

(
2.4691 + 0.6137i 0.3724 + 0.2442i
0.2087 + 0.6044i 2.1374 + 0.3713i

)
× 102,N6 =

(
5.1458 + 1.1580i 0.5341 + 0.9446i
0.5025 + 1.4435i 4.6514 + 1.0152i

)
× 102,

U1 =

(
−0.0232 + 0.0000i −0.0684 + 0.0823i
−0.0684− 0.0823i 0.0371 + 0.0000i

)
,U2 =

(
0.0050 + 0.0000i 0.0029− 0.0023i
0.0029 + 0.0023i 0.0037 + 0.0000i

)
,

U4 =

(
−0.0518 + 0.0000i −0.0300 + 0.0223i
−0.0300− 0.0223i −0.0392 + 0.0000i

)
,U5 =

(
−0.0228 + 0.0000i −0.0500 + 0.0575i
−0.0500− 0.0575i 0.0186 + 0.0000i

)
,

U6 =

(
0.6729 + 0.0000i 0.0180− 0.0231i
0.0180 + 0.0231i 0.6275 + 0.0000i

)
× 103,U8 =

(
−0.0658 + 0.0000i −0.0529 + 0.0383i
−0.0529− 0.0383i −0.0454 + 0.0000i

)
,

X =

(
−2.1273 + 0.0000i −2.7733 + 1.6689i
−2.7733− 1.6689i −1.9530 + 0.0000i

)
× 102,Y =

(
3.2197 + 0.0000i 0.4433− 0.6310i
0.4433 + 0.6310i 3.2625 + 0.0000i

)
× 102.
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Thus, the equilibrium point of QVNTNNs (Equation (1)) is globally power-stable. Figure 2 shows four
parts of the state responses of the QVNTNNs (Equation (1)).
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Figure 1. The four parts of the state trajectories for the quaternion-valued neutral-type neural networks
(QVNTNNs) (Equation (1)) in Example 1.
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Figure 2. The four parts of the state trajectories for the QVNTNNs (Equation (1)) in Example 2.
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We have listed the maximal allowable bounds of ν for QVNNs and QVNTNNs in Table 1. From
the comparison of QVNNs and QVNTNNs, we can see that the maximal delay bounds are bigger than
those of QVNTNNs.

Table 1. The maximal allowable bounds of ν.

Condition QV NN QVNTNN

global exponential stability 13.9447 12.1566
global power-stability 15.7909 15.7508

global log-stability 15.0446 10.3423

Example 3. The delayed QVNTNN (Equation (1)) is rewritten as follows:

ẏ(t)− C ẏ(t− ν(t)) = −Dy(t) +Ap(y(t)) + Bp(y(t− ν(t))) + κ.

where y = y11 + iy12 + jy21 + ky22 ∈ Q2×1, and

A =

(
0.7 + 1i− 0.2j + 0.4k 0.3 + 1.2i− 0.4j + 0.3k

0.3− 0.2i + 0.2j + 0.1k 1 + i− 0.2j + 0.4k

)

=

(
0.7 + 1i 0.3 + 1.2i

0.3− 0.2i 1 + 1i

)
+

(
−0.2 + 0.4i −0.4 + 0.3i
0.2 + 0.1i −0.2 + 0.4i

)
j

= A1 +A2j,

B =

(
−0.4 + 0.7i + 0.2j + 0.5k 1 + 0.5i + 0.3j− 0.5k
0.3 + 0.2i− 0.2j + 0.1k −0.5 + 0.5i + 0.2j + 0.4k

)

=

(
−0.4 + 0.7i 1 + 0.5i
0.3 + 0.2i −0.5 + 0.5i

)
+

(
0.2 + 0.5i 0.3− 0.5i
−0.2 + 0.1i 0.2 + 0.4i

)
j

= B1 + B2j,

C =
(

0.2 + 0.08i + 0.3j + 0.05k 0.5 + 0.08i + 0.8j + 0.01k
−0.3− 0.02i− 0.5j + 0.02k −0.2 + 0.04i + 1j + 0.02k

)

=

(
0.2 + 0.08i 0.5 + 0.08i
−0.3− 0.02i −0.2 + 0.04i

)
+

(
0.3 + 0.05i 0.8 + 0.01i
−0.5 + 0.02i 1 + 0.02i

)
j

= C1 + C2j,

D =

(
1.8 0
0 2.8

)
, κ = (0, 0)∗.

For this example, the activation function is chosen as p(u) = 0.5tanh(u) + 0.5tanh(u)j. Clearly, it can
be verified that Assumption 2 is satisfied with Λ1 = Λ3 = Λ5 = Λ7 = diag(0.07, 0.07), Λ2 = Λ4 = Λ6 =

Λ8 = diag(0.3, 0.3). Assuming that the time-varying delay satisfies ν(t) = 10.3423|sin(t)|, it can be obviously
computed that ς = 0.5, ν = 10.3423. In addition, let v = 0.1; then, it is easy to calculate that β1 = 1

10e ,
β2 = 1

ln(e+0.1ν)
. By using the Yalmip toolbox, Corollary 3 can be solved. The following feasible solutions were

calculated by us:

P =

(
3.6113 + 0.0000i −0.1457− 0.3895i
−0.1457 + 0.3895i 2.2912 + 0.0000i

)
× 102, Q =

(
1.0170 + 0.0000i −0.1735− 0.1745i
−0.1735 + 0.1745i 1.3937 + 0.0000i

)
× 102,
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R =

(
1.5034 + 0.0000i −0.6070− 0.4689i
−0.6070 + 0.4689i 1.0799 + 0.0000i

)
× 102, S =

(
1.3172 + 0.0000i −0.0604− 0.1931i
−0.0604 + 0.1931i 0.5848 + 0.0000i

)
,

W =

(
41.0682 + 0.0000i −1.8619− 5.9645i
−1.8619 + 5.9645i 18.7619 + 0.0000i

)
, N1 =

(
780.2274 0

0 619.7779

)
,

N2 =

(
663.6841 0

0 381.4323

)
,N3 =

(
1.0702 0

0 0.6026

)
× 103, N4 =

(
629.9553 0

0 528.2100

)
,

N5 =

(
1.8379 + 0.2680i 0.0879 + 0.1924i
0.1497 + 0.1378i 0.7496 + 0.1278i

)
× 102,N6 =

(
3.6887 + 0.4126i 0.1864 + 0.5835i
0.2439 + 0.1794i 1.4943 + 0.2445i

)
× 102,

U1 =

(
−0.1033 + 0.0000i −0.0089− 0.0339i
−0.0089 + 0.0339i −0.2079 + 0.0000i

)
,U2 =

(
0.0075 + 0.0000i 0.0005− 0.0002i
0.0005 + 0.0002i 0.0018 + 0.0000i

)
,

U4 =

(
−0.0712 + 0.0000i −0.0021 + 0.0060i
−0.0021− 0.0060i −0.0327 + 0.0000i

)
,U5 =

(
−0.0460 + 0.0000i −0.0147 + 0.0212i
−0.0147− 0.0212i 0.0285 + 0.0000i

)
,

U6 =

(
0.0175 + 0.0000i 0.0005− 0.0017i
0.0005 + 0.0017i 0.0026 + 0.0000i

)
,U8 =

(
0.0543 + 0.0000i −0.0027− 0.0120i
−0.0027 + 0.0120i −0.0099 + 0.0000i

)
,

X =

(
3.7674 + 0.0000i −0.0512− 0.0312i
−0.0512 + 0.0312i 2.8247 + 0.0000i

)
× 102,Y =

(
1.7454 + 0.0000i −0.6159− 0.3628i
−0.6159 + 0.3628i 1.3755 + 0.0000i

)
× 102.

Thus, the equilibrium point of QVNTNNs (Equation (1)) is globally log-stable. Figure 3 shows four parts
of the state responses of the QVNTNNs (Equation (1)).
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Figure 3. The four parts of the state trajectories for the QVNTNNs (Equation (1)) in Example 3.
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6. Conclusions

In this paper, the global µ-stability problem of QVNTNNs with time-varying delays is discussed.
Firstly, the QVNTNNs are transformed into two complex-valued systems by using a transformation
to reduce the complexity of the computation generated by the non-commutativity of quaternion
multiplication. A new convex inequality in the complex field is introduced. Secondly, the conditions
for the existence and uniqueness of the equilibrium point are obtained by primarily applying the
homeomorphism theory. Thirdly, the global stability conditions of the complex-valued systems
are provided by constructing a novel Lyapunov–Krasovskii functional, using an integral inequality
technique, and reciprocal convex combination approach. The gained global µ-stability conditions are
divided into three different kinds of stability forms by varying the positive continuous function µ(t).
In the end, three reliable examples and a simulation are provided to guarantee the validity of the
obtained LMIs conditions. In the future, the problem of the stability, stochasticity, and synchronization
of QVNTNNs with time delays and the QVNTNN with Markovian switching will be considered based
on the results in this article.
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