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Abstract: Approaches to estimate the number of almost periodic solutions of ordinary differential
equations are considered. Conditions that allow determination for both upper and lower bounds
for these solutions are found. The existence and stability of almost periodic problems are studied.
The novelty of this paper lies in the fact that the use of apparatus derivatives allows for the reduction
of restrictions on the degree of smoothness of the right parts. In our work, regarding the number
of periodic solutions of equations first order, we don’t require a high degree of smoothness and no
restriction on the smoothness of the second derivative of the Schwartz equation. We have all of these
restrictions lifted. Our new form presented also emphasizes this novelty.
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1. Introduction

In the works of Lebedeva [1], regarding the number of periodic solutions of equations first
order, they required a high degree of smoothness. Franco et al. required the smoothness of the second
derivative of the Schwartz equation [2]. We have all of these restrictions lifted. Our new form presented
also emphasizes this novelty.

There are two classes of oscillatory processes, periodic and non-periodic. In theory and practice,
an intermediate class of almost periodic oscillations is of great importance.

Almost periodic oscillations are oscillations that are close to periodic oscillations, which are
composed of harmonics with incommensurable periods. The process, which consists of the sum of
two periodic oscillations with incommensurate frequencies, is also an almost periodic oscillation.

The theory of almost periodic oscillations began to develop in the works of the Latvian
mathematician P.G. Bol, the Danish mathematician H.A. Bohr, and others.

Bol [3] laid the foundations of almost periodic functions theory and quasiperiodic functions
theory, proved the theorem on the decomposability of quasiperiodic functions in a Fourier series and
the theorem on a quasiperiodic function.

Harald Bohr’s scientific papers relate mainly to functions theory. He made a great contribution
to development of the almost periodic functions theory [4]. Uniform almost periodic functions are
named after Harald Bohr.

Fundamental results in the theory of periodic and almost periodic oscillations obtained in the
works of V.A. Pliss [5].

In many problems of classical mechanics, celestial mechanics, robotics, and mechatronics, there
are processes in which the time dependence is not periodic, but they can be expressed through
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trigonometric sums. In this connection, interest has arisen in the study of almost periodic solutions of
differential equations and differential equations with almost periodic coefficients [6–14].

Over the last years, the question of studying almost periodic functions in robotics [15–21], dynamic
systems [22–26], stability theory [27–31], control systems for space objects [32–34], and economy
problems [35–38] arose significantly.

2. Upper Bound for Number of Almost Periodic Solutions

Let the right-hand side of equation be

.
x = f (t, x). (1)

Theorem 1. If the right-hand side of Equation (1) for each fixed t is an increasing function with respect to x,
and there exists an instant t∗, such that f (t∗, x) is strictly increasing, then Equation (1) can have at most one
almost periodic solution.

Proof. Suppose that the conditions of the theorem are satisfied, and conversely that Equation (1)
has two almost periodic solutions, ϕ(t, x1) and ϕ(t, x2), starting at t = 0 at x1 and x2, respectively.
It can be proven that solutions ϕ(t, x1) and ϕ(t, x2) do not intersect [35], and therefore, without loss of
generality, the following equation can be assumed to hold for all t:

ϕ(t, x1) < ϕ(t, x2). (2)

Then, by the monotonicity of the function f , for all t the following inequality is true:

f (t, ϕ(t, x1)) ≤ f (t, ϕ(t, x2)). (3)

and for t = t∗, due to strict increase of the function f (t∗, x) and due to Inequality (2),

f (t∗, ϕ(t∗, x1)) < f (t∗, ϕ(t∗, x2)). (4)

Without a loss of generality, it can be assumed that t∗ > 0.
Let an arbitrary T > t∗ be taken. Then,

T∫
0

[ f (t, ϕ(t, x2))− f (t, ϕ(t, x1))]dt = δ > 0. (5)

Indeed, by (3) δ ≥ 0, and from the continuity of the function f it follows that Inequality (4) holds
in some neighborhood of point t∗; consequently the given statement is true.

Let an arbitrary ε ∈ (0, 1
2 δ) be taken. By assumption, the functions ϕ(t, x1) and ϕ(t, x2) are almost

periodic, and consequently they have a common ε-almost period. Hence, there exists ω′ ≥ T, such that∣∣ϕ(ω′, x1)− x1
∣∣≤ ε

and ∣∣ϕ(ω′, x2)− x2
∣∣≤ ε.
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Then, on one hand, from Equation (1) and with regard to Equations (3) and (5), it follows that

[ϕ(ω′, x2)− x2]− [ϕ(ω′, x1)− x1] =
T∫
0
[ f (t, ϕ(t, x2))− f (t, ϕ(t, x1))]dt+

ω′∫
T
[ f (t, ϕ(t, x2))− f (t, ϕ(t, x1))]dt ≥ δ.

On the other hand,

[ϕ(ω′, x2)− x2]− [ϕ(ω′, x1)− x1] ≤ ϕ(ω′, x2)− x2
∣∣+∣∣ϕ(ω′, x1)− x1

∣∣≤ 2ε < δ.

This contradiction proves that Equation (1) can not have two different almost periodic solutions.
�

Theorem 2. If the right-hand side of Equation (1) for each fixed t is a function convex in x, and there exists
a moment t∗ such that f (t∗, x) is strictly convex, then the Equation (1) can have no more than two almost
periodic solutions.

Proof. Suppose that the conditions of the theorem are satisfied, and, conversely, Equation (1) has three
almost periodic solutions φ(t, xi), i = 1, 2, 3 starting at the points x1, x2, x3 for t = 0. In the proof of
Theorem 2 [32], it is shown that in the considered situation Equation (1) has the property of existence
and uniqueness of solutions, and therefore it is assumed that for all t

φ(t, x1) < φ(t, x2) < φ(t, x3). (6)

Consider two obvious identities, which hold for all t in view of Equation (6):

φ′(t, x3)− φ′(t, x2)

φ(t, x3)− φ(t, x2)
=

f (t, φ(t, x3))− f (t, φ(t, x2))

φ(t, x3)− φ(t, x2)

and
φ′(t, x2)− φ′(t, x1)

φ(t, x2)− φ(t, x1)
=

f (t, φ(t, x2))− f (t, φ(t, x1))

φ(t, x2)− φ(t, x1)
.

Consider an arbitrary T > t∗. As noted in the proof of Theorem 1, it can assumed that t∗ > 0.
Let these equalities be integrated in the limits from 0 to T. Then,

P(T) = ln
φ(T, x3)− φ(T, x2)

x3 − x2
=
∫ T

0

f (t, φ(t, x3))− f (t, φ(t, x2))

φ(t, x3)− φ(t, x2)
dt

and

Q(T) = ln
φ(T, x2)− φ(T, x1)

x2 − x1
=
∫ T

0

f (t, φ(t, x2))− f (t, φ(t, x1))

φ(t, x2)− φ(t, x1)
dt.

Subtracting the second equality from the first one, it follows that

P(T)−Q(T) =
∫ T

0 [( f (t, φ(t, x3))− f (t, φ(t, x2)))(φ(t, x3)− φ(t, x2))
−1−

( f (t, φ(t, x2))− f (t, φ(t, x1)))(φ(t, x2)− φ(t, x1))
−1]dt.

(7)

Let the solution φ(t, x2) be represented in the following form:

φ(t, x2) = α(t)φ(t, x1) + (1− α(t))φ(t, x3). (8)
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By Equation (6) it is obvious that α ∈ (0, 1) for all t. Substituting the representation of Equation (8)
into Equation (7), the following is obtained:

P(T)−Q(T) =
∫ T

0 [α(t) f (t, φ(t, x1)) + (1− α(t)) f (t, φ(t, x3))−

f (t, α(t)φ(t, x1) + (1− α(t))φ(t, x3))][α(t)(1− α(t))(φ(t, x3)− φ(t, x1))]
−1 dt = G(T).

(9)

Repeating the arguments presented in the proof of Theorem 2 [32], it is easy to verify that:

G(T) = δ > 0,

while the definition of the function G as well as convexity with respect x of the function f imply that,
for any T′ > 0,

G(T + T′) = δ + δ′ = G(T) + G(T′).

Besides, G(T′) ≥ 0.
Consider the functions P and Q once again. It is clear from their definition that they are almost

periodic and that
P(0) = Q(0) = 0.

Consider some ε ∈ (0, 1
2 δ) and ω′ ≥ T such that∣∣P(ω′)∣∣< ε,∣∣Q(ω′)

∣∣< ε.

Existence of such ω′ follows from existence of common ε-almost period for functions P and Q [35].
Then, taking into account the properties of the function G indicated above for ω′ taken from (9) it

follows that ∣∣P(ω′)−Q(ω′)
∣∣= P(ω′)−Q(ω′) = G(ω′) = G(T) + G(ω′ − T) ≥ δ.

On the other hand, ∣∣P(ω′)−Q(ω′)
∣∣≤∣∣P(ω′)∣∣+∣∣Q(ω′)

∣∣≤ 2ε < δ,

so that this contradiction proves the assertion of the theorem.
The next step is to prove the theorem similar to Theorem 3 [32]. Therefore, it is further assumed

that the right-hand side of equation
.
x = f (t, x) (10)

is a function continuous on R2 that has a continuous on R2 derivative with respect to x, f ′(t, x) that is
convex in x for to each fixed t, and there exists a moment t∗ such that f ′(t∗, x) is strictly convex with
respect to x. As given above, the solution of Equation (10) starting for t = 0 at the point x is denoted
by φ(t, x), and assume that

ψ(t, x) = lnφ′(t, x) =
∫ t

0
f ′(τ, φ(τ, x))dτ.

�

Theorem 3. Assume Equation (10) has two bounded solutions φ(t, x1) and φ(t, x2), and let y1 < y2 be two
points from [x1, x2] such that φ′(t, y1) and φ′(t, y2) are uniformly bounded. Then a set of functions φ′(t, y),
y ∈ [y1, y2] is uniformly bounded.
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Proof. The equation in variations implies that

φ′(t, x) = e
∫ t

0 f ′(τ,φ(τ,x))dτ ≥ 0,

which implies the uniform boundedness below of the functions φ′(t, y), y ∈ [y1, y2].
Let us show that the functions φ′(t, y), y ∈ [y1, y2], are bounded uniformly from above. Consider

an arbitrary point y ∈ [y1, y2]. It follows from the proof of Theorem 3 [32] that a function ψ(t, x) is
convex on [x1, x2] for any finite t. Hence, representing y in the form y = αy1 + (1− α)y2, α ∈ [0, 1],
gives the following:

ψ(t, y) ≤ αψ(t, y1) + (1− α)ψ(t, y2) = ln
(
φ′
)α
(t, y1)φ

′1−α(t, y2).

Potentiating this inequality and subsituting φ′(t, y1) by

m ≥ max
t

φ′(t, y1) > 0,

and φ′(t, y2) by
n ≥ max

t
φ′(t, y2) > 0,

the following is obtained:

φ′(t, y) ≤ mαn1−α ≤ max
α∈[0,1]

(mαn1−α) = k < ∞.

Taking into account the arbitrariness of t and y it becomes obvious that the functions φ′(t, y),
y ∈ [y1, y2] are uniformly bounded from the above.

Thus, the set of functions φ′(t, y), y ∈ [y1, y2] is uniformly bounded from the above and below, so
that it is uniformly bounded. �

Theorem 4. If the conditions of Theorem 3 are satisfied, then the set of functions φ(t, y), y ∈ [y1, y2] is
uniformly bounded and equicontinuous with respect to y.

Proof. The uniform boundedness of the functions φ(t, y), y ∈ [y1, y2] ⊂ [x1, x2] is provided by the
uniqueness property of Equation (10) solutions and the assumption that the solutions φ(t, x1) and
φ(t, x2) are bounded. Their equicontinuity property is caused by the uniform boundedness of the
functions φ′(t, y), y ∈ [y1, y2], proven in Theorem 3. �

Theorem 5. Let Equation (10) have two bounded solutions φ(t, x1) and φ(t, x2), φ′(t, x∗) is unbounded
for some x∗ ∈ (x1, x2). Then there exists an interval [x′, x′′ ] 3 x∗ such that φ′(t, x) is unbounded for any
x ∈ [x′, x′′ ], and for any sequence {tk}, tk → ∞ as k→ ∞ , for which φ′(tk, x∗)→ ∞ as k→ ∞ , it is
possible to extract a subsequence

{
tkn

}
such the sequence of functions

{
φ′(tkn , x)

}
would tend to infinity

uniformly with respect to x ∈ [x′, x′′ ] as n→ ∞ .

Proof. Consider a sequence {tk}, tk → ∞ as k→ ∞ such that ψ(tk, x∗)→ ∞ as k→ ∞ . Let some
x′ ∈ (x1, x2) be fixed, then consider the sequence of functions {ψ(tk, x)}, x ∈ [x′, x∗]. If this sequence
of functions tends to infinity uniformly with respect to x ∈ [x′, x∗] as k→ ∞ , then interval [x′, x∗] is
the desired one. Otherwise, there exist δ > 0 and a sequence

{
xkn

}
⊂ [x′, x∗] such that

ψ(tkn , xkn) < δ.
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Consider an arbitrary point x′′ ∈ (x∗, x2) and suppose that

α(z1, z2) =
z2 − x∗

z2 − z1
, z1 ∈ [x′, x∗], z2 ∈ [x∗, x′′],α(x∗, x∗) = 1.

Consider now arbitrarily large ∆ > 0 and N being so large that for all n > N

ψ(tkn , x∗) > δ + ∆.

Due to the convexity of the function ψ(t, x), for any finite n,

ψ(tkn , x∗) ≤ α(xkn , x)ψ(tkn , xkn) + (1− α(xkn , x))ψ(tkn , x), x ∈ [x∗, x′′ ].

And from the continuity of the function ψ(t, x) and the fact that for n > N

ψ(tkn , x∗) > δ,

and
ψ(tkn , xkn) < δ,

it follows that for all n > N
xkn 6= x∗,

and therefore for all n > N
α(xkn , x) 6= 1, x ∈ [x∗, x′′ ].

Taking this into account, for any n > N and any x ∈ [x∗, x′′ ] it follows that

∆ ≤ ψ(tkn , x∗)− α(xkn , x)ψ(tkn , xkn) ≤
ψ(tkn ,x∗)−α(xkn ,x)ψ(tkn ,xkn )

1−α(xkn ,x) ≤ ψ(tkn , x),

i.e., for any n > N and for all x ∈ [x∗, x′′ ]

ψ(tkn , x) > ∆.

The arbitrariness of ∆ implies that on [x∗, x′′ ] the functions ψ(tkn , x) as well as φ′(tkn , x) tend
uniformly with respect to x to infinity as n→ ∞ . Thus, [x∗, x′′ ] is a desired interval.

The presented theorem proves the following assertion. �

Theorem 6. If Equation (10) has two bounded solutions φ(t, x1) and φ(t, x2), then for any x ∈ (x1, x2)

function φ′(t, x) is bounded.

Proof. Suppose, on the contrary, that in (x1, x2), there exists a point x∗ for which φ′(t, x∗) is unbounded.
Then, by Theorem 5, there exists a sequence {tk}, tk → ∞ as k→ ∞ and interval [x∗, x∗∗] ⊂ (x1, x2),
such that functions φ′(tk, x) tend to infinity as k→ ∞ uniformly with respect to x ∈ [x∗, x∗∗].

Consider two points x′ and x′′ in [x∗, x∗∗] and consider the difference φ(t, x′′ )− φ(t, x′). By the
Lagrange theorem, for any k

φ(tk, x′′ )− φ(tk, x′) = φ′(tk, ξk)(x′′ − x′),

where ξk ∈ (x′, x′′ ). The right-hand side of this equality is unbounded due to the uniform with respect
to x ∈ [x∗, x∗∗] convergence of the functions sequence x ∈ [x∗, x∗∗] to infinity. Hence its left-hand side
is also unbounded. But then, in view of the uniqueness of the Equation (10) solutions, there must
be at least one of the unbounded functions φ(t, x1) or φ(t, x2), which contradicts the assumption of



Mathematics 2018, 6, 171 7 of 21

their boundedness. This contradiction proves that in (x1, x2) there is no point x∗ at which the function
φ′(t, x∗) would be unbounded.

If we further assumes that Equation (10) has four almost periodic solutions φ(t, xi), i = 1, 2, 3, 4.
Since every almost periodic function is bounded, in the case under consideration all the theorems
proved above remain valid.

Consider an arbitrary sequence {εn}, εn → 0 as n→ ∞ , εn > 0. Let ωn denote an εn-almost
period of functions φ(t, xi), i = 1, 2, 3, 4. Such ωn exists, since for a finite number of almost periodic
functions for any ε > 0, there exists a common ε-almost period [35]. Without loss of generality, it can
be assumed that ωn → ∞ as n→ ∞ . �

Theorem 7. If Equation (10) has four almost periodic solutions φ(t, xi), i = 1, 2, 3, 4, then a set of functions
ψ(ωn, x), x ∈ [y1, y2] is uniformly bounded for any interval [y1, y2] ⊂ (x1, x4).

Proof. Consider an arbitrary interval [y1, y2] ⊂ (x1, x4). By Theorem 6, the functions φ′(t, y1) and
φ′(t, y2) are bounded, but then a set of functions φ′(t, x), x ∈ [y1, y2] is uniformly bounded by Theorem
3, which implies a uniform boundedness from above of a functions set ψ(t, x), x ∈ [y1, y2]. Thus,
in order to verify the validity of the assertion given in the theorem, it must be proved that a set of
functions ψ(ωn, x), x ∈ [y1, y2] is uniformly bounded from below.

The proof of this assertion involves two steps: it must be proven first that the sequence {ψ(ωn, x)}
is bounded from below for any x ∈ [x1, x4], and then the uniform boundedness of functions ψ(ωn, x)
on the interval [y1, y2].

The proof of the boundedness from below of the sequence {ψ(ωn, x)} for any x ∈ [x1, x4] is hold
by contradiction. Let there exist x∗ ∈ [x1, x4] for which the sequence {ψ(ωn, x∗)} is unbounded from
below. First of all, it must be proven that in this case, the sequence {ψ(ωn, x)} is unbounded from
below for any x ∈ (x1, x4).

Consider the contrary. Then there exists a point x′ ∈ (x1, x4) for which the sequence {ψ(ωn, x′)}
is bounded. Let, for definiteness, x′ < x∗. Then, by the convexity of the function ψ(t, x), x ∈ [x1, x4],
for any x′′ ∈ (x1, x′),

ψ(ωn, x′) ≤ αψ(ωn, x′′ ) + (1− α)ψ(ωn, x∗),

where α = x′−x∗
x′′−x∗ . If ψ(ωn, x′′ ) is unbounded from below, then the right-hand side of this inequality is

unbounded below as the sum of two functions unbounded from below, and if ψ(ωn, x′′ ) is bounded
from below, then the right-hand side of the inequality under consideration is unbounded below as
the sum of functions bounded and unbounded from below, since as it is proved before, {ψ(ωn, x′′ )}
is bounded from above. Thus, the right-hand side of the inequality considered is unbounded from
below in any of the two possible cases. So that, its left-hand side is also unbounded from below, which
contradicts the assumption that {ψ(ωn, x′)} is bound from below. The case when x′ > x∗ can be
considered in a similar way.

Thus, if the sequence {ψ(ωn, x∗)} is unbounded for some x∗ ∈ [x1, x4], then for all x ∈ (x1, x4)

the sequence {ψ(ωn, x∗)} is also unbounded from below. But then it follows from the definition of
ψ(t, x) that, for any x ∈ (x1, x4),

lim
n→∞

φ′(ωn, x) = 0.

Moreover, this convergence is uniform on any interval [l1, l2] ⊂ (x1, x4). The last remark is valid
in view of the estimate obtained in the proof of Theorem 3,

φ′(ωn, x) ≤
(
φ′
)α
(ωn, l1)

(
φ′
)1−α

(ωn, l2),

valid for all x ∈ [l1, l2] and α = x−l2
l1−l2

.
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Suppose l1 ∈ (x1, x2), l2 ∈ (x3, x4). Then, on [l1, l2], the sequence of functions {φ(ωn, x)}
converges uniformly to a function constant on [l1, l2]. Then,

lim
n→∞

φ(ωn, x2) = lim
n→∞

φ(ωn, x3).

But the specific choice of {ωn} implies that

lim
n→∞

φ(ωn, xi) = xi, i = 1, 2, 3, 4.

Hence x2 = x3. This contradiction proves that the sequence {ψ(ωn, x)} is bounded from below
for any x ∈ [x1, x4].

Now it must be proved that a set of functions {ψ(ωn, x)} is uniformly bounded from below on
[y1, y2]. Consider two points z1 < z2 from [x1, y1). Then, for any x ∈ [y1, y2], due to convexity of the
function ψ(t, x) on x ∈ [y1, y2], it follows that for α = x−z2

x−z1
,

ψ(ωn, z2)− αψ(ωn, z1) ≤ (1− α)ψ(ωn, x).

Considering that

1− α =
z2 − z1

x− z1
≥ z2 − z1

y2 − z1
> 0

and that the left-hand side of inequality presented above is bounded from below by a constant for all
α, the required conclusion is obtained.

Thus, it is shown that functions ψ(ωn, x) taken on an arbitray interval [y1, y2] ⊂ (x1, x4) are
uniformly bounded both from above and below, and therefore are uniformly bounded. �

Theorem 8. If Equation (10) has four almost periodic solutions φ(t, xi), i = 1, 2, 3, 4, then the functions
ψ(ωn, x), x ∈ [y1, y2] are equicontinuous for any interval [y1, y2] ⊂ (x1, x4).

Proof. Consider an arbitrary interval [y1, y2] ⊂ (x1, x4) and two points z1 < z2 in it. Assume:

m =
1
2
(y2 + x4).

Since ψ(t, x) is a function convex on [x1, x4], then the function ψ(ωn ,y)−ψ(ωn ,x)
y−x , x, y ∈ [x1, x4] is

increasing with respect to y for any n [3]. Then,

ψ(ωn ,z2)−ψ(ωn ,z1)
z2−z1

≤ ψ(ωn ,m)−ψ(ωn ,z1)
m−z1

≤ |ψ(ωn ,m)|+|ψ(ωn ,z1)|
m−y2

.

In Theorem 7 it is shown that the sequence {ψ(ωn, m)} is bounded, and that the functions
ψ(ωn, z1) are uniformly bounded for z1 ∈ [y1, y2]. Taking this into account, the following inequality
is obtained:

ψ(ωn, z2)− ψ(ωn, z1)

z2 − z1
≤ |ψ(ωn, m)|+|ψ(ωn, z1)|

m− y2
≤ K,

which holds for all n.
It can be proved in a similar way that there exists a finite L such that for all n and any z1 and z2

in [y1, y2]
ψ(ωn, z2)− ψ(ωn, z1)

z2 − z1
≥ L.
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Consider now an arbitrary ε > 0 and assume that

δ =
ε

max(|K|, |L|) .

Then for all n and any z1 and z2 from [y1, y2] such that |z2 − z1|< δ ,

|ψ(ωn, z2)− ψ(ωn, z1)|≤ max(|K|, |L|)|z2 − z1|≤ ε.

This proves that the functions ψ(ωn, x) are equicontinuous on an arbitrarily taken interval
[y1, y2] ⊂ (x1, x4).

Without loss of generality, it can assumed that the function f (t, x) on the right-hand side of
Equation (10) is such that t∗ > 0 for it, where t∗ is the moment at which the function f ′(t, x) is strictly
convex with respect to x. Then, it follows from the proof of Theorem 3 [32] that the functions ψ(ωn, x)
are strictly convex on [x1, x4] for all n for which ωn > t∗. Theorems 7 and 8 prove that the sequence
of functions {ψ(ωn, x)} satisfies all the requirements of the Arzela–Ascoli theorem at an arbitrarily
taken interval [y1, y2] ⊂ (x1, x4). Hence, this sequence can be assumed to be uniformly convergent to a
continuous function ψ(x) on [y1, y2]. Note that starting from some number N all functions ψ(ωn, x)
are strictly convex for n > N. �

Theorem 9. If Equation (10) has four almost periodic solutions, then the sequence of functions {ψ(ωn, x)}
converges to a strictly convex function ψ(x) on any interval [y1, y2] ⊂ (x1, x4).

Proof. Since the functions ψ(ωn, x) are convex and uniformly convergent on an arbitrarily chosen
interval [y1, y2] ⊂ (x1, x4), the function ψ(x) is convex on [y1, y2]. If ψ(x) is assumed to be not strictly
convex, then there exists an interval [z1, z2] ⊂ [y1, y2] for which

ψ(x) = ax + b,

where a and b are constants. Consider now the functions ψ(ωn, x) on an interval [z1, z2].
Consider also four points in [z1, z2]

l1 < l2 < l3 < l4

and the right derivative of function ψ(ωn, x). This derivative exists and is finite by convexity
of ψ(ωn, x).

It follows from Theorem 12 [31] that there exist two sequences {ζ1(ωn)} and {ζ2(ωn)} such that
ζ1(ωn) ∈ (l1, l2), ζ2(ωn) ∈ (l3, l4) for all n and the following inequalities are realised:

ψ(ωn, l2)− ψ(ωn, l1) ≤ ψ′+(ωn, ζ1(ωn))(l2 − l1)

and
ψ(ωn, l4)− ψ(ωn, l3) ≥ ψ′+(ωn, ζ2(ωn))(l4 − l3).

However,
lim

n→∞
[ψ(ωn, l2)− ψ(ωn, l1)] = a(l2 − l1),

lim
n→∞

[ψ(ωn, l4)− ψ(ωn, l3)] = a(l4 − l3),

and therefore
lim

n→∞
ψ′+(ωn, ζ1(ωn)) ≥ a,

lim
n→∞

ψ′+(ωn, ζ2(ωn)) ≤ a.
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Taking into account that for each n

ψ′+(ωn, ζ1(ωn)) ≤ ψ′+(ωn, ζ2(ωn)),

the following is obtained:

lim
n→∞

ψ′+(ωn, ζ1(ωn)) = lim
n→∞

ψ′+(ωn, ζ2(ωn)) = a.

Moreover, since for any x ∈ [l2, l3],

ψ′+(ωn, ζ1(ωn)) ≤ ψ′+(ωn, x) ≤ ψ′+(ωn, ζ2(ωn)),

then for x ∈ [l2, l3]
lim

n→∞
ψ′+(ωn, x) = a.

Moreover, this convergence is uniform with respect to x.
Let λ+[ψ′+](ωn, x) be an arbitrary right derived number of the function ψ′+(ωn, x) at a point

x ∈ [l2, l3], and let
{

hq
}

be the sequence on which this derived number is realized for hq → 0 as
q→ ∞ , hq > 0. Let us fix some n > N. Then for any natural number p

λ+[ψ′+](ωn+p, x) = lim
q→∞

1
hq

∫ ωn+p
0 φ′(t, x + hq)[( f ′)′+(t, φ(t, x + hq))

−( f ′)′+(t, φ(t, x))]dt + 1
2 ψ′+2(ωn+p, x) ≥ lim

q→∞
1
hq

∫ ωn
0 φ′(t, x + hq)[( f ′)′+(t, φ(t, x + hq))−

( f ′)′+(t, φ(t, x))]dt ≥ m lim
q→∞

1
hq

∫ ωn
0 [( f ′)′+(t, φ(t, x + hq))− ( f ′)′+(t, φ(t, x))]dt = r′+(x) ≥ 0.

Then
m = min

t∈[0,ωn ],x∈[l2,l3],h∈[0,δ]
φ′(t, x + h) > 0,

where δ > 0 is a sufficiently small constant, and

r(x) = m
∫ ωn

0
( f ′)′+(t, φ(t, x))dt.

Repeating the arguments given in the proof of Theorem 3 [32], it is easy to prove that r(x) strictly
increases on [l2, l3]. Then it can be represented as

r(x) = r1(x) + r2(x),

where r1(x) is a continuous function, and r2(x) is a function of the function r(x) jumps. It is easy to
verify that r1 strictly increases on [l2, l3], and for any x ∈ [l2, l3]

r′+(x) ≥ r′+1 (x).

Consider now the function

s(ωn+p, x) = ψ′+(ωn+p, x)− r1(x), x ∈ [l2, l3].

It follows from the estimates obtained above that all the right derived numbers of a function
s for any finite p are nonnegative, and the function s itself does not have jumps down, since ψ′+

increases, and r1 is continuous. Hence, taking into account the Theorem 9 proposition in [33], it can
be concluded that for each finite p the function s increases with respect to x. So that, s(ωn+p, x) has a
derivative almost everywhere in [l2, l3]. Let us define s′(ωn+p, x) for all points x ∈ [l2, l3], assuming
that s′(ωn+p, x) = 0 at those points x in which s(ωn+p, x) has no derivative.
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For a function s′ defined in this way and for any finite p, the following inequality is realised:

s(ωn+p, l3)− s(ωn+p, l2) ≥
∫ l3

l2
s′(ωn+p, x)dx ≥ 0.

Taking into account the definition of the function s, it can be obtained from the inequality given
above that for any finite p

ψ′+(ωn+p, l3)− ψ′+(ωn+p, l2) ≥

r1(l3)− r1(l2) = ε > 0,

which contradicts the existence of identical limits for these two sequences. Note that the inequality

r1(l3)− r1(l2) > 0

follows from the strict increase of the function r1 on [l2, l3].
Thus, it is shown that there is no segment on which the function ψ(x) coincides with a line

segment, and, consequently, ψ(x) is strictly convex on any interval [y1, y2] ⊂ (x1, x4).
So now a theorem analogous to Theorem 3 can be proven [32]. �

Theorem 10. Equation (10) can not have more than three almost periodic solutions.

Proof. Let Equation (10) have four almost periodic solutions φ(t, xi), i = 1, 2, 3, 4. Then consider three
sequences {zj

n},
zj

n = max
x∈[xj ,xj+1]

|φ(ωn, x)− x|, j = 1, 2, 3.

Since they are bounded, they can be considered convergent without loss of generality.
Suppose that

lim
n→∞

zj
n = zj, j = 1, 2, 3.

Let us prove now that for any j = 1, 2, 3, zj 6= 0. Let, for example, z1 = 0. Then consider an
arbitrary interval [y1, y2] ⊂ (x1, x2). By Theorem 6, the functions φ′(t, y1) and φ′(t, y2) are bounded,
so that on the basis of Theorem 4 it can be concluded that a set of functions φ(t, x), x ∈ [y1, y2] is
uniformly bounded and equicontinuous with respect to x. Taking into account Theorems 3 and 8,
it follows that the sequence of functions {φ′(ωn, x)}, x ∈ [y1, y2] is also uniformly bounded and
equicontinuous with respect to x. Considering this fact, without loss of generality, the sequences of
functions {φ(ωn, x)} and {φ′(ωn, x)}, can be considered uniformly convergent to continuous functions
φ(x) and φ′(x), respectively.

The assumption that z1 = 0 implies that on [y1, y2]

φ(x) = x,

and then
φ′(x) = 1.

It follows from the last identity that on [y1, y2] ⊂ (x1, x2) ⊂ (x1, x4),

ψ(x) ≡ 0.

But this is impossible, since ψ(x) is strictly convex on any closed interval belonging to (x1, x4)

due to Theorem 9. This contradiction proves that z1 can not be equal to zero. For the remaining two
intervals, the arguments are similar.
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From the fact that zj > 0, j = 1, 2, 3 it follows there exist δ > 0 such that for all j = 1, 2, 3:

zj > δ.

Consider N being so large that for all n > N and all j = 1, 2, 3, and i = 1, 2, 3, 4 the following
relations hold:

zj
n >

1
2

δ,
∣∣∣∣φ(ωn, xi)− xi

∣∣∣∣< 1
2

δ, ωn > t∗.

Let us fix an arbitrary n > N. Then, by virtue of N choice, the function |φ(ωn, x)− x| reaches its
maximum at some internal point of this interval on each of the intervals [xj, xj+1], j = 1, 2, 3,. Therefore,
in each interval (xj, xj+1), j = 1, 2, 3 there exists a point yj such that

φ′(ωn, yj) = 1.

Then, considering that
ψ(t, x) = lnφ′(t, x),

the following is obtained:
ψ(ωn, yj) = 0, j = 1, 2, 3

So, if Equation (10) has four almost periodic solutions, then for some sufficiently large n there
exist three different points yj on (x1, x4), each of which satisfies in each of which

ψ(ωn, yj) = 0.

But for x ∈ [x1, x4] and ωn > t∗, the function ψ(ωn, x) is strictly convex, and it consequently,
can not take three identical values in [x1, x4]. This contradiction proves that the assumption can not
be realized.

The main results obtained here can be represented in a unified form, for which the new notation
is introduced setting that

f−1(t, x) =
∫ x

0
f (t, y)dy,

f 0(t, x) = f (t, x),

f 1(t, x) = f ′(t, x),

where f (t, x) is a function that is continuous in a set of arguments. �

Theorem 11. If for some k = 1, 2, 3 a function f k−2(t, x) is continuous in the set of arguments and convex
with respect to x for each fixed t, and there exists a moment t∗ such that f k−2(t∗, x) is strictly convex, then
Equation (1) can have no more than k almost periodic solutions.

3. A Lower Bound for the Number of Almost Periodic Solutions

On the basis of the previous theorems, the authors obtain the conditions to determine the
maximum possible number of almost periodic solutions in first-order differential equation. Now
the problem of the existence of almost periodic solutions for the equation is under consideration, since
this allows for the determination of the minimum possible number of almost periodic solutions for the
differential equation considered.

So, consider the first-order differential equation

.
x = f (t, x), (11)
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where f is a function continuous on R2 that is almost periodic in t uniformly in x in every compact set
and such that Equation (11) has the property of existence and uniqueness of its solutions.

To prove the existence of almost periodic solution for Equation (11), the result obtained in [35]
should be used. Let it be formulated in the form of the following theorem.

Theorem 12. Let the right-hand side of Equation (11) be such that f (t, x) decreases with respect to x ∈ [a, b]
for each fixed t. Then, if Equation (11) has a bounded solution φ(t) such that {φ(t) : 0 ≤ t < ∞} ⊂ [a, b],
then it has an almost periodic solution x(t) whose range of values is in the interval [a, b].

Remark 1. If in Equation (11) veriable change is realized, setting τ = −t, then the following equation
is obtained:

dx
dτ

= − f (−τ, x). (12)

It is clear that if Equation (11) has an almost periodic solution, then Equation (12) also has an almost
periodic solution, and vice versa. This implies that Theorem 12 is valid if f (t, x) increases with respect to x for
each fixed t.

Theorem 13. If the right-hand side of Equation (11) is a function decreasing with respect to x for each fixed
t, and

lim
x→−∞

f (t, x) = +∞

and
lim

x→+∞
f (t, x) = −∞

uniformly with respect to t, then Equation (11) has an almost periodic solution.

Proof. By virtue of the assumption that f (t, x)→ +∞ as x → −∞ and f (t, x)→ −∞ as x → +∞
uniformly with respect to t, there exist constants K > 0 and α > 0, such that for x < −K

f (t, x) ≥ α,

and for x > K
f (t, x) ≤ −α,

x < −K
d
dt

∣∣∣∣
(11)

(x2) < 0.

Therefore, the solution of Equation (11) starting at any point x0, |x0|≤ K can not leave the band
[−K, K]. Thus, Equation (11) has a bounded solution, which implies that Equation (11) has at least one
almost periodic solution taking into account Theorem 12. �

Theorem 14. Let f (t, x) decrease with respect to x for each fixed t, and there exists a moment t∗, such that
f (t∗, x) strictly decreases. Then, in order for Equation (11) to have a unique, almost periodic solution, it is
necessary and sufficient that it has at least one bounded solution.

Proof. The necessity of the theorem conditions is obvious, since if Equation (11) has an almost periodic
solution, then this solution is the desired bounded solution. Let the sufficiency be proven. �

If Equation (11) has a bounded solution, then the requirements of Theorem 12 hold, which implies
that Equation (11) has an almost periodic solution. But, by Theorem 1, Equation (11) can not have more
than one almost periodic solution if the conditions of Theorem 14 are satisfied. Integration of these
two assertions implies that Equation (11) has a unique almost periodic solution due to the conditions
of Theorem 14.
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Theorem 15. Let the right-hand side of Equation (11) be such that the equation

f (t, γ(t)) ≡ 0

has n solutions γi(t), i = 1, . . ., with the following property: for any k = 0, 1 . . . , n in the domain

Dk = {(t, x) : t ∈ (−∞,+∞), γk(t) < x < γk+1(t)},

where it is supposed γ0 = −∞, γn+1 = +∞, the function f (t, x) is constant-sign, and the sign of the function
changes when passing to the neighboring domain. Then, if

β j = max
t

γj(t) < min
t

γj+1(t) = αj+1,

j = 1, 2, . . . , n− 1,

and in each domain
αi ≤ x ≤ βi

the function f (t, x) is increasing or decreasing with respect to x for each fixed t, then Equation (11) has n almost
periodic solutions.

Proof. First of all, let us prove that if there exists bounded functions defined on (−∞,+∞) continuously
differentiable functions α(t) and β(t), such that

α(t) ≤ β(t)

and
G(α)(t) =

.
α(t)− f (t, α(t)) ≤ 0 ≤ G(β)(t), t ∈ (−∞,+∞),

then Equation (11) has a bounded solution.
Suppose that

c(t, x) = α(t), x(t) < α(t)x(t), x(t) ∈ [α(t), β(t)]β(t), x(t) > β(t)

and consider the equation
.
x + x = c(t, x) + f (t, c(t, x)). (13)

It is clear that Equation (13) turns into Equation (11) if Equation (11) has a solution y(t), such that
for all t

α(t) ≤ y(t) ≤ β(t).

Let us prove that such a solution exists.
Consider the contrary. Then, the solution y(t, y0), starting at an arbitrary point y0 ∈ [α(0), β(0)],

leaves the considered domain in time. For example, let it get into the domain y(t) < α(t). For
this opportunity to be realizable, there must necessarily exist a point t∗ at which y(t∗) < α(t∗) and
.
y(t∗) ≤ .

α(t∗). In this case, from (13), the following is obtained:

.
y(t∗)− f (t∗, α(t∗)) = α(t∗)− y(t∗). (14)

However,
.
y(t∗) ≤ .

α(t∗),

and by condition
.
α ≤ f (t, α),
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therefore,
.
y(t∗)− f (t∗, α(t∗)) ≤ 0.

On the other hand,
α(t∗)− y(t∗) > 0.

Thus, the left-hand side of Equation (14) does not exceed zero, and its right-hand side is strictly
greater than zero for t = t∗.

This contradiction shows that the solution y(t, y0) of Equation (13) starting at a point y0 ∈
[α(0), β(0)] can not get into the domain y(t) < α(t). Similarly, it can be proven that this solution also
can not get into the domain y(t) < α(t). Therefore, for t ≥ 0 the following estimation is realized:

α(t) ≤ y(t) ≤ β(t),

which implies that there exists a bounded solution for Equation (13) and for Equation (11) as well,
considering the assumption thst the functions α and β are bounded.

The case when
G(α)(t) ≥ 0 ≥ G(β)(t)

can be considered in a similar way.
Now consider an arbitrary i = 1, 2, 3, 4. Assume for definiteness that in the domain Di−1

f (t, x) ≥ 0,

and in the domain Di
f (t, x) ≤ 0.

By the condition of the theorem

β j < αj+1, j = 1, 2, . . . , n− 1.

Therefore, for the considered i for x ≡ αi

G(x)(t) ≤ 0,

and for x ≡ βi
G(x)(t) ≥ 0.

Thus, all the requirements of the proved statement hold, which allows us to conclude that
Equation (11) has a bounded solution in the band

αi ≤ x ≤ βi.

However, by assumption, the function f (t, x) is monotonous and almost periodicwith respect to t
uniformly in x in this band, i.e., in the band

αi ≤ x ≤ βi

all the requirements of Theorem 12 are satisfied, which implies that Equation (11) has an almost
periodic solution in the band

αi ≤ x ≤ βi.

Let us prove that in the band
αi ≤ x ≤ βi



Mathematics 2018, 6, 171 16 of 21

there can not exist two almost periodic solutions. Suppose the contrary. Let x1(t) denote one almost
periodic solution, and x2(t) denote the other. Let, for definiteness, x1(0) < x2(0). Let the difference
x1(t)− x2(t) be represented in the form

x1(t)− x2(t) = x1(0)− x2(0) +
∫ t

0
[ f (τ, x1(τ))− f (τ, x2(τ))]dτ.

x1(t) and x2(t) never intersect due to existence and uniqueness of the solutions, so that for all t:

x1(t) < x2(t).

It is obvious that in the band:
αi ≤ x ≤ βi

the function f (t, x) decreases with respect to x for each fixed t. Therefore, for all t

f (t, x1(t)) ≥ f (t, x2(t)).

Taking this into account, the following inequality can be concluded:

[x1(t)− x2(t)]− [x1(0)− x2(0)] =
∫ t

0
[ f (τ, x1(τ))− f (τ, x2(τ))]dτ ≥ 0. (15)

In order to be an almost periodic solution x1(t) must necessarily get from the domain above the
curve γi(t) into the domain under the curve γi(t). This means that there exists a time point t′ > 0,
such that

x1(t′) < γi(t′) < x2(t′).

But by the theorem condition
f (t′, γi(t′)) = 0,

and a graph γi(t) of the function is a boundary of the sign change domains of the function f (t, x).
Consequently, at the point the following inequality holds:

f (t′, x1(t′)) > f (t′, x2(t′)).

Since the function f (t, x) is continuous, this inequality implies that in (15), the inequality is strict
for t ≥ t′.

Let us show that this contradicts the assumption that the solutions x1(t) and x2(t) are almost
periodic. Indeed, the difference of two almost periodic functions is an almost periodic function.
Consider a sequence of positive numbers {ε l} decreasing to zero and the sequence {ωl} corresponding
to it. Here ωl is a ε l-almost period of function x1(t)− x2(t). Without the loss of generality, the sequence
{ωl} can be considered as tending to infinity as l → ∞ . Consider L such that ωL ≥ t′. Then for
all l > L

[x1(ωl)− x2(ωl)]− [x1(0)− x2(0)] =
∫ ωl

0
[ f (t, x1(t))− f (t, x2(t))]dt ≥ δ > 0,

which contradicts the choice of the sequence {ωl}. This contradiction proves that in the band

αi ≤ x ≤ βi

there is only one almost periodic solution of Equation (11).



Mathematics 2018, 6, 171 17 of 21

But there are n such bands, by the condition of the theorem, which implies that Equation (11) has
n almost periodic solutions when the conditions of Theorem 15 are satisfied. �

4. Stability of Almost Periodic Solutions

Consider now stability of the the solutions of Equation (11).

Theorem 16. If the right-hand side of Equation (11) is a function decreasing with respect to x for each fixed t,
then all solutions of this equation are uniformly stable.

Proof. Let u(t) be an arbitrary solution of Equation (11). Suppose the equation for y is of the
following form:

.
y = f (t, u + y)− f (t, u) = g(t, y). (16)

Let the following function be a Lyapunov function:

v(y) =
1
2

y2. (17)

Since f (t, x) decreases with respect to x at each fixed t, the derivative of the function (17) on the
solutions of Equation (16) satisfies the inequality

dv
dt

∣∣∣∣
(16)

= yg(t, y) ≤ 0,

which implies the uniform stability of solution y = 0 of Equation (16), and hence, solution u(t) of
Equation (11). Taking into account the fact that u(t) is an arbitrary solution of Equation (11), it is clear
the theorem is proven.

Note that the theorem implies in the conditions of Theorem 15 that all n almost periodic solutions
of Equation (11) are stable, either as t→ +∞ , or with t→ −∞ .

Let λx[ f ](t, x) denote an arbitrary derived number of the function f (t, x) at the point x for a
fixed t. �

Theorem 17. If there exists a constantα > 0 such that for any fixed t and each derived number λx[ f ](t, x)

λx[ f ](t, x) ≤ −α,

then all the solutions of Equation (11) are uniformly asymptotically stable in general. If it is additionally known
that Equation (11) has an almost periodic solution, then all the solutions of Equation (11) are asymptotically
almost periodic.

Proof. Let u(t) be an arbitrary solution of Equation (11). Let a function y be introduced, setting that

y = x− u.

It is clear that if x is a solution of Equation (11), then y is a solution of Equation (16). Let us obtain
a derivative of Function (17) on solutions of Equation (16).

Repeating the proof of Theorem 12 [31], it is easy to show that there exist derived numbers for
which the following relation holds:

f (t, y + u)− f (t, u) ≤ yλu+θy[ f ](t, u + θy),

θ ∈ (0, 1.)
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Taking into account that by the condition of the theorem

λu+θy[ f ](t, u + θy) ≤ −α,

the following estimation is obtained:
dv
dt

∣∣∣∣
(16)
≤ −αy2. (18)

It follows from this inequality that the solution y = 0 of Equation (16) is uniformly asymptotically
stable, as well as the solution of Equation (11). Since u(t) is an arbitrary solution of Equation (11),
all the solutions of Equation (11) are asymptotically stable.

If Equation (11) has an almost periodic solution, then all the solutions of Equation (11) are
asymptotically almost periodic in the view of its uniform asymptotic. �

Theorem 18. If the function f (t, x) from the right-hand side of Equation (11) decreases with respect to x at
each fixed t, and on each compact set

{(y, u) : |u|≤ u0, d1 ≤|y|≤ d2, d1 > 0},

as t→ ∞ ,

sign(y)
∫ t

0
[ f (τ, y + u)− f (τ, u)]dτ → −∞

uniformly, then the solution y = 0 of Equation (16) is uniformly asymptotically stable.

Proof. Let u(t) be an arbitrary bounded solution of Equation (11). Suppose that

y = x− u.

It follows from Theorem 16 that the solution y = 0 of Equation (16) is uniformly stable. Let us
prove that all the solutions of Equation (16) tend to zero as t→ ∞ .

Suppose the contrary. Then for some solution y(t; 0, y0) of Equation (16), there exists d > 0,
such that

y(t; 0, y0) > d.

Here it is assumed that y0 > 0, for definiteness. In the proof of Theorem 16, it is shown that
the inequality

y
.
y ≤ 0,

which implies that |y| does not increase on the solutions of the Equation (16). Therefore, in the
considered case for t ≥ 0,

d ≤ y(t) ≤ y0.

Suppose that
u0 = sup

t
|u(t)|.

It follows from Equation (16) that

.
y
y
=

g(t, y)
y
≤ g(t, y)

y0
.

Hence, by virtue of the theorem,

lim
t→∞

y(t) ≤ lim
t→∞

y0e1/y0
∫ t

0 g(τ,y)dτ = 0,
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which contradicts the introduced assumption.
The case when y0 < 0 is treated in a similar way. Thus, the solution y = 0 of Equation (16) is

uniformly asymptotically stable. �

5. Conclusions

The upper and lower bounds for the numbers of almost periodic solutions of ordinary first-order
differential equations are carried out. Conditions for the existence and stability of almost periodic
solutions are established.
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