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Abstract

:

This paper addresses the problem of global μ-stability for quaternion-valued neutral-type neural networks (QVNTNNs) with time-varying delays. First, QVNTNNs are transformed into two complex-valued systems by using a transformation to reduce the complexity of the computation generated by the non-commutativity of quaternion multiplication. A new convex inequality in a complex field is introduced. In what follows, the condition for the existence and uniqueness of the equilibrium point is primarily obtained by the homeomorphism theory. Next, the global stability conditions of the complex-valued systems are provided by constructing a novel Lyapunov–Krasovskii functional, using an integral inequality technique, and reciprocal convex combination approach. The gained global μ-stability conditions can be divided into three different kinds of stability forms by varying the positive continuous function μ(t). Finally, three reliable examples and a simulation are given to display the effectiveness of the proposed methods.
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1. Introduction


As is well known, with the rapid development of electronic information science, complex-valued signals appear frequently in engineering practice. The application fields of complex-valued neural networks (CVNNs) are also becoming increasingly extensive: for instance, automatic control, eddy current defect detection, image processing, object recognition, frequency-domain blind source separation, and signal processing (see, e.g., [1,2,3,4,5,6]). Hence, many scholars are directing much attention to studying the dynamic behavior of CVNNs, and lots of important results have been reported in the literature. The exponential stability of complex-valued BAM neural networks was studied based on the differential inclusion theory and the properties of homeomorphism [7]. The synchronization problem for CVNNs with time delays was discussed in [8,9]. Following these results, in [10,11], the problem of extended dissipative synchronization of CVNNs was also discussed. In [12], the Lagrange stability of CVNNs was studied by using a transformation in which the CVNN is rewritten as a first-order differential system. In [13,14,15,16], the authors studied the impact of impulses on the stability of CVNNs with time-varying delays, and they obtained ample conditions for the CVNNs to ensure exponential convergence. Moreover, fractional complex-valued neural networks (FCVNNs) have certain advantages when describing dynamical properties. In [17], Huang studied local asymptotical stability and Hopf bifurcation, and the condition for the emergence of bifurcation was obtained.



In fact, the quaternion as an extension of a complex-valued system can also be applied to engineering practices. This issue has aroused the interest of scholars. After an active exploration, scholars found that the quaternion can also play a very important role in engineering, mainly on the basis of its advantages in rotation and direction modeling. For example, a data covariance model using a quaternion form was proposed to estimate its wavenumber and polarization parameters, similar to a music algorithm [18]. In addition, quaternions are used to define Fourier transforms that are suitable for color images. It was also shown that the transformation can be calculated using two standard complex fast Fourier transforms [19].



In recent years, it has become gradually more common to discuss the quaternion-valued neural network (QVNN) as an extension of the CVNN because of the following facts. On the basis of Liouville’s theorem [20], each bounded function must be constant, i.e., the activation function of CVNNs cannot have boundaries and be analytic at the same time unless it is a constant. However, the activation function of QVNNs can be bounded and analytic at the same time, as applied in [21], but how to choose the activation function of QVNN is a difficult problem. The analyticity of general quaternion-valued functions has not been rigorously examined in the quaternion field. To ensure that the class of quaternion-valued functions is analyzed, strict Cauchy–Riemann–Fueter (CRF) and generalized Cauchy–Riemann (GCR) conditions only pledge that the global analysis of quaternion-valued functions is a linear function and a constant, respectively. To overcome this difficulty, References [22,23] give some very important conditions for a partial change to the Cauchy–Riemann–Fueter condition and the local analysis condition—namely, the local analyticity condition (LAC)—to ensure that the quaternion-valued functions are bounded and analytic at the same time. This technique, which provides more flexibility in choosing the activation function of QVNNs, is significant progress. Until now, quaternion algebra has been successfully applied to communications problems and signal processing, such as color image processing [24] and wind forecasting [25]. Since then, numerous scholars have produced many excellent results in the field of QVNNs (see, e.g., [26,27,28,29] and literature referenced therein). QVNN was changed into two complex-valued systems by using a simple transformation, and [26] reduced the complexity of computation generated by the non-commutativity of quaternion multiplication. With homeomorphism theory, Reference [27] proved the existence of the equilibrium point of QVNNs and provided ample conditions for global robust stability. In [28], the pseudo-major period synchronization problem of quaternion-valued cellular neural networks (QVCNNs) was also studied. The existence of pseudo almost periodic functions was proved, and the global exponential synchronization of QVCNNs was obtained by designing the controller and combining Lyapunov functions.



On the other hand, the neutral-type systems not only consider the past state but also specifically involve the influence of changes in past states on the current state. Due to this feature, neutral-type systems have become the subject of extensive research by many scholars (see [30,31,32,33,34,35,36,37,38]). Furthermore, neutral systems have many applications in practical engineering, including heat exchangers, population ecology, and so on (see [39,40]). Many neural networks can be regarded as special cases of neutral neural networks, and most of the neural networks can be transformed into neutral neural networks for research (see [41,42,43]). It can be seen that the neutral neural network has great research value and potential significance. Nevertheless, to the best of the authors’ knowledge, for QVNNs with time-varying delays, there is no research in the literature for the global μ-stability of quaternion-valued neutral-type neural networks (QVNTNNs) at this time.



All of the above factors motivate our research. This article is intended to discuss the μ-stability of QVNTNNs. The remainder is divided into the following sections to elaborate. In the second part, the fundamental definition of quaternion is given. In the third part, we first introduce the QVNTNN model. Then, some important definitions and lemmas are provided, and the new extended convex inequality is obtained for the first time in this paper. In the fourth part, using the homeomorphism theory, we firstly obtain a new condition for the existence and uniqueness of the equilibrium point, and the global μ-stability criterion for QVNTNNs is provided using the Lyapunov functional theory combined with some inequality techniques. Based on the obtained stability results, power-stability, log-stability, and exponential stability are given as corollaries. In the fifth part, the effectiveness and feasibility of the method in this paper are illustrated by three examples. In the sixth part, we draw conclusions of the article.



Notations: Some significant symbols used throughout this paper are considerably standard. Rn×m denotes the collection of all n×m real-valued matrices. Cn×m denotes the collection of all n×m complex-valued matrices. Qn×m denotes the collection of all n×m quaternion-valued matrices. diag(⋯) denotes a block-diagonal matrix. ∥·∥ denotes the Euclidean vector norm. SCn(Q) denotes the collection of all quaternion positive matrices and quaternion self-conjugate matrices. p denotes a quaternion-valued function, and p¯ denotes the conjugate of p. The superscript ∗ denotes the transpose of a matrix or a vector. For any matrix G, λmax(G)(λmin(G)) denotes the largest (smallest) eigenvalue of G.




2. Definition of Quaternion


The quaternion consists of four parts, one of which is a real number and three of which are imaginary numbers, (i, j, and k). Generally, the quaternion is defined by a vector q, where q belongs to the four-dimensional vector space. We use the following form to represent the quaternion


q=q0+q1i+q2j+q3k,








where qv(v=0,1,2,3) are real numbers and i, j, k satisfy the multiplication table formed by


i2=j2=k2=−1;ij=−ji=k;kj=−jk=i;ik=−ki=j.











The above representations are said to be the Hamilton rule. We see that the multiplication of the quaternion is not interchangeable.



Similar to the definition of complex, q¯ is defined as the conjugate of the quaternion q∈Qn.


q¯=q0−q1i−q2j−q3k,











For any q∈Qn, |q|=qq¯=q02+q12+q22+q32. q can be expressed as q=c1+c2j with each q∈Qn, where c1,c2∈Cn.




3. Problem Statement and Preliminaries


Firstly, the delayed QVNTNN is introduced by the following


y˙(t)−Cy˙(t−ν(t))=−Dy(t)+Ap(y(t))+Bp(y(t−ν(t)))+κ.



(1)




where y(t)=(y1(t),y2(t),…,yn(t))*∈Qn is the state vector, and p(★)=(p(★),…,pn(★))*∈Qn is the feedback function of a neuron. κ=(κ1,κ2,…,κn)*∈Qn is the external input function. D=diag(d1,d2,…,dn)∈Rn×n is the diagonal matrix with di>0(i=1,2,…,n). C=(cij)n×n∈Qn×n is the suitable dimensional quaternion matrix. A=(aij)n×nQn×n, B=(bij)n×n∈Qn×n stand for the connection weight matrix and delayed connection weight matrix, respectively. ν(t) represents the time-varying delay and satisfies 0≤ν(t)≤ν, ν˙(t)≤ς. The initial condition of the QVNTNNs (Equation (1)) is y(t)=ψ(t), t∈[−ν,0], where ψ(t)∈Qn.



Assumption 1.

For any y∈Q, y can be expressed as


y=y11+iy12+jy21+ky22=y1+y2j,








where y1=y11+iy12,y2=y21+iy22.



Similarly,


A=A1+A2j,B=B1+B2j,C=C1+C2j,p(y(t))=p1(y1(t))+p2(y2(t))j,p(y(t−ν(t)))=p1(y1(t−ν(t)))+p2(y2(t−ν(t)))j,p¯(y(t))=p¯1(y1(t))+p¯2(y2(t))j,p¯(y(t−ν(t)))=p¯1(y1(t−ν(t)))+p¯2(y2(t−ν(t)))j.








where A1=A1R+iA1I, B1=B1R+iB1I, C1=C1R+iC1I. Note that (·)R on behalf of Re(·), (·)I on behalf of Im(·). pv(·)∈Cn(v=1,2), p¯v(·)∈Cn(v=1,2). Particularly, jT=T¯j or jTj=T¯ for any complex matrix T∈Cn×n.





Assumption 2.

The neuron activation function pv(·) and p¯v(y(·))(v=1,2) satisfy the Lipschitz condition for any y,y′∈Cn, y≠y′. There exist constants Lγ(γ=1,2,…,n) such that


∥pv(y)−pv(y′)∥≤Lγ∥y−y′∥,∥p¯v(y)−p¯v(y′)∥≤Lγ∥y−y′∥.













Assumption 3.

According to the stability of the theorem in [44] for neutral systems, we assume that the radius of C is smaller than 1.





Definition 1

([45]). The QVNTNNs (Equation (1)) is called μ-stable. For a function μ(t), which is positive and continuous, μ(t)→+∞ when t→+∞. Then, there exists a positive constant φ such that the following inequality holds:


∥y(t)∥≤φμ(t),








for all t>0.





Remark 1.

The gained μ-stable conditions can be transformed as power-stability, log-stability, and exponential stability by varying the positive continuous function μ(t).





Definition 2

([45]). For a function eϖt, which is positive and continuous, let t→+∞; it is clear that eϖt→+∞. Then, there exists a positive constant φ for all t>0 such that the following inequality holds:


∥y(t)∥≤φeϖt,








and the QVNTNN (Equation (1)) is called exponentially stable.





Definition 3

([45]). For a function tϖ, which is positive and continuous, let t→+∞; it is clear that tϖ→+∞ if there exists a constant φ>0 such that the following inequality holds:


∥y(t)∥≤φtϖ,(t>0)








and the QVNTNN (Equation (1)) is power-stable.





Definition 4

([45]). There exists a positive constant φ and a positive and continuous function ln(ϖt+1). While t→+∞, we have ln(ϖt+1)→+∞ such that the following inequality holds:


∥y(t)∥≤φln(ϖt+1),(t>0)








and the QVNTNN (Equation (1)) is called log-stable.





Lemma 1

([46]). For given a Hermitian matrix W>0, the following inequality holds for all continuously differentiable functions ϕ in [f,g]→Cn×n:


∫fgϕ˙*(u)Wϕ˙(u)du≥1g−f(ϕ(g)−ϕ(f))*W(ϕ(g)−ϕ(f))+3g−fΞ*WΞ,








where


Ξ=ϕ(g)+ϕ(f)−2g−f∫fgϕ(u)du.













Lemma 2

([26]). If each given matrix G∈SCn(Q), then each eigenvalue of matrix G is real.





Lemma 3

([47]). If there exists a continuous mapping M(y): Cn→Cn and it satisfies the following conditions

	(1) 

	
M(y): Cn→Cn is an injective mapping,




	(2) 

	
while ∥y∥→∞, then ∥M(y)∥→∞,






then, ∥M(y)∥→ is called a homeomorphism of Cn.





Lemma 4.

For ρi(t)∈[0,1], ∑i=1nρi(t)=1, and vectors ξi which satisfy ξi=0, with ρi(t)=0, matrices Mi>0, Mi∈Cn×n, if there exist Hermitian matrices Sij(i=1,2,…,m−1,j=i+1,…,m), Sij∈Cn×n satisfying


MiSijSij*Mi≥0,








then, the following inequality holds:


∑i=1n1ρi(t)ξi*Miξi≥ξi⋮ξi*Mi…Sij*⋱⋮**Miξi⋮ξi













Proof. 

For i=2, it is easy to see that the following inequality


ρ2(t)ρ1(t)ξ1−ρ1(t)ρ2(t)ξ2*MiSijSij*Miρ2(t)ρ1(t)ξ1−ρ1(t)ρ2(t)ξ2≥0








always holds. Then, one has


1ρ1(t)ξ1*M1ξ1+1ρ2(t)ξ2*M2ξ2=1ρ1(t)ξ1*(ρ1(t)+ρ2(t))M1ξ1+1ρ2(t)ξ2*(ρ1(t)+ρ2(t))M2ξ2=ξ1*M1ξ1+ξ2*M2ξ2+ρ2(t)ρ1(t)ξ1*M1ξ1+ρ1(t)ρ2(t)ξ2*M2ξ2≥ξ1*M1ξ1+ξ2*M2ξ2+ξ1*Sijξ2+ξ2*Sij*ξ1=ξ1ξ2*MiSijSij*Miξ1ξ2.











The situation of i=n can also be established with a similar method. Here, the proof processing is omitted.  □





Remark 2.

Clearly, Lemma 4 is an extension of Lemma 2 in [48], which just considers the application in the real number field. Lemma 4 can be applied to the complex field. Therefore, the range of application of Lemma 4 is wider than that given in [48]. This paper is further extended by the literature [48] so that it can be applied to the complex number field. Thus, one can conclude that the range of application for Lemma 4 is wider and more practical.






4. Main Results


In the following content, we first present the condition for the existence and uniqueness of the equilibrium point for the system in Equation (1).



Theorem 1.

On the basis of Assumptions 1 and 2, the system in Equation (1) has a unique equilibrium point if there exists a positive diagonal matrix Vi(i=1,2,…,6) and the following LMIs are satisfied


Ξ8×8<0



(2)




where


Ξ1,1=D*D−2DV1+L1*V3L1+L3*V5L3,Ξ1,3=2V1(A1+B1)−D*(A1+B1),Ξ1,6=D*(A2+B2)−2V2(A2+B2),Ξ1,7=2CV1−D*C,Ξ2,2=D*D−2DV2+L2*V4L2+L4*V6L4,Ξ2,4=2V2(A1+B1)−D*(A1+B1),Ξ2,5=2V2(A2+B2)−D*(A2+B2),Ξ2,8=2CV2−D*C,Ξ3,3=(A1*+B1*)(A1+B1)−V3,Ξ3,6=−(A1*+B1*)(A2+B2),Ξ3,7=(A1*+B1*)C,Ξ4,4=(A1*+B1*)(A1+B1)−V4,Ξ4,5=(A1*+B1*)(A2+B2),Ξ4,8=(A1*+B1*)C,Ξ5,5=(A2*+B2*)(A2+B2)−V5,Ξ5,8=(A2*+B2*)C,Ξ6,6=(A2*+B2*)(A2+B2)−V6,Ξ6,7=−(A2*+B2*)C,Ξ7,7=C*C−I,Ξ8,8=C*C−I.













Proof. 

According to Assumption 1, Equation (1) can be rewritten in the following form


y˙1(t)=−Dy1(t)+Cy˙1(t−ν(t))+A1p1(y1(t))−A2p¯2(y2(t))+B1p1(y1(t−ν(t))−B2p¯2(y2(t−ν(t))+κ1,y˙2(t)=−Dy2(t)+Cy˙2(t−ν(t))+A1p2(y2(t))+A2p¯1(y1(t))+B1p2(y2(t−ν(t))+B2p¯1(y1(t−ν(t))+κ2.



(3)









To prove the existence and uniqueness of the solution, we need to construct a mapping which combines the information of the system in Equation (3), and it can be written as follows:


M(y1,y2)=−Dy1+CM1ν(y1,y2)+A1p1(y1)−A2p¯2(y2)+B1p1(y1)−B2p¯2(y2)+κ1−Dy2+CM2ν(y1,y2)+A1p2(y2)+A2p¯1(y1)+B1p2(y2)+B2p¯1(y1)+κ2



(4)




where


M(y1,y2)=(M1(y1,y2),M2(y1,y2))*,M1(y1,y2)=−Dy1+CM1ν(y1,y2)+A1p1(y1)−A2p¯2(y2)+B1p1(y1)−B2p¯2(y2)+κ1,M2(y1,y2)=−Dy2+CM2ν(y1,y2)+A1p2(y2(t))+A2p¯1(y1)+B1p2(y2)+B2p¯1(y1)+κ2.











If y˘ is an equilibrium point of the system in Equation (1), in light of Assumptions 1 and 3, let y˘=y˘1+y˘2j; then, y˘ satisfies the following equation


00=−Dy˘1+A1p1(y˘1)−A2p¯2(y˘2)+B1p1(y˘1)−B2p¯2(y˘2)+κ1−Dy˘2+A1p2(y˘2)+A2p¯1(y˘1)+B1p2(y˘2)+B2p¯1(y˘1)+κ2



(5)




In light of Lemma 4, if M(y) satisfies the homeomorphic mapping on Cn, then we can find conditions to guarantee that there exists a unique equilibrium point for the system in Equation (1).



Next, the proof is divided into two sections.



In the first place, we need to prove that M(y1,y2) is an injective. If we choose two points, (y1,y2)*,(y1′,y2′)*∈Cn and (y1,y2)≠(y1′,y2′), in light of the definition of the activation function given by Assumption 2, we have p(y1,y2)≠p(y1′,y2′).



From Equation (4), we have


M(y1,y2)−M(y1′,y2′)=−D(y1−y1′)+C(M1(y1,y2)−M1(y1′,y2′))+A1(p1(y1)−p1(y1′))−A2(p¯2(y2)−p¯2(y2′))+B1(p1(y1)−p1(y1′))−B2(p¯2(y2)−p¯2(y2′))−D(y2−y2′)+C(M2(y1,y2)−M2(y1′,y2′))+A1(p2(y2)−p2(y2′))+A2(p¯1(y1)−p¯1(y1′))+B1(p2(y2)−p2(y2′))+B2(p¯1(y1)−p¯1(y1′))



(6)




Let us multiply both sides of Equation (6) by


2(y1−y1′)*(y2−y2′)*V100V2+(M1(y1,y2)−M1(y1′,y2′))*(M2(y1,y2)−M2(y1′,y2′))*.



(7)




We can get


2(y1−y1′)*(y2−y2′)*V100V2+(M1(y1,y2)−M1(y1′,y2′))*(M2(y1,y2)−M2(y1′,y2′))*×M(y1,y2)−M(y1′,y2′)=2(y1−y1′)*(y2−y2′)*V100V2M(y1,y2)−M(y1′,y2′)



(8)






+(M1(y1,y2)−M1(y1′,y2′))*(M2(y1,y2)−M2(y1′,y2′))*M(y1,y2)−M(y1′,y2′).








For the sake of providing a clean and succinct representation of the equation, some symbols are defined as follows:


ϝ1=[e1*e2*e3*e4*e5*e6*e7*e8*],e1=y1−y1′,e2=y2−y2′,e3=p1(y1)−p1(y1′),e4=p2(y2)−p2(y2′),e5=p¯1(y1)−p¯1(y1′),e6=p¯2(y2)−p¯2(y2′),e7=M1(y1,y2)−M1(y1′,y2′),e8=M2(y1,y2)−M2(y1′,y2′).



(9)




To make a transformation for Equation (8), we have


2e1*e2*V100V2M(y1,y2)−M(y1′,y2′)=2e1*V1e7*+2e2*V2e8*+e7*e8*M(y1,y2)−M(y1′,y2′)−e7*e8*M(y1,y2)−M(y1′,y2′)=−e7*e7−e8*e8+2e1*V1[−De1+Ce7+A1e3−A2e6+B1e3−B2e6]+2e2*V2[−De2+Ce8+A1e4+A2e5+B1e4+B2e5]+[−De1+Ce7+A1e3−A2e6+B1e3−B2e6]*[−De1+Ce7+A1e3−A2e6+B1e3−B2e6]+[−De2+Ce8+A1e4+A2e5+B1e4+B2e5]*[−De2+Ce8+A1e4+A2e5+B1e4+B2e5].



(10)






=−e7*e7−e8*e8−2e1*V1De1+2e1*V1Ce7+2e1*V1A1e3−2e1*V1A2e6+2e1*V1B1e3−2e1*V1B2e6−2e2*V2De2+2e2*V2Ce8+2e2*V2A1e4+2e2*V2A2e5+2e2*V2B1e4+2e2*V2B2e5+e1*D*De1−e1*D*(A1+B1)e3+e1*D*(A2+B2)e6−e1*D*Ce7−e3*(A1*+B1*)De1+e3*(A1*+B1*)(A1+B1)e3−e3*(A1*+B1*)(A2+B2)e6+e3*(A1*+B1*)Ce7+e6*(A2*+B2*)De1−e6*(A2*+B2*)(A1+B1)e3+e6*(A2*+B2*)(A2+B2)e6−e6*(A2*+B2*)Ce7−e7*C*De1+e7*C*(A1+B1)e3−e7*C*(A2+B2)e6+e7*C*Ce7+e2*D*De2−e2*D*(A1+B1)e4+e2*D*(A2+B2)e5−e2*D*Ce8−e4*(A1*+B1*)De2+e4*(A1*+B1*)(A1+B1)e4+e4*(A1*+B1*)(A2+B2)e5+e4*(A1*+B1*)Ce8+e5*(A2*+B2*)De2+e5*(A2*+B2*)(A1+B1)e4+e5*(A2*+B2*)(A2+B2)e5+e5*(A2*+B2*)Ce8−e8*C*De2+e8*C*(A1+B1)e4+e8*C*(A2+B2)e5+e8*C*Ce8.



(11)







On the basis of Assumption 2, for diagonal matrices Vi>0(i=3,4,5,6), we can obtain


0≤e1*L1*V3L1e1−e3*V3e3,0≤e2*L2*V4L2e2−e4*V4e4,0≤e1*L3*V5L3e1−e5*V5e5,0≤e2*L4*V6L4e2−e6*V6e6.



(12)




Combining Equation (10) with Equation (12), one can obtain


2e1*e2*V100V2M(y1,y2)−M(y1′,y2′)≤e1*(D*D−2DV1+L1*V3L1+L3*V5L3)e1+e1*[2V1(A1+B1)−D*(A1+B1)]e3+e1*[D*(A2+B2)−2V2(A2+B2)]e6+e1*(2CV1−D*C)e7+e2*(D*D−2DV2+L2*V4L2+L4*V6L4)e2+e2*[2V2(A1+B1)−D*(A1+B1)]e4+e2*[2V2(A2+B2)−D*(A2+B2)]e5+e2*(2CV2−D*C)e8+e3*[(A1*+B1*)(A1+B1)−V3]e3−e3*[(A1*+B1*)(A2+B2)]e6+e3*[(A1*+B1*)C]e7+e4*[(A1*+B1*)(A1+B1)−V4]e4+e4*[(A1*+B1*)(A2+B2)]e5+e4*[(A1*+B1*)C]e8+e5*[(A2*+B2*)(A2+B2)−V5]e5+e5*[(A2*+B2*)C]e8+e6*[(A2*+B2*)(A2+B2)−V6]e6−e6*[(A2*+B2*)C]e7+e7*(C*C−I)e7+e8*(C*C−I)e8










=ϝ1*Ξϝ1.











In light of Theorem 1 and (y1,y2)≠(y1′,y2′), the following inequality is established


2e1*e2*V100V2M(y1,y2)−M(y1′,y2′)<0








One can draw the conclusion that M(y1,y2)≠M(y1′,y2′) for all (y1,y2)≠(y1′,y2′). Accordingly, M(y1,y2) is an injective.



In the second place, we need to prove that ∥M(y1,y2)∥→∞ as (y1,y2)→∞. Let (y1′,y2′)=(0,0); then, we have


−2y1*y2*V100V2M(y1,y2)−M(0,0)≥λmin(−Ξ)∥(y1,y2)∥2











From the Cauchy–Schwarz inequality, we have


2∥(y1,y2)∥∥V1∥∥V2∥(∥M(y1,y2)∥+∥M(0,0)∥)≥λmin(−Ξ)∥(y1,y2)∥2








while (y1,y2)≠0. So, we have


∥M(y1,y2)∥≥λmin(−Ξ)∥(y1,y2)∥2∥V1∥∥V2∥−∥M(0,0)∥











Therefore, we clearly know that ∥M(y1,y2)∥→∞ as ∥(y1,y2)∥→∞. Thus, the conditions of Lemma 3 are satisfied, and ∥M(y1,y2)∥ is a homeomorphism mapping. Hence, from Corollary 1 in [49], the condition for the existence of a unique equilibrium point of the system in Equation (1) is proved.



In the following content, we present the conditions for global μ-stability criteria for the system in Equation (1). Firstly, suppose that yˇ is the unique equilibrium point of the QVNTNN (Equation (1)), where yˇ=(yˇ,yˇ,…,yˇ)*. According to Assumption 1 and the transformation y˜=y−yˇ, the system in Equation (1) can be rewritten as the following:


y˜˙1(t)=−Dy˜1(t)+Cy˜˙1(t−ν(t))+A1(p1(y˜1(t)+y˘1)−p1(y˘1))−A2(p¯2(y˜2(t)+y˘2)−p2¯(y˘2))+B1(p1(y˜1(t−ν(t))+y˘1)−p1(y˘1))−B2(p¯2(y˜2(t−ν(t))+y˘2)−p2¯(y˘2)),y˜˙2(t)=−Dy˜2(t)+Cy˜˙2(t−ν(t))+A1(p2(y˜2(t)+y˘2)−p2(y˘2))+A2(p¯1(y˜1(t)+y˘1)−p1¯(y˘1))+B1(p2(y˜2(t−ν(t))+y˘2)−p2(y˘2))+B2(p¯1(y˜1(t−ν(t))+y˘1)−p1(y˘1)).



(13)







For the sake of convenience, in this paper, some symbols are defined as follows:


ℸ1=[I1*I2*I3*I4*I5*I6*I7*I8*I9*I10*I11*I12*]*,ℸ2=[h1*h2*h3*h4*h5*h6*h7*h8*h9*h10*h11*h12*]*,I1=y˜1(t),I2=y˜1(t−ν(t)),I3=(p1(y˜1(t)+y˘1)−p1(y˘1)),I4=(p¯2(y˜2(t)+y˘2)−p2¯(y˘2)),I5=(p1(y˜1(t−ν(t))+y˘1)−p1(y˘1)),I6=(p¯2(y˜2(t−ν(t))+y˘2)−p2¯(y˘2)),I7=y˜˙1(t−ν(t)),I8=y˜˙1(t),I9=y˜1(t−ν),I10=2ν(t)∫t−ν(t)ty˜1(u)du,I11=2ν−ν(t)∫t−νt−ν(t)y˜1(u)du,I12=(p1(y˜1(t−ν)+y˘1)−p1(y˘1)),h1=y˜2(t),h2=y˜2(t−ν(t)),h3=(p2(y˜2(t)+y˘2)−p2(y˘2)),h4=(p¯1(y˜1(t)+y˘1)−p1¯(y˘1)),h5=(p2(y˜2(t−ν(t))+y˘2)−f2(y˘2)),h6=(p¯1(y˜1(t−ν(t))+y˘1)−p1¯(y˘1)),h7=y˜˙2(t−ν(t)),h8=y˜˙2(t),h9=y˜2(t−ν),h10=2ν(t)∫t−ν(t)ty˜2(u)du,h11=2ν−ν(t)∫t−νt−ν(t)y˜2(u)du,h12=(p2(a˜2(t−ν)+y˘2)−p2(y˘2)).











Now, we present our main results in the following theorem. □



Theorem 2.

Assume that Assumptions 1 and 2 hold. For a given positive constant ν, the equilibrium point of QVNTNNs (Equation (1)) is μ-stable if there exist positive definite Hermitian matrices P∈Cn×n, Q∈Cn×n, R∈Cn×n, S∈Cn×n, W∈Cn×n, X∈Cn×n, Y∈Cn×n, constants β1≥0, β2≥0, positive definite real diagonal matrices Ni(i=1,2,…,6), and if μ(t) is a nonnegative function which belongs to L2[0,∞) for all t>0.


μ˙(t)μ(t)≤β1,minμ(t−ν(t))μ(t),μ(t−ν)μ(t)≥β2








such that the following LMIs hold


S¯i>0(i=1,2),Φ12×12<0,Ω12×12<0.



(14)




where


Φ1,1=Q+X+β1P−4β2S−DN6*−N6D*+Λ1N1+Λ5N3,










Φ1,2=−β2U1−β2U2−β2U4−β2U2*−2β2S,Φ1,3=A1N6*,Φ1,4=−A2N6*,










Φ1,5=B1N6*,Φ1,6=−B2N6*,Φ1,7=CN6*,Φ1,8=P−N6*−N5D*,










Φ1,9=β2U1−β2U2−β2U4+β2U2*,Φ1,10=3β2S,Φ1,11=β2U2+2β2U4










Φ2,2=β2U1−β2U4+β2U1*−β2U4*−8β2S−β2X+(ς−1)β2Q+Λ3β2N2+Λ7β2N4,










Φ2,9=β2U2−β2U1−β2U4+β2U2*−2β2S,Φ2,10=β2U2+β2U4*+3β2S,










Φ2,11=β2U4−β2U2+3β2S,Φ3,3=R+Y−N3,Φ3,8=N5A1*,Φ4,4=−N1,










Φ4,8=−N5A2*,Φ5,5=(ς−1)β2R−N4,Φ5,8=N5B1*,Φ6,6=−β2N2,Φ6,8=−N5B2*,










Φ7,7=−β2W,Φ7,8=N5C*,Φ8,8=W−N5−N5*+ν2S,Φ9,9=−4β2S,Φ9,10=β2U4*−2β2U2,










Φ9,11=3β2S,Φ10,10=−3β2S,Φ10,11=−4β2U4,Φ11,11=−3β2S,Φ12,12=−β2Y,










Ω1,1=Q+X+β1P−4β2S−DN6*−N6D*+Λ2N1+Λ6N3,










Ω1,2=−β2U5−β2U6−β2U8−β2U6*−2β2S,Ω1,3=A1N6*,Ω1,4=A2N6*,










Ω1,5=B1N6*,Ω1,6=B2N6*,Ω1,7=CN6*,Ω1,8=P−N6*−N5D*,










Ω1,9=β2U5−β2U6−β2U8+β2U6*,Ω1,10=3β2S,Ω1,11=β2U6+β2U8,










Ω2,2=β2U5−β2U8+β2U5*−β2U8*−8β2S−β2X+β2(ς−1)Q+β2Λ4N2+β2Λ8N4,










Ω2,9=β2U6−β2U5−β2U8+β2U6*−2β2S,Ω2,10=β2U6+β2U8*+3β2S,










Ω2,11=β2U8−β2U6+3β2S,Ω3,3=R+Y−N3,Ω3,8=N5A1*,Ω4,4=−N1,










Ω4,8=N5A2*,Ω5,5=β2(ς−1)R−N4,Ω5,8=N5B1*,Ω6,6=−β2N2,Ω6,8=−N5B2*,










Ω7,7=−β2W,Ω7,8=N5C*,Ω8,8=W−N5−N5*+ν2S,Ω9,9=−4β2S,Ω9,10=β2U8*−β2U6,










Ω9,11=3Sβ2,Ω10,10=−3β2S,Ω10,11=−β2U8,Ω11,11=−3β2S,Ω12,12=−β2Y,










S¯1=diag{S1,3S3}U¯1U¯1*diag{S1,3S3},U¯1=U1U2U2*U4,










S¯2=diag{S1,3S3}U¯2U¯2*diag{S1,3S3},U¯2=U5U6U6*U8.













Proof. 

Let us choose a new Lyapunov–Krasovskii functional for the system in Equation (13) as follows:


V(y˜(t))=∑i=14Vi(y˜(t)),



(15)




where


V1(y˜(t))=μ(t)y˜1*(t)Py˜1(t)+μ(t)y˜2*(t)Py˜2(t),










V2(y˜(t))=∫t−ν(t)tμ(u)y˜1*(u)Qy˜1(u)du+∫t−ν(t)tμ(u)y˜2*(u)Qy˜2(u)du










+∫t−ν(t)tμ(u)(p1(y˜1(u)+y˘1)−p1(y˘1))*R(p1(y˜1(u)+y˘1)−p1(y˘1))du










+∫t−ν(t)tμ(u)(p2(y˜2(u)+y˘2)−p2(y˘2))*R(p2(y˜2(u)+y˘2)−p2(y˘2))du










+∫t−νtμ(u)y˜1*(u)Xy˜1(u)du+∫t−νtμ(u)y˜2*(u)Xy˜2(u)du










+∫t−νtμ(u)(p1(y˜1(u)+y˘1)−p1(y˘1))*Y(p1(y˜1(u)+y˘1)−p1(y˘1))du










+∫t−νtμ(u)(p2(y˜2(u)+y˘2)−p2(y˘2))*Y(p2(y˜2(u)+y˘2)−p2(y˘2))du,










V3(y˜(t))=∫t−ν(t)tμ(u)y˜˙1*(u)Wy˜˙1(u)du+∫t−ν(t)tμ(u)y˜˙2*(u)Wy˜˙2(u)du,










V4(y˜(t))=ν∫−ν0∫t+θtμ(u)y˜˙1*(u)Sy˜˙1(u)dudθ+ν∫−ν0∫t+θtμ(u)y˜˙2*(u)Sy˜˙2(u)dudθ.













Differentiating V(t) leads to


V˙1(y˜(t))=μ˙(t)I1*PI1+μ˙(t)h1*Ph1+μ(t)I8*PI1+μ(t)h8*Ph1+μ(t)I1*PI8+μ(t)h8*Ph1,










V˙2(y˜(t))=μ(t)I1*QI1−μ(t−ν(t))(1−ς)I2*QI2+μ(t)h1*Qh1−μ(t−ν(t))(1−ς)h2*Qh2










+μ(t)I3*RI3−μ(t−ν(t))(1−ς)h6*Rh6+μ(t)h3*Rh3−μ(t−ν(t))(1−ς)I6*RI6










+μ(t)I1*XI1−μ(t−ν)I9*XI9+μ(t)h1*Xh1−μ(t−ν)h9*Xh9+μ(t)I3*YI3










−μ(t−ν)I12*YI12+μ(t)h3*Yh3−μ(t−ν)h12*Yh12,










V˙3(y˜(t))=μ(t)I8*WI8−μ(t−ν(t))I7*WI7+μ(t)h8*Wh8−μ(t−ν(t))h7*Wh7,










V˙4(y˜(t))=ν2μ(t)I8*SI8+ν2μ(t)h8*Sh8−ν∫t−νtμ(u)y˜˙1*(u)Sy˜˙1(u)du−ν∫t−νtμ(u)y˜˙2*(u)Sy˜˙2(u)du.≤ν2μ(t)I8*SI8+ν2μ(t)h8*Sh8−νμ(t−ν)∫t−νty˜˙1*(u)Sy˜˙1(u)du−νμ(t−ν)∫t−νty˜˙2*(u)Sy˜˙2(u)du=ν2μ(t)I8*SI8+ν2μ(t)h8*Sh8+μ(t−ν)−ν∫t−νty˜˙1*(u)Sy˜˙1(u)du−ν∫t−νty˜˙2*(u)Sy˜˙2(u)du.



(16)







Applying Lemma 1 to the integral term in Equation (16) yields


−ν∫t−νty˜˙1*(u)Sy˜˙1(u)du










=−ν∫t−ν(t)ty˜˙1*(u)Sy˜˙1(u)du−ν∫t−νt−ν(t)y˜˙1*(u)Sy˜˙1(u)du










≤−νν(t)[E1*SE1+3E2*SE2]−νν−ν(t)[E3*SE3+3E4*SE4]










=−νν(t)E1E2*S003SE1E2−νν−ν(t)E3E4*S003SE3E4,










−ν∫t−νty˜˙2*(u)Sy˜˙2(u)du










=−ν∫t−ν(t)ty˜˙2*(u)Sy˜˙2(u)du−ν∫t−νt−ν(t)y˜˙2*(u)Sy˜˙2(u)du










≤−νν(t)[E5*SE5+3E6*SE6]−νν−ν(t)[E7*SE7+3E8*SE8]










=−νν(t)E5E6*S003SE5E6−νν−ν(t)E7E8*S003SE7E8,








where


E1=I1−I2,E2=I1+I2−I10,E3=I2−I9,E4=I2+I9−I11,










E5=h1−h2,E6=h1+h2−h10E7=h2−h9,E8=h2+h9−h11.











Furthermore, due to S¯i≥0(i=1,2), according to Lemma 4, we can easily get


−ν∫t−νty˜˙1*(u)Sy˜˙1(u)du≤−E1*˜S1¯E1˜,−ν∫t−νty˜˙2*(u)Sy˜˙2(u)du≤−E2*˜S2¯E2˜,








with


E1˜=E1*E2*E3*E4**,E2˜=E5*E6*E7*E8**.











On the other hand, for any diagonal matrices Ni≥0(i=1,2,3,4), it follows from Assumption 2 that


μ(t)I1*Λ1N1I1−μ(t)h4*N1h4≥0,μ(t)h1*Λ2N1h1−μ(t)I4*N1I4≥0,μ(t−ν(t))I2*Λ3N2I2−μ(t−ν(t))h6*N2h6≥0,μ(t−ν(t))h2*Λ4N2h2−μ(t−ν(t))I6*N2I6≥0,μ(t)I1*Λ5N3I1−μ(t)I3*N3I3≥0,μ(t)h1*Λ6N3h1−μ(t)h3*N3h3≥0,μ(t−ν(t))I2*Λ7N4I2−μ(t−ν(t))I5*N4I5≥0,μ(t−ν(t))h2*Λ8N4h2−μ(t−ν(t))h5*N4h5≥0.



(17)




with Λi=diag(Λ1i,Λ2i,…,Λni)(i=1,2,…,8). The following zero inequalities are introduced with appropriate dimensional complex-valued matrices N5≥0 and N6≥0:


0=μ(t)[I8*N5+I1*N6][−I8−DI1+CI7+A1I3−A2I4+B1I5−B2I6]+μ(t)[−I8−DI1+CI7+A1I3−A2I4+B1I5−B2I6]*[I8N5+I1N6],0=μ(t)[h8*N5+h1*N6][−h8−Dh1+Ch7+A1h3+A2h4+B1h5+B2h6]+μ(t)[−h8−Dh1+Ch7+A1h3+A2h4+B1h5+B2h6]*[h8N5+h1N6].



(18)







Combining ∑i=14V˙i with Equations (17) and (18), we can easily get that


V˙(y˜(t))≤μ˙(t)I1*PI1+μ˙(t)h1*Ph1+μ(t)I8*PI1+μ(t)h8*Ph1+μ(t)I1*PI8+μ(t)h8*Ph1+μ(t)I1*QI1










−μ(t−ν(t))(1−ς)I2*QI2+μ(t)h1*Qh1−μ(t−ν(t))(1−ς)h2*Qh2+μ(t)I3*RI3










−μ(t−ν(t))(1−ς)h6*Rh6+μ(t)h3*Rh3−μ(t−ν(t))(1−ς)I6*RI6+μ(t)I1*XI1−μ(t−ν)I9*XI9










+μ(t)h1*Xh1−μ(t−ν)h9*Xh9+μ(t)I3*YI3−μ(t−ν)I12*YI12+μ(t)h3*Yh3−μ(t−ν)h12*Yh12










+μ(t)I8*WI8−μ(t−ν(t))I7*WI7+μ(t)h8*Wh8−μ(t−ν(t))h7*Wh7+ν2μ(t)I8*SI8










+ν2μ(t)h8*Sh8+μ(t−ν)(−νν(t)E1E2*S003SE1E2−νν−ν(t)E3E4*S003SE3E4










−νν(t)E5E6*S003SE5E6−νν−ν(t)E7E8*S003SE7E8)+μ(t)I1*Λ1N1I1−μ(t)h4*N1h4










+μ(t)h1*Λ2N1h1−μ(t)I4*N1I4+μ(t−ν(t))I2*Λ3N2I2−μ(t−ν(t))h6*N2h6+μ(t−ν(t))h2*Λ4N2h2










−μ(t−ν(t))I6*N2I6+μ(t)I1*Λ5N3I1−μ(t)I3*N3I3+μ(t)h1*Λ6N3h1−μ(t)h3*N3h3










+μ(t−ν(t))I2*Λ7N4I2−μ(t−ν(t))I5*N4I5+μ(t−ν(t))h2*Λ8N4h2−μ(t−ν(t))h5*N4h5










+μ(t)[I8*N5+I1*N6][−I8−DI1+CI7+A1I3−A2I4+B1I5−B2I6]










+μ(t)[−I8−DI1+CI7+A1I3−A2I4+B1I5−B2I6]*[I8N5+I1N6],










+μ(t)[h8*N5+h1*N6][−h8−Dh1+Ch7+A1h3+A2h4+B1h5+B2h6]










+μ(t)[−h8−Dh1+Ch7+A1h3+A2h4+B1h5+B2h6]*[h8N5+h1N6]










≤μ(t){μ˙(t)μ(t)I1*PI1+μ˙(t)μ(t)h1*Ph1+I8*PI1+h8*Ph1+I1*PI8+h8*Ph1+I1*QI1










−μ(t−ν(t))(1−ς)μ(t)I2*QI2+h1*Qh1−μ(t−ν(t))(1−ς)μ(t)h2*Qh2+I3*RI3










−μ(t−ν(t))(1−ς)μ(t)h6*Rh6+h3*Rh3−μ(t−ν(t))(1−ς)μ(t)I6*RI6+I1*XI1−μ(t−ν)μ(t)I9*XI9










+h1*Xh1−μ(t−ν)μ(t)h9*Xh9+I3*YI3−μ(t−ν)μ(t)I12*YI12+h3*Yh3−μ(t−ν)μ(t)h12*Yh12










+I8*WI8−μ(t−ν(t))μ(t)I7*WI7+h8*Wh8−μ(t−ν(t))μ(t)h7*Wh7+ν2I8*SI8










+ν2h8*Sh8+μ(t−ν)μ(t)(−νν(t)E1E2*S003SE1E2−νν−ν(t)E3E4*S003SE3E4










−νν(t)E5E6*S003SE5E6−νν−ν(t)E7E8*S003SE7E8)+I1*Λ1N1I1−h4*N1h4










+h1*Λ2N1h1−I4*N1I4+μ(t−ν(t))μ(t)I2*Λ3N2I2−μ(t−ν(t))μ(t)h6*N2h6+μ(t−ν(t))μ(t)h2*Λ4N2h2










−μ(t−ν(t))μ(t)I6*N2I6+I1*Λ5N3I1−I3*N3I3+h1*Λ6N3h1−h3*N3h3










+μ(t−ν(t))μ(t)I2*Λ7N4I2−μ(t−ν(t))μ(t)I5*N4I5+μ(t−ν(t))μ(t)h2*Λ8N4h2−μ(t−ν(t))μ(t)h5*N4h5










+[I8*N5+I1*N6][−I8−DI1+CI7+A1I3−A2I4+B1I5−B2I6]










+[−I8−DI1+CI7+A1I3−A2I4+B1I5−B2I6]*[I8N5+I1N6],










+[h8*N5+h1*N6][−h8−Dh1+Ch7+A1h3+A2h4+B1h5+B2h6]










+[−h8−Dh1+Ch7+A1h3+A2h4+B1h5+B2h6]*[h8N5+h1N6]}










≤μ(t)ℸ1*Φℸ1+μ(t)ℸ2*Ωℸ2.








where Φ, Ω, S¯1, and S¯2 are defined in Theorem 2.



Consequently, according to Equation (14), we have


V˙(y˜(t))≤0.



(19)







Combined with Lemma 2, we claim that Λmin(P) is constant. Then, from Equation (15), one can get


V(0)≥V(y˜(t))≥μ(t)Λmin(P)∥y˜(t)∥2,



(20)




for 0≤t0≤t, and we have


∥y˜(t)∥2≤℘μ(t),



(21)




where ℘=V(0)Λmin(P). By the above derivation, it is obvious that Definition 1 is satisfied, and the origin point of QVNTNNs (Equation (1)) is μ-stable.  □



Corollary 1.

Assume that Assumptions 1 and 2 hold. Given a positive constant ν, the equilibrium point of QVNTNNs (Equation (1)) is globally exponentially stable if there exist positive definite Hermitian matrices P∈Cn×n, Q∈Cn×n, R∈Cn×n, S∈Cn×n, W∈Cn×n, X∈Cn×n, Y∈Cn×n, constants β1≥0, β2≥0, positive definite real diagonal matrices Ni(i=1,2,…,6), and if μ(t) is a nonnegative function which belongs to L2[0,∞) such that Φ, Ω, and S¯i(i=1,2) in Theorem 2 hold, where β1=ϖ, β2=e−ϖν.





Proof. 

Taking μ(t)=eϖt, we can obtain


μ˙(t)μ(t)=ϖ=β1,minμ(t−ν(t))μ(t),μ(t−ν)μ(t)=e−ϖν=β2.



(22)







On the basis of the above discussion, it is clear that the results are derived directly via Theorem 2. This proof is immediately completed.  □





Corollary 2.

Assume that Assumptions 1 and 2 hold. Given a positive constant ν, the equilibrium point of QVNTNNs (Equation (1)) is globally power-stable if there exist positive definite Hermitian matrices P∈Cn×n, Q∈Cn×n, R∈Cn×n, S∈Cn×n, W∈Cn×n, X∈Cn×n, Y∈Cn×n, two constants β1≥0, β2≥0, positive definite real diagonal matrices Ni(i=1,2,…,6), and if μ(t) is a nonnegative function which belongs to L2[0,∞) such that Φ, Ω, and S¯i(i=1,2) in Theorem 2 hold, where β1=ϖ2ν, β2=12ϖ.





Proof. 

Taking μ(t)=tϖ, for any t≥2max{1,ν}, we can obtain


μ˙(t)μ(t)≤ϖ2ν=β1,minμ(t−ν(t))μ(t),μ(t−ν)μ(t)≥12ϖ=β2.



(23)







By the above computation, it is concluded that the conditions in Theorem 2 are still satisfied. The proof is completed.  □





Corollary 3.

Assume that Assumptions 1 and 2 hold. Given a positive constant ν, the equilibrium point of QVNTNNs (Equation (1)) is globally log-stable if there exist positive definite Hermitian matrices P∈Cn×n, Q∈Cn×n, R∈Cn×n, S∈Cn×n, W∈Cn×n, X∈Cn×n, Y∈Cn×n, constants β1≥0, β2≥0, positive definite real diagonal matrices Ni(i=1,2,…,6), and if μ(t) is a nonnegative function which belongs to L2[0,∞) such that Φ, Ω, and S¯i(i=1,2) in Theorem 2 hold, where β1=ϖe, β2=1ln(e+ϖν).





Proof. 

Taking μ(t)=ln(ϖt+1), for any t≥(e−1ϖ)+ν, we have


μ˙(t)μ(t)≤ϖe=β1,minμ(t−ν(t))μ(t),μ(t−ν)μ(t)≥1ln(e+ϖν)=β2.



(24)







From the above expressions, and based on the Theorem 2, one can conclude that the conditions in Corollary 3 can be easily achieved. Thus, this completes the proof.  □





Remark 3.

Compared with the existing literature (see, e.g., [27,28,30]), we use the reciprocal convex combination approach combined with the free-weighting matrix method for getting Theorem 2. In this way, the time-delay information is fully explored and can be a reduced conservative result.





Remark 4.

By Theorem 2, we obtain the stability criterion of global μ-stability, and then we can generalize the results to the global exponential stability, global power-stability, and global log-stability.





Remark 5.

Since the delay-dependent stability conditions are always less conservative than the delay-independent stability conditions, this paper mainly considered the delay-dependent stability for the systems with bounded time-varying delays. In fact, the stability conditions of QVNTNNs that are unbounded time-varying can also established with a similar method. Moreover, the stability conditions in this paper are also suitable for unbounded time-varying delays depending on the properties of the QVNTNN itself.






5. Numerical Example


In order to show the effectiveness and advantages of the proposed method, three interesting numerical examples are given as follows.



Example 1.

The delayed QVNTNN (Equation (1)) is rewritten as follows:


y˙(t)−Cy˙(t−ν(t))=−Dy(t)+Ap(y(t))+Bp(y(t−ν(t)))+κ.








where y=y11+iy12+jy21+ky22∈Q2×1, and


A=0.2+0.5i−0.5j+0.1k0.4+0.4i−0.6j+0.1k−0.5+0.2i−0.1j+0.5k0.3+0.4i+0.1j+0.6k










=0.2+0.5i0.4+0.4i−0.5+0.2i0.3+0.4i+−0.5+0.1i−0.6+0.1i−0.1+0.5i0.1+0.6ij










=A1+A2j,










B=−0.3+0.4i−0.5j+0.2k0.6−0.2i−0.3j−0.5k0.2+0.8i+0.2j+0.5k−0.4−0.3i−0.5j−0.3k










=−0.3+0.4i0.6−0.2i0.2+0.8i−0.4−0.3i+−0.5+0.2i−0.3−0.5i0.2+0.5i−0.5−0.3ij










=B1+B2j,










C=0.1+0.05i+0.2j+0.05k0.2+0.04i+0.4j+0.04k−0.1+0.04i−0.5j+0.02k0.2+0.04i+0.03j+0.04k










=0.1+0.05i0.2+0.04i−0.1+0.04i0.2+0.04i+0.2+0.05i0.4+0.04i−0.5+0.02i0.03+0.04ij










=C1+C2j,










D=5005,κ=(0,0)*.











In this example, we take the activation functions as p(u)=0.5(|u+1|−|u−1|)+0.5(|u+1|−|u−1|)j. Clearly, it can be confirmed that Assumption 2 satisfies Λi=diag(0.01,0.01)(i=1,2,…,8). Assume the time-varying delay satisfies ν(t)=12.1566|sin(t)|; then, obviously, it can be computed that ς=0.5, ν=12.1566. In addition, let ϖ=0.1. It is easy to calculated that β1=0.1, β2=e−0.05. By using the Yalmip toolbox to solve Corollary 1, we can obtain the following feasible solutions.


P=7.1417+0.0000i1.0375+0.1874i1.0375−0.1874i6.9721+0.0000i×102,Q=2.9401+0.0000i1.1097+0.2555i1.1097−0.2555i2.4352+0.0000i×103,










R=83.3051+0.0000i−18.2915+11.0733i−18.2915−11.0733i82.7744+0.0000i,S=0.6318+0.0000i−0.0028+0.0653i−0.0028−0.0653i0.6254+0.0000i,










W=51.2573+0.0000i15.4123−1.1918i15.4123+1.1918i53.7044+0.0000i,N1=1.2019001.2376×103,










N2=923.813000866.7363,N3=462.656800479.7606,N4=1.1404001.0782×103,










N5=1.1850+0.2537i0.2186+0.3304i0.1780+0.2630i1.2111+0.2945i×102,N6=3.7716+1.1880i0.7546+1.5896i1.0880+1.2376i3.0510+1.4867i×102,










U1=0.0273+0.0000i−0.0052+0.0019i−0.0052−0.0019i0.0200+0.0000i,U2=0.7157+0.0000i0.1415+0.1018i0.1415−0.1018i0.6476+0.0000i×103,










U4=−0.0131+0.0000i−0.0035−0.0007i−0.0035+0.0007i−0.0124+0.0000i,U5=0.0264+0.0000i−0.0050+0.0019i−0.0050−0.0019i0.0192+0.0000i,










U6=0.0012+0.0000i−0.0003+0.0002i−0.0003−0.0002i0.0009+0.0000i,U8=0.0024+0.0000i−0.0210−0.0019i−0.0210+0.0019i−0.0049+0.0000i,










X=−6.0218+0.0000i−4.6899−1.0333i−4.6899+1.0333i−3.9657+0.0000i×102,Y=1.4287+0.0000i−0.2653+0.1715i−0.2653−0.1715i1.4202+0.0000i×102.











Thus, the equilibrium point of QVNTNNs (Equation (1)) is globally exponentially stable. Figure 1 shows four parts of the state responses of the QVNTNNs (Equation (1)).





Example 2.

The delayed QVNTNN (Equation (1)) is rewritten as follows


y˙(t)−Cy˙(t−ν(t))=−Dy(t)+Ap(y(t))+Bp(y(t−ν(t)))+κ.








where y=y11+iy12+jy21+ky22∈Q2×1, and


A=0.4+0.3i−0.5j+0.4k−0.7+0.7i−0.6j+0.14k−0.6−0.4i+0.14j+0.53k0.7+0.3i+0.1j+0.6k










=0.4+0.3i−0.7+0.7i−0.6−0.4i0.7+0.3i+−0.5+0.4i−0.6+0.14i0.14+0.53i0.1+0.6ij










=A1+A2j,










B=0.7j+0.1k0.5−0.3i+0.6j−0.1k0.7i+0.2j+0.6k−0.1+0.6i−0.3j−0.3k










=00.5−0.3i0.7i−0.1+0.6i+0.7+0.1i0.6−0.1i0.2+0.6i−0.3−0.3ij










=B1+B2j,










C=0.07+0.05i−0.06j+0.03k0.06+0.02i−0.04j−0.02k0.04+0.04i+0.01j+0.04k0.06+0.04i−0.02j−0.03k










=0.07+0.05i0.06+0.02i0.04+0.04i0.06+0.04i+−0.06+0.03i−0.04−0.02i0.01+0.04i−0.02−0.03ij










=C1+C2j,










D=3003,κ=(0,0)*.











Here, we use p(u)=125(|u+1|−|u−1|)+110(|u+1|−|u−1|)j as the activation function. Clearly, it can be confirmed that Assumption 2 satisfies Λ1=Λ3=Λ5=Λ7=diag(0.08,0.08), Λ2=Λ4=Λ6=Λ8=diag(0.2,0.2). Assuming that the time-varying delay satisfies ν(t)=1+15.7508sin(t), it can be obviously computed that ς=0.2, ν=15.7506. In addition, let ϖ=0.1; then, it is easy to calculate that β1=120ν, β2=0.20.1. Using the Yalmip toolbox, Corollary 2 can be solved. After calculation, a feasible solution is obtained.


P=8.1305+0.0000i1.6705−1.3097i1.6705+1.3097i7.0427+0.0000i×102,Q=1.7466+0.0000i0.6000−0.3775i0.6000+0.3775i1.6290+0.0000i×103,










R=1.3109+0.0000i0.2807−0.2632i0.2807+0.2632i1.3281+0.0000i×102,S=0.7719+0.0000i0.1719−0.1559i0.1719+0.1559i0.6759+0.0000i,










W=74.2120+0.0000i23.1226−14.6231i23.1226+14.6231i63.5486+0.0000i,N1=1.5729001.4706×103,










N2=1.3224001.2860×103,N3=1.0368001.0848×103,N4=1.2418001.1836×103,










N5=2.4691+0.6137i0.3724+0.2442i0.2087+0.6044i2.1374+0.3713i×102,N6=5.1458+1.1580i0.5341+0.9446i0.5025+1.4435i4.6514+1.0152i×102,










U1=−0.0232+0.0000i−0.0684+0.0823i−0.0684−0.0823i0.0371+0.0000i,U2=0.0050+0.0000i0.0029−0.0023i0.0029+0.0023i0.0037+0.0000i,










U4=−0.0518+0.0000i−0.0300+0.0223i−0.0300−0.0223i−0.0392+0.0000i,U5=−0.0228+0.0000i−0.0500+0.0575i−0.0500−0.0575i0.0186+0.0000i,










U6=0.6729+0.0000i0.0180−0.0231i0.0180+0.0231i0.6275+0.0000i×103,U8=−0.0658+0.0000i−0.0529+0.0383i−0.0529−0.0383i−0.0454+0.0000i,










X=−2.1273+0.0000i−2.7733+1.6689i−2.7733−1.6689i−1.9530+0.0000i×102,Y=3.2197+0.0000i0.4433−0.6310i0.4433+0.6310i3.2625+0.0000i×102.











Thus, the equilibrium point of QVNTNNs (Equation (1)) is globally power-stable. Figure 2 shows four parts of the state responses of the QVNTNNs (Equation (1)).





We have listed the maximal allowable bounds of ν for QVNNs and QVNTNNs in Table 1. From the comparison of QVNNs and QVNTNNs, we can see that the maximal delay bounds are bigger than those of QVNTNNs.



Example 3.

The delayed QVNTNN (Equation (1)) is rewritten as follows:


y˙(t)−Cy˙(t−ν(t))=−Dy(t)+Ap(y(t))+Bp(y(t−ν(t)))+κ.








where y=y11+iy12+jy21+ky22∈Q2×1, and


A=0.7+1i−0.2j+0.4k0.3+1.2i−0.4j+0.3k0.3−0.2i+0.2j+0.1k1+i−0.2j+0.4k










=0.7+1i0.3+1.2i0.3−0.2i1+1i+−0.2+0.4i−0.4+0.3i0.2+0.1i−0.2+0.4ij










=A1+A2j,










B=−0.4+0.7i+0.2j+0.5k1+0.5i+0.3j−0.5k0.3+0.2i−0.2j+0.1k−0.5+0.5i+0.2j+0.4k










=−0.4+0.7i1+0.5i0.3+0.2i−0.5+0.5i+0.2+0.5i0.3−0.5i−0.2+0.1i0.2+0.4ij










=B1+B2j,










C=0.2+0.08i+0.3j+0.05k0.5+0.08i+0.8j+0.01k−0.3−0.02i−0.5j+0.02k−0.2+0.04i+1j+0.02k










=0.2+0.08i0.5+0.08i−0.3−0.02i−0.2+0.04i+0.3+0.05i0.8+0.01i−0.5+0.02i1+0.02ij










=C1+C2j,










D=1.8002.8,κ=(0,0)*.











For this example, the activation function is chosen as p(u)=0.5tanh(u)+0.5tanh(u)j. Clearly, it can be verified that Assumption 2 is satisfied with Λ1=Λ3=Λ5=Λ7=diag(0.07,0.07), Λ2=Λ4=Λ6=Λ8=diag(0.3,0.3). Assuming that the time-varying delay satisfies ν(t)=10.3423|sin(t)|, it can be obviously computed that ς=0.5, ν=10.3423. In addition, let ϖ=0.1; then, it is easy to calculate that β1=110e, β2=1ln(e+0.1ν). By using the Yalmip toolbox, Corollary 3 can be solved. The following feasible solutions were calculated by us:


P=3.6113+0.0000i−0.1457−0.3895i−0.1457+0.3895i2.2912+0.0000i×102,Q=1.0170+0.0000i−0.1735−0.1745i−0.1735+0.1745i1.3937+0.0000i×102,










R=1.5034+0.0000i−0.6070−0.4689i−0.6070+0.4689i1.0799+0.0000i×102,S=1.3172+0.0000i−0.0604−0.1931i−0.0604+0.1931i0.5848+0.0000i,










W=41.0682+0.0000i−1.8619−5.9645i−1.8619+5.9645i18.7619+0.0000i,N1=780.227400619.7779,










N2=663.684100381.4323,N3=1.0702000.6026×103,N4=629.955300528.2100,










N5=1.8379+0.2680i0.0879+0.1924i0.1497+0.1378i0.7496+0.1278i×102,N6=3.6887+0.4126i0.1864+0.5835i0.2439+0.1794i1.4943+0.2445i×102,










U1=−0.1033+0.0000i−0.0089−0.0339i−0.0089+0.0339i−0.2079+0.0000i,U2=0.0075+0.0000i0.0005−0.0002i0.0005+0.0002i0.0018+0.0000i,










U4=−0.0712+0.0000i−0.0021+0.0060i−0.0021−0.0060i−0.0327+0.0000i,U5=−0.0460+0.0000i−0.0147+0.0212i−0.0147−0.0212i0.0285+0.0000i,










U6=0.0175+0.0000i0.0005−0.0017i0.0005+0.0017i0.0026+0.0000i,U8=0.0543+0.0000i−0.0027−0.0120i−0.0027+0.0120i−0.0099+0.0000i,










X=3.7674+0.0000i−0.0512−0.0312i−0.0512+0.0312i2.8247+0.0000i×102,Y=1.7454+0.0000i−0.6159−0.3628i−0.6159+0.3628i1.3755+0.0000i×102.











Thus, the equilibrium point of QVNTNNs (Equation (1)) is globally log-stable. Figure 3 shows four parts of the state responses of the QVNTNNs (Equation (1)).






6. Conclusions


In this paper, the global μ-stability problem of QVNTNNs with time-varying delays is discussed. Firstly, the QVNTNNs are transformed into two complex-valued systems by using a transformation to reduce the complexity of the computation generated by the non-commutativity of quaternion multiplication. A new convex inequality in the complex field is introduced. Secondly, the conditions for the existence and uniqueness of the equilibrium point are obtained by primarily applying the homeomorphism theory. Thirdly, the global stability conditions of the complex-valued systems are provided by constructing a novel Lyapunov–Krasovskii functional, using an integral inequality technique, and reciprocal convex combination approach. The gained global μ-stability conditions are divided into three different kinds of stability forms by varying the positive continuous function μ(t). In the end, three reliable examples and a simulation are provided to guarantee the validity of the obtained LMIs conditions. In the future, the problem of the stability, stochasticity, and synchronization of QVNTNNs with time delays and the QVNTNN with Markovian switching will be considered based on the results in this article.
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Figure 1. The four parts of the state trajectories for the quaternion-valued neutral-type neural networks (QVNTNNs) (Equation (1)) in Example 1. 
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Figure 2. The four parts of the state trajectories for the QVNTNNs (Equation (1)) in Example 2. 
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Figure 3. The four parts of the state trajectories for the QVNTNNs (Equation (1)) in Example 3. 
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Table 1. The maximal allowable bounds of ν.






Table 1. The maximal allowable bounds of ν.





	Condition
	QVNN
	QVNTNN





	global exponential stability
	13.9447
	12.1566



	global power-stability
	15.7909
	15.7508



	global log-stability
	15.0446
	10.3423
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