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Abstract: Recent cyberattacks against industrial control systems highlight the criticality of preventing
future attacks from disrupting plants economically or, more critically, from impacting plant safety.
This work develops a nonlinear systems framework for understanding cyberattack-resilience of
process and control designs and indicates through an analysis of three control designs how control
laws can be inspected for this property. A chemical process example illustrates that control approaches
intended for cyberattack prevention which seem intuitive are not cyberattack-resilient unless they
meet the requirements of a nonlinear systems description of this property.

Keywords: cybersecurity; process control; model predictive control (MPC); nonlinear systems theory;
Lyapunov stability

1. Introduction

Accident prevention for chemical processes has been receiving increased attention in the
process control literature as calls for a systems approach to chemical process safety [1–3] are being
mathematically formalized and incorporated within control design [4–6]. Controllers have been
formulated which compute control actions in a fashion that coordinates their actions with the actions
of the safety systems [7], and several works have explored methods for keeping the closed-loop state
of a nonlinear system away from unsafe conditions in state-space using controllers designed to avoid
such regions [8–11]. In addition, several works have explored fault diagnosis and detection [12–14]
or fault-tolerant control designs (e.g., [15–18]). Despite these advances in the integration of safety
and control for handling safety issues which arise from faults or disturbances and are therefore not
intended, the work which has explored the safety issues associated with cybersecurity [19] breaches
of process control systems performed with the intent of bringing the plant to an unsafe, unprofitable,
or under-producing condition to seek to hurt others has remained, for the most part, unexplored
(with exploration of the topic in works such as [20]). This gap in the literature is notable given the
increasing threat that cybersecurity breaches pose for safe process operation. For example, cyberattacks
have been successful at creating power outages in the Ukraine [21], causing sewage to enter nearby
land and water from a wastewater treatment plant [22] and damaging equipment at a uranium
enrichment plant [23]. They have also recently targeted systems at a petrochemical plant [24,25] with
the apparent goal of creating an explosion (though this attack thankfully failed). Unlike the most
commonly discussed cyberattacks in the media and in the literature, which are primarily concerned
with stealing information for the purpose of using that information to compromise companies or
individuals economically or socially (e.g., [26]), cyberattacks against process control systems have the
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potential to seek to create physical damage, injury, or death or a lack of supply of products that are
necessary for daily life and therefore are a critical problem to address.

A common technique for handling cybersecurity for control systems has been to rely on computer
science/information technology, computer hardware, or networking solutions [27]. Example solutions
in these categories include code randomization [28], limiting privileges in access or operation with
respect to control systems [29], preventing types of information flow with unidirectional gateways [30],
using redundant sensors [31], firewalls [32,33], and encryption [34]. Other approaches include changing
library load locations [35] or network settings [36], or randomly selecting encrypted data from sensors
to compare with unencrypted information [37]. However, the success of the recent attacks mentioned
above on control systems, and the surprising methods by which some of them have been carried
out (e.g., transmission via USB sticks and local area networks of the Stuxnet virus followed by its
subsequent ability to evade detection with rootkits and zero-day vulnerabilities [20,23]) indicate that the
traditional techniques for cyberattack prevention may not be enough. Furthermore, the use of wireless
sensors in chemical process control networks can introduce cybersecurity vulnerabilities [38,39].
Given the efficiency gains and lower costs expected to be associated with developing technologies
such as improved sensors, the Internet of Things [40], and Cloud computing [41], where increased
connectivity and computing usage in the chemical process industries has the potential to pose new
cybersecurity risks, the need for alternative techniques to the traditional approaches is growing.
The topic of resilience of control designs against cyberattacks [42,43] has been explored in several
works [44–47]. For example, in [48–50], resiliency of controllers to cyberattacks in the sense that they
continue to function acceptably during and after cyberattacks has been explored in a game-theoretic
context. Reliable state estimation also plays a part in resilience [51,52]. Approaches based on process
models have been important in suggested attack detection policies [31,53,54] and in policies for
preventing attacks that assume that the allowable (i.e., safe) state transitions can be enumerated
and therefore that it can be checked whether a control action creates an allowable transition before
applying it [55]). The ability of a controller to know the process condition/state has been considered to
be an important part of cyberattack resilience of control systems as well [56].

Motivated by the above considerations, this work mathematically defines cyberattacks in a
nonlinear systems framework and demonstrates how this framework should guide the development of
process designs and controllers to prevent the success of cyberattacks of different types. We highlight
the criticality of the nonlinear systems perspective, as opposed to seemingly intuitive approaches that
follow more along the lines of traditional computing/networking cybersecurity concepts related to
hiding or randomizing information, in preventing the success of cyberattacks, with a focus on those
which impact sensor measurements. To demonstrate that intuitive approaches are insufficient for
achieving cyberattack-resilience unless they cause specific mathematical properties to hold for the
closed-loop system, we explore the pitfalls of two intuitive approaches that do not come with such
guarantees and investigate a third approach for which the guarantees can be made for certain classes
of nonlinear systems under sufficient conditions, showing that it may be possible to develop methods
of operating a plant that meet these properties. This exploration of the properties of control designs
that are and are not cyberattack-resilient elucidates key principles that are intended to guide the
development of cyberattack-resilient controllers in the future: (a) cyberattack policies for simulation
case studies have a potential to be determined computationally; (b) randomization in controller
implementation can be introduced within frameworks such as model predictive control (MPC) [57,58]
that are common in the process industries without compromising closed-loop stability; and (c) creative
implementation strategies which trade off between control policies of different types may help with
the development of cyberattack-resilient control designs. A chemical process example is used to
demonstrate that controllers which do not meet the nonlinear systems definition of cyberattack
resiliency may not be sufficient for preventing the closed-loop state from being brought to an unsafe
operating condition. This paper extends the work in [59].
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2. Preliminaries

2.1. Notation

The notation | · | denotes the Euclidean norm of a vector. A function α : [0, a) → [0, ∞) is of
class K if α(0) = 0 and α is strictly increasing. The notation xT represents the transpose of a vector x.
The symbol “ / ” denotes set subtraction (i.e., x ∈ A/B = {x ∈ Rn : x ∈ A, x /∈ B}). d·e signifies
the ceiling function (i.e., the function that returns the nearest integer greater than its argument);
b·c signifies the floor function (i.e., the function that returns the nearest integer less than its argument).

2.2. Class of Systems

The class of nonlinear systems under consideration in this work is:

ẋ(t) = f (x(t), u(t), w(t)) (1)

where f is a locally Lipschitz nonlinear vector function of the state vector x ∈ Rn, input vector
u ∈ U ⊂ Rm, and disturbance vector w ∈W ⊂ Rl , where W := {w ∈ Rl : |w| ≤ θ}. We consider that
X is a set of states considered to be safe to operate at in the sense that no safety incidents will occur
if x ∈ X; therefore, we desire to maintain x within the set X. For the purposes of the developments
below, we will assume that outside of X, the closed-loop state is in an unsafe region of state-space.
We consider that the origin is an equilibrium of the system of Equation (1) (i.e., f (0, 0, 0) = 0).
Furthermore, we make the following stabilizability assumption:

Assumption 1. There exist np explicit stabilizing control laws hi(x), i = 1, . . . , np, for the system of
Equation (1), where np ≥ 1, with corresponding sufficiently smooth positive definite Lyapunov functions
Vi : Rn → R+ and functions αj,i(·), j = 1, . . . , 4, of class K such that the following inequalities hold for all
x ∈ Di ⊂ Rn:

α1,i(|x|) ≤ Vi(x) ≤ α2,i(|x|) (2)

∂Vi(x)
∂x

f (x, hi(x), 0) ≤ −α3,i(|x|) (3)∣∣∣∣∂Vi(x)
∂x

∣∣∣∣≤ α4,i(|x|) (4)

hi(x) ∈ U (5)

for i = 1, . . . , np, where Di is an open neighborhood of the origin.

We define a level set of Vi contained within Di where x ∈ X as a stability region Ωρi of the nominal
(w(t) ≡ 0) system of Equation (1) under the controller hi(x) (Ωρi := {x ∈ X ∩ Di : Vi(x) ≤ ρi}).

By the smoothness of each Vi, the Lipschitz property of f , and the boundedness of x, u, and w,
we obtain the following inequalities:

| f (x1, u, w)− f (x2, u, 0)| ≤ Lx|x1 − x2|+ Lw|w| (6)∣∣∣∣∂Vi(x1)

∂x
f (x1, u, w)− ∂Vi(x2)

∂x
f (x2, u, 0)

∣∣∣∣≤ L′x,i|x1 − x2|+ L′w,i|w| (7)

| f (x, u, w)| ≤ M (8)

for all x, x1, x2 ∈ Ωρi , i = 1, . . . , np, u ∈ U, and w ∈W, where Lx > 0, Lw > 0, and M > 0 are selected
such that the bounds in Equations (6) and (8) hold regardless of the value of i, and L′x,i and L′w,i are
positive constants for i = 1, . . . , np.

The instantaneous cost of the process of Equation (1) is assumed to be represented by a continuous
function Le(x, u) (we do not require that Le have its minimum at the origin/steady-state). We also
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assume that the instantaneous production rate of the desired product for the process is given by the
continuous function Pd(x, u) (which may be the same as Le but is not required to be).

2.3. Model Predictive Control

MPC is an optimization-based control design formulated as:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (9)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (10)

x̃(tk) = x(tk) (11)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (12)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (13)

where u(t) ∈ S(∆) signifies that the input trajectories are members of the class of piecewise-constant
vector functions with period ∆. The nominal (i.e., w(t) ≡ 0) model of Equation (1) (Equation (10))
is used by the MPC of Equations (9)–(13) to develop predictions x̃ of the process state, starting
at a measurement of the process state at tk (Equation (11); in this work, full state feedback is
assumed to be available to an MPC), which are then used in computing the value of the stage
cost Le over the prediction horizon of N sampling periods (Equation (9)) and evaluating the state
constraints (Equation (12)). The inputs computed by the MPC are required to meet the input constraint
(Equation (13)). The inputs are applied in a receding horizon fashion.

2.4. Lyapunov-Based Model Predictive Control

Lyapunov-based model predictive control (LMPC) [60,61] is a variation on the MPC design of the
prior section and is formulated as follows:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (14)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (15)

x̃(tk) = x(tk) (16)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (17)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (18)

V1(x̃(t)) ≤ ρe,1, ∀ t ∈ [tk, tk+N),

if x(tk) ∈ Ωρe,1

(19)

∂V1(x(tk))

∂x
f (x(tk), u(tk), 0)

≤ ∂V1(x(tk))

∂x
f (x(tk), h1(x(tk)), 0)

if x(tk) ∈ Ωρ1 /Ωρe,1 or tk ≥ t′

(20)

where the notation follows that of Equations (9)–(13). In LMPC, the predicted state is required to meet
the Lyapunov-based stability constraint of Equation (19) when x(tk) ∈ Ωρe,1 ⊂ Ωρ1 by maintaining the
predicted state within the set Ωρe,1 throughout the prediction horizon, and the input is required to meet
the Lyapunov-based stability constraint of Equation (20) when x(tk) /∈ Ωρe,1 to cause the closed-loop
state to move toward a neighborhood of the origin throughout a sampling period. Ωρe,1 is chosen to
make Ωρ1 forward invariant under the LMPC of Equations (14)–(20) in the presence of sufficiently small
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disturbances and a sufficiently small ∆. t′ is a time after which it is desired to enforce the constraint
of Equation (20) for all times regardless of the position of x(tk) in state-space. Due to the closed-loop
stability and robustness properties of h1(x) [62], h1(x̃(tq)), q = k, . . . , k + N − 1, t ∈ [tq, tq+1), is a
feasible solution to the optimization problem of Equations (14)–(20) at every sampling time if x(t0) ∈
Ωρ1 because it is guaranteed to cause V1(x) to decrease along the closed-loop state trajectories of
the nonlinear process throughout each sampling period in the prediction horizon when ∆ and θ are
sufficiently small until the closed-loop state enters a neighborhood Ωρmin,1 of the origin. Furthermore,
the LMPC of Equations (14)–(20) is guaranteed to maintain the closed-loop state within Ωρ1 throughout
all sampling periods of the prediction horizon when parameters such as ρe,1, ∆, and θ are sufficiently
small through the design of the Lyapunov-based stability constraints of Equations (19) and (20) which
take advantage of the stability properties of h1(x) [60]. It is furthermore guaranteed under sufficient
conditions that V1 decreases along the closed-loop state trajectory throughout a sampling period when
the constraint of Equation (20) is activated at a sampling time.

3. A Nonlinear Dynamic Systems Perspective on Cyberattacks

Cybersecurity of chemical process control systems is fundamentally a chemical engineering
problem - cyberattackers can find value in attacking plants because they can affect the economics of
large companies, the supply of important chemicals, and the health and lives of plant workers and
civilians if they are able to gain control over the process inputs, due to the nature of chemical processes
and how chemical processes behave. The implication of this is that chemical engineers should be able
to take steps during process and control design that can make cyberattacks more difficult or, ideally,
make it impossible for them to be successful at affecting economics, production, or safety.

Cyberattacks against process control systems seek to use information flows in control loops to
impact physical systems; the ultimate goal of a cyberattacker of a process control system, therefore,
can be assumed to be changing the inputs to the process [20] from what they would otherwise be if the
attack was not occurring. In this work, we assume that the plant controllers are feedback controllers.
There are various means by which a cyberattacker may attempt to affect such a control loop which
include providing false state measurements to a feedback controller, providing incorrect signals to the
actuators (i.e., bypassing the controller) [31], falsifying stored process data, preventing information
from flowing to some part of a control loop [63], manipulating the controller code itself [20], or directly
falsifying the signals received by an operator [37,64] (so that he or she does not notice that the process
inputs are abnormal). In summary, the electromagnetic signals in the control loop can be falsified. These
signals cause physical elements like actuators to move, impacting the condition of the actual process.
Contrary to the typical assumptions in feedback control, the association between the input physically
implemented on the process and the process state is removed during a cyberattack. A mathematical
definition for cyberattacks on feedback control systems is therefore as follows:

Definition 1. A cyberattack on a feedback control system is a disruption of information flow in the loop such
that any u ∈ U can potentially be applied at any state x that is accessed by the plant over time.

A process design that is resilient to cyberattacks attempting to influence process safety has many
conceptual similarities to a process that is inherently safe [65–69]; the dynamic expression of this
resilience property is as follows, where X̄ ⊆ X represents a set of allowable initial conditions:

Definition 2. A process design that is resilient to cyberattacks intended to affect process safety is one for which
there exists no input policy u(t) ∈ U, t ∈ [0, ∞), such that x(t) /∈ X, for any x(t0) ∈ X̄ and w(t) ∈ W,
t ∈ [0, ∞).

The resilience of the process design here depends on which variables are selected as manipulated
inputs; a different input selection may lead to a different assessment of whether the process design is
resilient to cyberattacks. Similarly, different designs will give a different dynamic model in Equation (1),
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which means that the inputs will impact the states differently over time (and whether x ∈ X); therefore,
the design itself also plays a role in whether Definition 2 holds as well. Furthermore, the definition of
resiliency is independent of the control laws used to control the process. This is because cyberattacks
manipulate the process inputs such that they do not necessarily cause process constraints to be met
(though the inputs are still physically constrained by the input bounds) and do not necessarily have
any relationship to the actual state measurement (Definition 1). Therefore, resiliency of a process
design to cyberattacks must be developed assuming that any input policy within the input bounds can
be applied to the process.

We can also define cyberattack resilience of a process design against attacks on the plant economics.
However, because of the minimal assumptions placed on Le, it is not possible to require that resilience
of a plant to cyberattacks on profitability means that the profit is not at all affected by a cyberattack.
For example, consider the case that Le has a global minimum (e.g., it may be a quadratic function of
the states and inputs). In this case, if u is not equal to its value at the global minimum of Le due to a
cyberattack (which affects x), then it would not be expected that the long-term profit will be the same
as it would be if the state always remained at its global minimum value. However, we would expect
that if profit is minimally affected by a cyberattack, there are relatively small consequences to the attack
occurring if it was to occur, and furthermore because of the minimal consequences, a cyberattacker
may not find it worthwhile to attempt the attack. Therefore, we define lower and upper bounds on the
asymptotic average value of Le (Le,lb and Le,ub, respectively) such that if the cost is within these bounds,
the process is still considered highly profitable and the company suffers minimal consequences from
an attack. This leads to the definition of a process design that is resilient to cyberattacks against plant
profitability as follows (where it is still required that x(t) ∈ X since safety during operation would be
a prerequisite to production):

Definition 3. A process design that is resilient to cyberattacks intended to affect process profit is one for which
x(t) ∈ X for t ∈ [0, ∞) for any x(t0) ∈ X̄ and the following inequality holds:

Le,lb ≤ lim sup
T→∞

1
T

∫ T

0
Le(x(t), u(t))dt ≤ Le,ub (21)

for all u(t) ∈ U and w(t) ∈W, for t ∈ [0, ∞).

Cyberattack resilience of a process design against production losses would be defined as in
Definition 3, except that Equation (21) would be replaced by

Pd,lb ≤ lim inf
T→∞

1
T

∫ T

0
Pd(x(t), u(t))dt ≤ Pd,ub (22)

where Pd,lb and Pd,ub represent the minimum and maximum values in the allowable production range
(or if there are nq products instead of one, each with instantaneous production rate Pd,i, i = 1, . . . , nq,
upper and lower bounds can be set on the time integral of each instantaneous production rate).

For the same reasons as noted for Definition 2, Definition 3 (and its extension to the production
attack case) depends on the design and input selection, but not the control law. In general, it may
be difficult to assess whether Definitions 2 and 3 or the production extension hold for a process,
though closed-loop simulations for a variety of different values of x(t0) ∈ X̄, u ∈ U and w ∈ W,
with different sampling periods for each, may provide some sense of how the process behaves and
potentially could help demonstrate that the process is not cyberattack resilient if there is an input
found in the bounds that causes a lack of satisfaction of the conditions. However, not finding any such
input during simulations does not necessarily mean that the process is resilient to cyberattacks unless
every situation posed in the definitions has been tested.

Despite the difficulty of verifying whether Definitions 2 and 3 or its production extension hold for
a process, the definitions serve an important role in clarifying what cyberattack resilience of a system
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would look like from a nonlinear systems perspective. At first, the independence of these definitions
from the control law implies that cybersecure process systems are only possible to achieve if the process
design itself with the selected inputs and their ranges causes Definitions 2 and 3 or the production
extension to be satisfied, which would not be expected to be typical. Therefore, at first this seems to
imply that chemical processes will generally be susceptible to cyberattacks. However, it also must be
understood that the definitions are meant to express resilience against any cyberattack of any kind
geared toward affecting the inputs, as they express cyberattacks in the most general sense as being
related to inputs and states; different types of cyberattacks would need to be analyzed individually to
see whether it is possible to design a process or control system that prevents cyberattack success.

Remark 1. Though Definitions 2 and 3 and the production extension are presented such that any input policy
can be chosen (e.g., continuous or sample-and-hold with different sampling periods), a knowledge that the inputs
are only applied in sample-and-hold could be used to require that the definitions only hold for sample-and-hold
input policies in the bounds with the sampling periods noted (assuming that the cyberattack cannot also impact
the sampling period).

Remark 2. Other works have mathematically defined cyberattack-resilience concepts as well. For example,
ref. [70] explores event triggering within the context of resilient control defined for input-affine nonlinear systems
with disturbances to be the capacity of a controller to return the state to a set of safe states when it exits these in
finite time. Ref. [71] also defines resiliency, for linear systems, as being related to the capacity of a controller to
drive the closed-loop state to certain sets and maintain it in safe states (similar to the definitions above).

4. Defining Cyberattack Resilience Against Specific Attack Types: Sensor Measurement
Falsification in Feedback Control Loops

In the remainder of this work, we focus on attacks that provide false state measurements within X
to feedback controllers with the goal of impacting process safety and will seek a better understanding
of the properties of controllers that are cyberattack-resilient in such a case. The difference between
what is required for cyberattack resilience in this case and what is required in Definition 2 is that the
controller and its implementation strategy always play a role in state measurement falsification attacks
(i.e., the controller is not bypassed completely to get to the actuators, so that the control law itself
always plays a role in dictating what inputs can be computed for given falsified state measurements).
Therefore, we would ideally like to develop controllers and their implementation strategies that ensure
that the inputs which would be computed by these controllers, regardless of the state measurements
they are provided, would over time guarantee that x ∈ X, ∀t ≥ 0, if x(t0) ∈ X̄. The definition of
cyberattack resilience becomes:

Definition 4. Consider the system of Equation (1) under feedback controllers and their implementation
strategies for which the set of all possible input policies which may be computed for t ∈ [0, ∞) for all x(t0) ∈ X̄
given the control laws and their implementation strategies is denoted by Uallow,i(t), i = 1, . . . , nu, t ≥ 0, where
nu ≥ 1 represents the number of possible input trajectories, with each covering the time horizon t ∈ [0, ∞).
The system of Equation (1) is resilient to cyberattacks that falsify state measurements with the goal of affecting
process safety under these feedback control policies if there exists no possible input policy u(t) ∈ Uallow,i(t),
i = 1, . . . , nu, t ∈ [0, ∞), such that x /∈ X, for any x(t0) ∈ X̄ and w(t) ∈W, t ∈ [0, ∞).

In Definition 4, nu maybe ∞. Furthermore, sampling period lengths are taken into account
in the definition of Uallow,i(t). Though Definition 4 may appear difficult to use, we will later
provide an operating policy which, for certain subclasses of the system of Equation (1), guarantees
cyberattack resilience of the closed-loop system according to Definition 4, indicating that provably
cyberattack-resilient control designs for false state measurements in X intended to affect process safety
may be possible to develop, particularly if assumptions or restrictions are imposed.
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5. Control Design Concepts for Deterring Sensor Measurement Falsification Cyberattacks on
Safety: Benefits, Limitations, and Perspectives

In this section, we initially use a chemical process example to motivate the need for
cyberattack-resilient control designs according to Definition 4, despite the non-constructive nature of
the definition, by demonstrating that cyberattack-resilient control is preferable compared to strategies
that detect attacks when they occur and subsequently compensate for them [20,72–77]. Subsequently,
we will investigate in more detail what it takes for a control design to be cyberattack-resilient.
To do this, we will present two “intuitive” concepts for operating a process in a manner intended to
deter cyberattacks; however, through a chemical process example, we will illustrate that due to the
definition of cyberattacks in a nonlinear systems context (Definition 1), these intuitive methods are not
cyberattack-resilient according to Definition 4. Despite this, the study of the reasons that these designs
fail to guarantee cyberattack resilience will develop important insights that may guide future work
on cyberattack-resilient controllers. We close with an example of a control design that is cyberattack
resilient according to Definition 4 for a subset of the class of systems of Equation (1), demonstrating
that despite the non-constructive nature of Definition 4, it may be possible to find operating strategies
that can be proven to meet this definition.

5.1. Motivating Example: The Need for Cyberattack-Resilient Control Designs

Consider the simplified Tennessee Eastman process, developed in [78] and used in [20] to
explore the results of several cyberattacks on sensors for this process performed one sensor at a time.
The process consists of a single vessel that serves as both a reaction vessel and a separator, in which
the reaction A + C → D occurs in the presence of an inert B. The reactor has two feed streams with
molar flow rates F1 and F2, where the former contains A, C, and trace B, and the latter contains pure
A (these will be denoted in the following by Stream 1 and 2 (S1 and S2), respectively). A, B, and C
are assumed to be in the vapor phase at the conditions in the reactor, with D as a nonvolatile liquid
in which none of the other species is appreciably soluble, such that the streams leaving the reaction
vessel are a vapor at molar flow rate F3 containing only A, C, and B, and a liquid product at molar flow
rate F4 containing only D (the vapor and liquid streams will be denoted by Stream 3 and 4 (S3 and S4),
respectively, in the following). The dynamic model describing the changes in the number of mols of
each species in the reactor (NA, NB, NC and ND for species A, B, C, and D, respectively, each in kmol)
is given as follows:

dNA
dt

= yA1F1 + F2 − yA3F3 − r1 (23)

dNB
dt

= yB1F1 − yB3F3 (24)

dNC
dt

= yC1F1 − yC3F3 − r1 (25)

dND
dt

= r1 − F4 (26)

where yA1 = 0.485, yB1 = 0.005, and yC1 = 0.51 are the mol fractions of A, B, and C, in S1, and yA3,
yB3, and yC3 are the mol fractions of A, B, and C in S3 (i.e., yi3 = Ni

(NA+NB+NC)
, i = A, B, C). The units

of both sides of Equations (23)–(26) are kmol/h. r1 is the rate at which the reaction in the vessel takes
place, and it is given by the following:

r1 = 0.00117y1.2
A3y0.4

C3 P1.6 (27)
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where r1 is given in units of kmol/h and P (in kPa) represents the pressure in the vessel and is
computed via the ideal gas law as follows:

P =
(NA + NB + NC)RgT

Vv
(28)

where Rg = 8.314 kJ/kmol·K and T = 373 K (i.e., isothermal operation is assumed). Vv represents the
volume of vapor in the vessel, where the vessel has a fixed volume of V = 122 m3 but the liquid has a
time-varying volume that depends on ND and the liquid molar density of 8.3 kmol/m3 such that Vv is
given (in m3) as follows:

Vv = 122− ND
8.3

(29)

with ND in kmol. It is desired that the liquid level in the tank not exceed 30 m3 (the steady-state value
of the liquid level is 44.18% of its maximum value).

Three process inputs are assumed (u1, u2, and u3), which represent set-points for the percent
opening of three valves that determine the flow rates F1, F2, and F3 as follows:

dX1

dt
= 360(u1 − X1) (30)

dX2

dt
= 360(u2 − X2) (31)

dX3

dt
= 360(u3 − X3) (32)

F1 = 330.46
X1

100
(33)

F2 = 22.46
X2

100
(34)

F3 = 0.00352X3
√

P− 100 (35)

where the units of time in Equations (30)–(32) are h and the units of flow in Equations (33)–(35) are
kmol/h, and X1, X2, and X3 represent the percentage opening of each valve (with an allowable range
between 0% and 100%, such that the valve output would saturate if it hits these bounds). A fourth valve
is also available for S4 for which the set-point for the valve position is adjusted with a proportional
controller based on the error between the percentage of the 30 m3 of available liquid volume that is
used in the tank (V%,used) and the desired (steady-state) value of the percentage of the available liquid
volume (V%,sp) as follows:

dX4

dt
= 360([X4,s + Kc(V%,sp −V%,used)]− X4) (36)

where X4,s represents the steady-state value of the percentage opening of the valve for S4, X4 represents
the percentage opening of the valve for S4, Kc = −1.4 is the tuning parameter of the proportional
controller used in setting the set-point value for X4, and V%,used = (100)(ND)

(8.3)(30) . The molar flow rate of S4
is given in terms of X4 as follows:

F4 = 0.0417X4
√

P− 100 (37)

The steady-state values for the variables and associated inputs are presented in Table 1, with the
subscript s denoting the steady-state value of each variable.

For this process, it is desired to maintain the value of the pressure in the reaction vessel below
Pmax = 3000 kPa. To regulate the process at its steady-state value, where Ps < Pmax as required as
shown in Table 1, different control laws can be considered. We first consider the proportional-integral
(PI) control laws developed in [78], which were applied in cyberattack scenarios involving attacks
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on sensors in [20]. In this case, the input u1 is adjusted in a manner that seeks to modify the flow
rate of the product D, u2 is adjusted in a manner that seeks to modify the composition of A in S3 to
avoid losing more reactant than necessary, and u3 is adjusted in a manner that seeks to modify the
pressure in the vessel since it can directly affect how much vapor flow can exit the vessel. To account
for physical limitations on the maximum value of S3, an additional mechanism is also added to help
with pressure control by allowing pressures greater than 2900 kPa to result in the set-point value for F4

that u1 uses in computing how large F1 should be being lowered to avoid providing reactants to the
reactor and thereby decreasing the outlet pressure. This is achieved through a fourth PI controller that
computes a signal u4 used in adjusting the set-point of F4. The control laws, in sample-and-hold with a
sampling period of ∆ = 0.1 h, are as follows:

u1(tk) = u1(tk−1) + Kc,1(e1(tk)− e1(tk−1) +
∆

τI,1
e1(tk)) (38)

e1(tk) = F4,sp,adj(tk)− F4(tk) (39)

u2(tk) = u2(tk−1) + Kc,2(e2(tk)− e2(tk−1) +
∆

τI,2
e2(tk)) (40)

e2(tk) = 100(yA3,s − yA3(tk)) (41)

u3(tk) = u3(tk−1) + Kc,3(e3(tk)− e3(tk−1) +
∆

τI,3
e3(tk)) (42)

e3(tk) = Ps − P(tk) (43)

u4(tk) = u4(tk−1) + Kc,4(e4(tk)− e4(tk−1) +
∆

τI,4
e4(tk)) (44)

e4(tk) = Pbound − P(tk) (45)

where Pbound = 2900 kPa and the controller parameters are given in Table 1. F4,sp,adj represents the
adjusted set-point for F4 set to F4,s if u4 > 0 but to F4,sp,adj = F4,s + u4 otherwise. u1, u2, and u3 would
saturate at 0 or 100% if these limits were reached.

In [20], several cyberattacks are proposed on the sensors associated with the controllers described
above (i.e., incorrect measurements are provided to the controllers, causing them to compute inputs for
the process which they would not otherwise have computed), with one sensor being attacked at a time.
The results in [20] indicate that some types of attacks are successful at driving the pressure above its
maximum bound, whereas others are not. For example, the authors of [20] comment that it was difficult
in the simulations to achieve problematic pressures in the vessel with the measured values of yA3 or
F4 being falsified for the controllers computing u1 and u2, whereas it is possible with a falsification
of the measurement of P for the controllers computing u3 and u4 to achieve a pressure in the reactor
above its limit. For example, Figure 1 shows the results of setting the measurement of yA3 received by
the controller computing u1 to its maximum value (i.e., a mol fraction of 1) between 10 h and 30 h of
operation after initializing the process at the steady-state. In both this case and in simulations with the
measurement of F4 received by the controller computing u2 set to its minimum value (i.e., 0 kmol/h)
between 10 h and 30 h of operation after initializing the process at the steady-state, the pressure during
the simulations did not exceed 3000 kPa. However, if we simulate the process with the P measurement
set to its minimum value of 0 kPa to affect the controllers computing u3 and u4, the pressure does
exceed 3000 kPa (i.e., the cyberattack succeeds in bringing the plant to an unsafe condition; in this case,
the simulation was performed only for 30 h as the unsafe condition was already reached within this
timeframe). The simulations were performed with an integration step size of 10−4 h for simulating the
dynamic process model of Equations (23)–(45). The simulations were performed in MATLAB R2016a
by MathWorks R©.
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Table 1. Steady-state values for the states of the Tennessee Eastman Process [78].

Parameter Value Unit

NA,s 44.49999958429348 kmol
NB,s 13.53296996509594 kmol
NC,s 36.64788062995841 kmol
ND,s 110.0 kmol
X1,s 60.95327313484253 %
X2,s 25.02232231706676 %
X3,s 39.25777017606444 %
X4,s 47.03024823457651 %
u1,s 60.95327313484253 %
u2,s 25.02232231706676 %
u3,s 39.25777017606444 %

V%,sp 44.17670682730923 %
F1,s 201.43 kmol/h
F2,s 5.62 kmol/h
F3,s 7.05 kmol/h
F4,s 100 kmol/h
Ps 2700 kPa

yA3,s 0.47 -
yB3,s 0.1429 -
yC3,s 0.3871 -
Kc,1 0.1 % h/kmol
τI,1 1 h
Kc,2 2 %
τI,2 3 h
Kc,3 –0.25 %/kPa
τI,3 1.5 h
Kc,4 0.7 kmol/kPa·h
τI,4 3 h
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Figure 1. Pressure trajectory for the system of Equations (23)–(45) for a falsified yA3 measurement set
at 1 between 10 and 30 h of operation under proportional-integral (PI) control.

The differences in the results based on the attack performed indicate the complexities of
closed-loop nonlinear systems that can make it difficult to predict every possible attack at a plant
to develop appropriate detection and compensation strategies for attacks. In each case, a nonlinear
system evolves over time under different input policies, and its response is therefore difficult to predict
a priori. In addition to the dynamics of the process itself, the dynamics of the other controllers that are
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not receiving falsified measurements and how they interact with the inputs computed by controllers
that are receiving false measurements impact the success of the attack. For example, in Figure 1,
the pressure measurement has not been compromised, and mechanisms are in place (through u3

and u4) for adjusting the pressure if it increases. Those come into play once the pressure increases
significantly, and are able to maintain the pressure below the problematic value of 3000 kPa. A similar
mechanism prevents the pressure from exceeding its threshold when the F4 measurement is falsified;
when the measurement of P is falsified, however, the controllers which provided the robustness against
the attack success in the other two cases are compromised and the attacks succeed. The number of
sensors and which sensors are compromised also play a role (i.e., as shown by the attack on P, if the
right sensors are compromised, an unsafe situation can be set up in this process). Furthermore, Figure 1
demonstrates that attack scenarios can be non-obvious. In this figure, the highest value of the pressure
occurs not when the value of yA3 received by the controller which manipulates u2 is being falsified,
but in the transient after it ceases to be falsified. If the maximum pressure bound had been lower,
the pressure in this transient could have exceeded it by creating a rapid change in direction of the
inputs once the actual state measurement of yA3 becomes available again. In such a case, an attack
could focus on the falsification followed by the removal of the falsification as an attack, rather than
only on the falsified measurement.

5.2. Deterring Sensor Measurement Falsification Cyberattacks on Safety: Creating Non-Intuitive
Controller Outputs

The simplified Tennessee Eastman Process demonstrates that control designs with theoretical
guarantees regarding cyberattack-resilience would be a valuable alternative to approaches which
assume cyberattacks can be detected. In the next several sections, we seek to better understand how
such controllers might be developed by examining two “intuitive” approaches which fail to meet the
definition of cyberattack-resilience despite the logic behind their design, followed by an approach
which meets the cyberattack-resilience definition. The first “intuitive” approach to be discussed is
based on the concept that if the control law can be kept hidden from an attacker and the control
law is sufficiently complex such that it is difficult for an attacker to postulate what input will be
computed for a given state measurement without knowing the control law, the attacker may have
difficulty in performing an attack. The control design that we will explore in this regard is an MPC
with a sufficient number of and/or types of constraints in the controller such that it may become
difficult to predict, without solving the optimization problem, what input may be computed for a
given state measurement. The LMPC of Equations (14)–(20) is an example of a controller which might
be considered. In that controller, the constraints of Equations (19) and (20) may cause the inputs
computed by the LMPC of Equations (14)–(20) to be different from those computed by the MPC of
Equations (9)–(13); therefore, if the same falsified state measurement was provided to both, it is possible
that one might compute a control action that could drive the closed-loop state to an unsafe condition,
whereas the other may not. If the cyberattacker did not know the control law being used, the presence
of additional constraints like the stability-based constraints may cause inputs to be computed which
an attacker does not expect. Furthermore, due to the closed-loop stability guarantees which can be
made for LMPC (i.e., the closed-loop state remains in Ωρ1 at all times under sufficient conditions) [60],
a check at each sampling time on whether the measured state is in Ωρ1 may provide a type of detection
mechanism for cyberattacks that may make it more difficult for them to succeed. Specifically, under
normal operating conditions, the state measurement should never be outside Ωρ1 ; if it is, it may be
considered that there is a potential the state measurement has been falsified. If a cyberattacker is
unaware of the value of ρ1, he or she may provide a false state measurement to the controller which
triggers detection; on the other hand, if he or she is only able to attack a limited number of sensors,
unless the attacker knows or can predict the readings of the unattacked sensors at each sampling time,
the attacker does not know how close the full state measurement being received by the controller
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(incorporating the attacked and unattacked measurements) is to being outside of Ωρ1 . Again, an attack
may be detected or deterred in this case.

Difficulties with this approach include, however: (1) if the cyberattacker did not know the control
law being used, it is questionable whether a high-impact attack would be attempted regardless of the
control law being used (i.e., it may not matter whether it has Lyapunov-based stability constraints
or not), because in any case the control law is not known and therefore attempting to randomly attack
the controller may be considered overly risky and unlikely to avoid detection; (2) the attacker may
gain access to all of the sensors and learn the value of ρ1, and thereby be able to maintain the falsified
state measurement always in Ωρ1 to avoid detection.

Remark 3. We note that closed-loop stability of an approach like LMPC under normal operation
(no cyberattacks) is proven elsewhere (e.g., [60]). The proof in [60] relies on the state measurement being
accurate; therefore, this proof does not allow us to prove closed-loop stability in the presence of a cyberattack.

5.2.1. Problems with Creating Non-Intuitive Controller Outputs

The pitfall of this approach from a nonlinear dynamic systems perspective is that it does not
make any attempt to prevent policies from existing that could create unsafe operating conditions
if the control law becomes known (i.e., Definition 4 is violated); it essentially assumes luckiness by
hoping that the cyberattacker will never be able to figure out enough about the control design to
be able to attack it. If the attacker does figure out the control law, it may not be overly difficult for
them to develop an attack policy that could drive the closed-loop state to an unsafe condition while
maintaining the falsified state measurement in Ωρ1 , despite the many constraints. For example, it may
be possible to develop an optimization problem in some cases that can be used in helping develop
attack policies, and then those can be assessed within closed-loop simulations to see whether they may
be likely to produce a problematic state trajectory.

To see this, consider a continuous stirred tank reactor (CSTR) in which the reactant A is converted
to the product B via an irreversible second-order reaction. The feed and outlet volumetric flow rates
of the CSTR are F, with the feed concentration CA0 and feed temperature T0. The CSTR is operated
non-isothermally with a jacket used to remove or add heat to the reactor at heat rate Q. Constant liquid
density ρL, heat capacity Cp, and liquid volume V are assumed, with the constants (from [79]) in
Table 2. The dynamic process model is:

ĊA =
F
V
(CA0 − CA)− k0e

− E
RgT C2

A (46)

Ṫ =
F
V
(T0 − T)− ∆Hk0

ρLCp
e
− E

RgT C2
A +

Q
ρLCpV

(47)

where CA and T represent the concentration and temperature in the reactor, respectively, E is the
activation energy of the reaction, k0 is the pre-exponential constant, Rg is the ideal gas constant,
and ∆H is the enthalpy of reaction. We develop the following vectors for the states and inputs in
deviation form: x = [x1 x2]

T = [CA − CAs T − Ts]T and u = [u1 u2]
T = [CA0 − CA0s Q − Qs]T ,

where CAs = 1.22 kmol/m3, Ts = 438.2 K, CA0s = 4 kmol/m3, and Qs = 0 kJ/h are the steady-state
values of CA, T, CA0, and Q at the operating steady-state.

The control objective is to maximize the following profit-based stage cost for the process of
Equations (46) and (47) representing the production rate of the product B while computing control
actions which meet the input constraints 0.5 ≤ CA0 ≤ 7.5 kmol/m3 and −5× 105 ≤ Q ≤ 5× 105 kJ/h
and maintain closed-loop stability:

Le = k0e
− E

RgT(τ) CA(τ)
2 (48)
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We will use an LMPC with the stage cost in Equation (48) to control this process. We choose
a Lyapunov function V1 = xT Px, where P = [1200 5; 5 0.1], h1,1(x) = 0 kmol/m3 for simplicity,
and h1,2(x) is determined by Sontag’s control law [80] as follows:

h1,2(x) =

−
L f̃ V1+

√
L f̃ V2

1 +Lg̃2 V4
1

Lg̃2 V1
, if Lg̃2 V1 6= 0

0, if Lg̃2 V1 = 0
(49)

where if h1,2 fell below or exceeded the upper or lower bound on u2, h1,2 was saturated at the respective
bound. In Equation (49), f̃ represents the vector containing the terms in Equations (46) and (47) (after
the model has been rewritten in deviation variable form in terms of x1 and x2) that do not contain
any inputs, and g̃ represents the matrix that multiplies the vector of inputs u1 and u2 in the equation.
L f̃ V1 and Lg̃k V1 represent the Lie derivatives of V1 with respect to f̃ and g̃k, k = 1, 2. The state-space
was discretized and the locations where V̇1 < 0 under the controller h1(x) were examined and used
to set ρ1 = 180. ρe,1 was set to be less than ρ1, and was (heuristically) chosen to be 144. The process
is initialized at xinit = [−0.4 kmol/m3 20 K]T and simulated with the integration step of 10−4 h,
with N set to 10, and with ∆ set to 0.01 h. The Lyapunov-based stability constraint activated when
x(tk) ∈ Ωρe,1 was enforced at the end of every sampling period in the prediction horizon, and whenever
the Lyapunov-based stability constraint involving the time-derivative of the Lyapunov function was
enforced, the other Lyapunov-based constraint was implemented at the end of the sampling periods
after the first. The simulations were implemented in MATLAB using fmincon. The initial guess
provided to fmincon was the steady-state input vector. The maximum and minimum values of u2 were
multiplied by 10−5 within the optimization problem due to the large magnitudes of the upper and
lower bounds allowed for this optimization variable.

Table 2. Parameters for the continuous stirred tank reactor (CSTR) process.

Parameter Value Unit

V 1 m3

T0 300 K
Cp 0.231 kJ/kg·K
k0 8.46× 106 m3/h·kmol

F 5 m3/h

ρL 1000 kg/m3

E 5× 104 kJ/kmol

Rg 8.314 kJ/kmol·K
∆H −1.15× 104 kJ/kmol

To consider an attack on the safety of this process, we assume that we do not want the temperature
in the reactor to go 55 K above Ts (because no temperature at any point in the stability region is this
high, the controller should, under normal operation, have no trouble achieving this). However, if we
assume that the cyberattacker knows the control law and can access the state measurements, he or she
could exploit this to design an attack policy specific to the closed-loop system under consideration.
To demonstrate that this can be possible, we will computationally develop an attack policy for this
process through two optimization problems, the first of which tries to compute control actions within
the input bounds which maximize the temperature reached within N∆ time units from the (actual)
current state measurement, and the second of which finds a state measurement (to use as the false
value in an attack) which can generate control actions that, ideally, are as close as possible to those
developed in the first optimization problem and also ensure that there is a feasible solution to the
constraints which will be employed in the LMPC. The first optimization problem is as follows:
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min
u(t)∈S(∆)

−(x2(tN) + Ts) (50)

s.t. ˙̃x(t) = f̃ (x̃(t)) + g̃u(t) (51)

x̃(t0) = xinit (52)

− 3.5 ≤ u1(t) ≤ 3.5, ∀ t ∈ [t0, tN) (53)

− 105 ≤ u2(t) ≤ 105, ∀ t ∈ [t0, tN) (54)

Equations (50)–(54) are designed such that the solution of this optimization problem is a
piecewise-constant input trajectory that meets the process input constraints (Equations (53) and (54))
and drives the temperature in the reactor as high as possible in N∆ time units (Equation (50)) according
to the dynamics of the process (Equation (51)) starting from the state measurement at the current time
(Equation (52); the current time is denoted by t0 in this optimization problem since this problem is
solved only once instead of in a receding horizon fashion). The solution of this optimization problem
for the process of Equations (46) and (47) is a piecewise-constant input trajectory with u1 varying
between 3.4975 and 3.4983 kmol/m3 and u2 varying between 499856.52 and 499908.01 kJ/h over the
N∆ time units.

Because the inputs are approximately constant throughout the N∆ time units in the solution
to Equations (50)–(54), this suggests that a single initial condition may be sufficient for causing the
problematic input policy to be generated at each sampling time. Specifically, the only information that
the LMPC of Equations (14)–(20) receives from an external source at each time that it is solved is the
state measurement in Equation (16); because it uses a deterministic process model and deterministic
constraints, the LMPC of Equations (14)–(20) has a single solution for a given state measurement.
Therefore, if a cyberattacker determines that an attack policy which applies the same input at every
sampling time is desirable, he or she can cause the controller to compute this input at every sampling
time by determining a state measurement value for which the problematic input is the solution to
Equations (14)–(20), and then providing that same state measurement to the LMPC at every sampling
time to cause it to keep computing the same problematic input.

The following second optimization problem finds the initial condition to use at each of the next N
sampling periods that may cause the values of u1 and u2 in the first sampling period of the prediction
horizon to be close to the averages of the N values of u1 (u1,desired) and the N values of u2 (u2,desired),
respectively, determined by Equations (50)–(54), while allowing the constraints of Equations (14)–(20)
to be met:

min
u(t)∈S(∆),xmeas

∫ t1

t0

[
(u1(τ)− u1,desired)

2 + 10−10(u2(τ)− u2,desired)
2
]

dτ (55)

s.t. ˙̃x(t) = f̃ (x̃(t)) + g̃u(t) (56)

x̃(t0) = xmeas (57)

− 3.5 ≤ u1(t) ≤ 3.5, ∀ t ∈ [t0, tN) (58)

− 105 ≤ u2(t) ≤ 105, ∀ t ∈ [t0, tN) (59)

V1(x̃(tj)) ≤ ρe,1, j = 0, . . . , N (60)

This optimization problem reverse engineers the LMPC of Equations (14)–(20) (except that it
neglects the objective function of the controller) in the sense that it seeks to find an initial condition
xmeas (Equation (57)) to provide to the LMPC of Equations (14)–(20) for which there exists a feasible
input policy for the N sampling periods of the prediction horizon that meets the process input
constraints (Equations (58) and (59)) as well as the Lyapunov-based stability constraint of Equation (19)
(Equation (60)) while allowing this feasible trajectory to include u1 and u2 in the first sampling period
of the prediction horizon taking values as close to the problematic values u1,desired and u2,undesired
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as possible. The reason for only requiring u1 and u2 in the first sampling period of the prediction
horizon to be as close as possible to the attack values is that though the optimization problem of
Equations (55)–(60) is being solved only once to obtain the sensor attack policy xmeas to provide
to the LMPC at each subsequent sampling time, the LMPC will be solved at every sampling time
and will only apply the input for the first sampling period of the prediction horizon in each case.
The formulation of Equation (60) assumes that the attacker knows the exact manner in which this
constraint is enforced in the LMPC, where, as noted above, it will be enforced at the end of every
sampling period in the prediction horizon. The addition of the requirement in Equation (60) that
V1(x̃(t0)) ≤ ρe,1 is used to pre-select that xmeas should be within Ωρe,1 . This eliminates the need to try
to solve a disjunctive or mixed integer nonlinear program [81] that allows the initial condition to be
either in Ωρe,1 or Ωρ1 /Ωρe,1 such that the constraint to be employed (i.e., Equation (19) or Equation (20))
depends on the optimization variables that are the components of xmeas. The components of xmeas were
essentially unconstrained in Equations (55)–(60).

In solving Equations (50)–(60), the bounds on u2 were multiplied by 10−5. The false state
measurement determined from Equations (55)–(60) was x1 = −0.05207 kmol/m3 and x2 = −8.3934 K.
Figure 2 demonstrates that when this state measurement is used at every sampling period for 10
sampling periods, the inputs computed are able to drive the temperature significantly above its
threshold value x2 = 55 K within a short time. When disturbances are added (specifically, simulations
were performed with disturbances added to the right-hand sides of Equations (46) for w1 and (47)
for w2) generated using the MATLAB functions rng(10) to generate a seed with normrnd to generate a
pseudorandom number from a normal distribution with mean of zero and a standard deviation of
30 kmol/h (for w1) and 3200 K/h (for w2), with both inputs clipped when necessary to bound them
such that |w1| ≤ 90 and |w2| ≤ 9600, an unsafe situation is again set up in 10 sampling periods in
which x2 approaches 300 K as in Figure 2. The LMPC only receives state measurements, regardless of
whether there are disturbances or not; therefore, if the same state measurement is given every time,
it computes the same solution to the optimization problem every time and when this solution is able to
drive the closed-loop state to an unsafe condition if continuously applied, the cyberattacker succeeds.
The attack-defining concept posed here could be attempted for other attack goals as well, such as
minimizing a profit-based objective function in Equations (50)–(54) to seek to compute an attack policy
that financially attacks the plant or minimizing a production-based objective function to seek to attack
the chemical supply from the plant.
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Figure 2. State-space trajectory showing the state trajectory in 10 sampling periods with the falsified
state measurements determined through optimization applied at every sampling time, in the absence
of disturbances.
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Remark 4. The CSTR example indicates an important difference between traditional safety thinking and
thinking about cyberattacks. In traditional safety thinking, there will be unsafe operating conditions that might
be considered very unlikely to be achieved; when considering cyberattacks, there can be deliberate attempts on the
part of the attacker to set up unsafe operating conditions that might otherwise be very unlikely to be achieved.
It is therefore important to seriously consider unlikely scenarios at the hazard analysis stage from the perspective
of whether a cyberattack on the control system could lead them to occur.

Remark 5. Though the cyberattack design methodology presented in this section suggests that cyberattacks
on specific control designs might be developed computationally, the framework used in Equations (50)–(60)
may not always achieve expected effects. Specifically, the initial condition determined by Equations (55)–(60)
may not actually result in the control actions of Equations (50)–(54) being computed at each sampling time
by the controller because the only feature of Equations (55)–(60) that seeks to associate xmeas with u1,desired
and u2,desired is a soft constraint rather than a hard constraint, and it is, therefore, not guaranteed to be met.
Furthermore, Equations (55)–(60) do not account for the role of the objective function in affecting which inputs
would actually be computed for a given state measurement. In this example, the false state measurement
determined through Equations (50)–(60) was able to rapidly set up an unsafe scenario when used to cyberattack
the LMPC; to develop attacks for other systems, it may be necessary to develop a more sophisticated method
for determining the false state measurements or to use closed-loop simulations to determine if the false state
measurements determined computationally provide an appropriate attack scenario with which to test research
results. Finally, it should be noted that Equations (50)–(54) are not guaranteed to find an input that drives x2

above its threshold in N sampling periods; whether or not this occurs may depend on the process dynamics,
the input bounds, the initial condition, and also the number of sampling periods N over which the increase in x2

is allowed to occur.

5.3. Deterring Sensor Measurement Falsification Cyberattacks on Safety: Creating Unpredictable
Controller Outputs

The second “intuitive” approach seeks to address a perceived deficiency in the first “intuitive”
approach, namely that the success of the cyberattacks in Section 5.2.1 was related to the fact that the
cyberattacker could figure out the mapping between x(tk) and u by learning the control law. One idea
for addressing this would be to develop sets of stabilizing control laws for a process and choose
only one, randomly, at each sampling time. Then, if the inputs which the various potential control laws
would compute for the same state measurement are significantly different, it may be more difficult for
an attacker to determine an attack policy that, regardless of the control law chosen at a sampling time,
will drive the closed-loop state to an unsafe condition (even if the attacker knew every potential
control law).

Before we can consider such an approach, it must be established that randomization in the
controller selection process can be achieved without impacting closed-loop stability under normal
operation (i.e., in the absence of a cyberattack). Theory-based control designs with stability guarantees
from an explicitly characterizable region of attraction even in the presence of disturbances (e.g., LMPC)
are therefore attractive options for use in randomization strategies for control laws. In the remainder
of this section, we present an example of a control design and implementation strategy that uses
LMPC to incorporate randomness in process operation (with the goal of deterring cyberattacks by
obscuring the mapping between a state measurement at a given sampling time and the input to be
computed) with closed-loop stability guarantees under normal operation even in the presence of the
randomness. However, like the design in Section 5.2, this design and its implementation strategy do
not fundamentally prevent the existence of an input policy which could create an unsafe condition
for some x(t0) ∈ X̄ (when, for example, X̄ = Ωρ1 ), and therefore if this design succeeds in preventing
or delaying the impacts of cyberattacks, it does so more on the basis of chance than rigor, which is
demonstrated below using the CSTR example.
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5.3.1. Creating Unpredictable Controller Outputs: Incorporating Randomness in LMPC Design

The randomized LMPC design involves the development of np controllers of the form of
Equations (14)–(20) but where each can have a different Lyapunov function, Lyapunov function
upper bound, and Lyapunov-based controller as follows:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (61)

s.t. ˙̃x(t) = f (x̃(t), u(t), 0) (62)

x̃(tk) = x(tk) (63)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (64)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (65)

Vi(x̃(t)) ≤ ρe,i, ∀ t ∈ [tk, tk+N),

if x(tk) ∈ Ωρe,i

(66)

∂Vi(x(tk))

∂x
f (x(tk), u(tk), 0)

≤ ∂Vi(x(tk))

∂x
f (x(tk), hi(x(tk)), 0)

if x(tk) ∈ Ωρi /Ωρe,i or tk ≥ t′ or δ = 1

(67)

where Vi, ρe,i, ρi, and hi, i = 1, . . . , np, play the roles in Equations (61)–(67) of V1, ρe,1, ρ1,
and h1, respectively, from Equations (14)–(20). Each combination of Vi and hi is assumed to satisfy
Equations (2)–(5) ∀x ∈ Ωρi and Ωρe,i ⊂ Ωρi . For j = 2, . . . , np, the Ωρj should be subsets of Ωρ1 for
reasons that will be clarified in Section 5.3.1.1. To introduce an additional aspect of randomness at
each sampling time, the parameter δ is introduced in Equation (67). It can take a value of either 0 or 1,
and one of those two values is randomly selected for it at each sampling time. δ = 1 corresponds to
activation of the constraint of Equation (67) even when tk < t′ or x(tk) ∈ Ωρe,i .

With the np controllers of the form of Equations (61)–(67) and the two possible values of δ in
each of these LMPC’s at every sampling time, Equations (61)–(67) represent 2np potential controllers
which may be selected at every sampling time (though if x(tk) ∈ Ωρi /Ωρe,i for nq of these controllers,
Equations (61)–(67) with δ = 0 and δ = 1 are the same, such that the number of control laws is
2np − nq). One could consider other potential control options in addition, such as the Lyapunov-based
controllers hi(x), i = 1, . . . , np. However, though all of these controllers are designed and are available
in principle, they could cause closed-loop stability issues that require that not all of them be available
to be randomly selected between at each sampling time. The conditions which determine which
controllers are possibilities at a given sampling time should rely on the position of x(tk) in state-space
and specifically whether x(tk) ∈ Ωρi for the i-th controller to be considered as a candidate.

To exemplify this, consider the two level sets Ωρ1 and Ωρ2 and their subsets Ωρe,1 and Ωρe,2

shown in Figure 3. Two potential values of x(tk) are presented (xa and xb) to exemplify the role
that the state-space location of x(tk) should play in determining which of the np controllers of
the form of Equations (61)–(67) or the Lyapunov-based controllers of the form hi(x(tk)) should be
considered as candidates to randomly select between at a given sampling time. Consider first that
x(tk) = xa. In this case, x(tk) ∈ Ωρ1 /Ωρe,1 , and therefore, as described in Section 2.4, the LMPC of
Equations (61)–(67) with i = 1 would be able to maintain the closed-loop state in Ωρ1 throughout the
subsequent sampling period. It is also true that x(tk) /∈ Ωρe,2 , so it may at first seem reasonable to
consider that if the LMPC of Equations (61)–(67) is used with i = 2, the constraint of Equation (67) could
be activated to decrease the value of the Lyapunov function between two sampling periods and thereby
drive the closed-loop state toward the origin using the properties of the Lyapunov-based controller
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and the constraint of the form of Equation (67) described in Section 2.4. However, the closed-loop
stability properties delivered by the constraint of Equation (67) are developed with the requirement
that Equations (2)–(5) must hold within the stability region and that x(tk) must be in this stability
region. When x(tk) /∈ Ωρ2 , these properties are not guaranteed to hold. Therefore, when x(tk) = xa

in Figure 3, the LMPC of Equations (61)–(67) with i = 2 would not be a wise choice to randomly
select at a given sampling time. Similarly, h2(x(tk)) is guaranteed to maintain closed-loop stability
when x(tk) ∈ Ωρ2 , but if h2(x(tk)) is applied when x(tk) = xa, x(tk) /∈ Ωρ2 and therefore the stability
properties are not guaranteed to hold.

Ωρ1
Ωρe,1
Ωρ2
Ωρe,2

xa

xb

1

Figure 3. Intersecting stability regions with two different potential initial conditions x(tk) = xa and
x(tk) = xb.

In contrast, consider the potential initial condition x(tk) = xb. In this case, x(tk) ∈ Ωρ1 and
Ωρ2 . Consequently, Equations (61)–(67) with i = 1 or i = 2 (for δ = 1 or δ = 0), h1(x(tk)), and
h2(x(tk)) can all maintain closed-loop stability of the process of Equation (1), and therefore all could be
considered as potential control designs between which to randomly select at tk. This indicates that the
location of x(tk) in state-space should be checked with respect to Ωρi , i = 1, . . . , np, before developing
a candidate set of controllers to randomly select between at tk. It should be noted, however, that if
Ωρi , i = 2, . . . , np, are subsets of Ωρ1 , then at each sampling time, Equations (61)–(67) with i = 1 and
δ = 0, Equations (61)–(67) with i = 1 and δ = 1, and h1(x(tk)) are all candidate controllers that can
maintain closed-loop stability. If x(tk) is in the intersection of additional level sets, there are additional
candidate controllers which could be randomly selected between. Therefore, the minimum number of
candidate controllers is 3 (or 2 if x(tk) ∈ Ωρ1 /Ωρe,1 such that Equations (61)–(67) with δ = 0 and δ = 1
are equivalent), with more potentially being possible, especially as more stability regions with more
intersections are developed.

Taking the above considerations into account, the implementation strategy for the LMPC design
of Equations (61)–(67) is proposed as follows:

Step 1. At tk, a random integer j between 1 and 2np is selected, and δ is randomly selected to be
zero or one.

Step 2. If j ∈ {2, . . . , np}, set i = j. If j ∈ {np + 2, . . . , 2np}, set i = j− np. Verify that Vi(x(tk)) ∈
Ωρi . If yes, move to Step 3. If not, return to Step 1.

Step 3. If j is a number between 1 and np, use the LMPC of Equations (61)–(67) with i = j and the
selected value of δ. If j = np + d, d = 1, . . . , np, set u = hd(x(tk)).

Step 4. Apply the control action computed for tk to the process of Equation (1).
Step 5. tk ← tk+1. Return to Step 1.

Remark 6. To prevent the possibility that the same index that is found to not meet the conditions in Step 2 at tk
will be selected multiple times as Steps 1 and 2 are repeated until a value of j is found for which Vi(x(tk)) ∈ Ωρi ,
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indexes that cause Vi(x(tk)) /∈ Ωρi can be removed in the random integer selection procedure in Step 1 at tk as
they are identified before they force the algorithm to return to Step 1.

5.3.1.1. Stability Analysis of Randomized LMPC

In this section, we develop sufficient conditions required for the randomized LMPC
implementation strategy to provide closed-loop stability of the nonlinear process of Equation (1)
under this implementation strategy and feasibility of the LMPC of Equations (61)–(67) when it is
selected via the implementation strategy in the absence of a cyberattack in Section 5.3.1 to be used in
determining a control action at a given sampling time. We first introduce two propositions that will
then be used in proving the main results.

Proposition 1. Refs. [60,82] Consider the systems

ẋa(t) = f (xa(t), u(t), w(t)) (68)

ẋb(t) = f (xb(t), u(t), 0) (69)

with initial states xa(t0) = xb(t0) ∈ Ωρ1 . There exists a function fW of class K such that:

|xa(t)− xb(t)| ≤ fW(t− t0) (70)

for all xa(t), xb(t) ∈ Ωρ1 and all w(t) ∈W with:

fW(τ) =
Lwθ

Lx
(eLxτ − 1) (71)

Proposition 2. Refs. [60,82] Consider the Lyapunov function Vi(·) of the system of Equation (1). There exists
a quadratic function fV,i(·) such that:

Vi(x) ≤ Vi(x̂) + fV,i(|x− x̂|) (72)

for all x, x̂ ∈ Ωρi with
fV,i(s) = α4,i(α

−1
1,i (ρi))s + Mv,is2 (73)

where Mv,i > 0 is a constant.

Proposition 3. Ref. [62] Consider the Lyapunov-based controller hi(x) that meets Equations (2)–(5) with
Lyapunov function Vi(·), applied in sample-and-hold to the system of Equation (1). If ρi > ρe,i > ρmin,i > ρs,i,
and θ > 0, ∆ > 0, and εw,i > 0 satisfy:

− α3,i(α
−1
2,i (ρs,i)) + L′x,i M∆ + L′w,iθ ≤ −εw,i/∆ (74)

then ∀x(tk) ∈ Ωρi /Ωρs,i ,
Vi(x(t)) ≤ Vi(x(tk)) (75)

and x(t) ∈ Ωρi for t ∈ [tk, tk+1). Furthermore, if ρmin,i is defined as follows:

ρmin,i = max{Vi(x(t + ∆)) : Vi(x(t)) ≤ ρs,i} (76)

then the closed-loop state is ultimately bounded in Ωρmin,i in the sense that:

lim sup
t→∞

|x(t)| ∈ Ωρmin,i (77)
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Theorem 1. Consider the system of Equation (1) in closed-loop under the implementation strategy of
Section 5.3.1 based on controllers hi(x) that satisfy Equations (2)–(5), and consider that the conditions in
Proposition 3 hold. Let εw,i > 0, ∆ > 0, ρi > ρe,i > ρmin,i > ρs,i satisfy:

ρe,i ≤ ρi − fV,i( fW(∆)) (78)

and Equations (74) and (76), for i = 1, . . . , np, and Ωρe,j ⊂ Ωρe,1 , j = 2, . . . , np. If x(t0) ∈ Ωρ1 and N ≥ 1,
then the state x(t) of the closed-loop system is always bounded in Ωρ1 .

Proof. The proof consists of two parts. In the first part, we demonstrate that despite the random
selection of a control law in Step 1 of the implementation strategy in Section 5.3.1, a characterizable
control action is applied at every sampling time, and the LMPC of Equations (61)–(67) is feasible at
every sampling time at which it is used for determining the control action to apply to the process. In
the second part, we prove the results of Theorem 1.

Part 1. To demonstrate that an input with characterizable properties is returned by the
implementation strategy of Section 5.3.1 at every sampling time to be applied to the process, we note
that one of two inputs is returned at every sampling time: a) a control action computed by the LMPC
of Equations (61)–(67) with i = j where x(tk) ∈ Ωρj or b) a Lyapunov-based controller hj(x(tk)) where
x(tk) ∈ Ωρj .

In case (a), a solution to the LMPC of Equations (61)–(67) must have the characterizable property
that it met the constraints of the LMPC because the LMPC always has at least one feasible solution.
Specifically, hi(x̃(tq)), q = k, . . . , k + N − 1, t ∈ [tq, tq+1), with i = j, is a feasible solution to the
optimization problem of Equations (61)–(67) when x(tk) ∈ Ωρj . It causes the constraint of Equation (64)
to be met because hi(x̃(tq)), q = k, . . . , k + N − 1, t ∈ [tq, tq+1), maintains the closed-loop state in
Ωρj ⊆ Ωρ1 by Proposition 3, and the state constraint of Equation (64) is met for all states in Ωρ1 . hi(x) in
sample-and-hold also satisfies the input constraint of Equation (65) by Equation (5). From Proposition 3,
it causes the constraint of Equation (66) to be met when x(tk) ∈ Ωρj , and it trivially satisfies the
constraint of Equation (67). Notably, the feasibility of hi(x) in sample-and-hold is true regardless of
whether δ = 1 or δ = 0 because this is a feasible solution to all constraints of the optimization problem.

In case (b), the control action applied to the process is also characterizable because it is a
control action that meets Proposition 3. Therefore, regardless of the control action applied at tk,
the control action has characterizable properties which can be used in establishing closed-loop stability.
Furthermore, whenever Equations (61)–(67) are used to determine an input at a given sampling time,
a feasible solution to this optimization problem always exists because it is ensured that x(tk) ∈ Ωρi

before the solution is obtained, and the feasibility of hi(x̃(tq)), q = k, . . . , k + N − 1, t ∈ [tq, tq+1) was
demonstrated to hold above as long as x(tk) ∈ Ωρi .

Part 2. In this part, we prove that even with a control law randomly selected at every sampling
time according to the implementation strategy in Section 5.3.1, the closed-loop state is maintained
within Ωρ1 for all times if x(t0) ∈ Ωρ1 .

To demonstrate this, we first consider the case that at a given sampling time, a control law of
the form of Equations (61)–(67) with i = j when x(tk) ∈ Ωρj is selected. In this case, either the
constraint of Equation (66) is activated (if x(tk) ∈ Ωρe,i ), the constraint of Equation (67) is activated (if
x(tk) ∈ Ωρi /Ωρe,i , tk ≥ t′, or δ = 1), or both are activated (as may occur, for example, if tk ≥ t′ or δ = 1
but x(tk) ∈ Ωρe,i ).

Consider first the case that Equation (66) is activated. In this case, application of Proposition 2
(assuming that x(t) ∈ Ωρi for t ∈ [tk, tk+1)) gives:

Vi(x(t)) ≤ Vi(x̃(t)) + fV,i(|x(t)− x̃(t)|) (79)
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for t ∈ [tk, tk+1). Applying the constraint of Equation (66) and Proposition 1, we obtain that:

Vi(x(t)) ≤ ρe,i + fV,i( fW(|t− tk|)) ≤ ρe,i + fV,i( fW(∆)) (80)

for t ∈ [tk, tk+1). When Equation (78) holds, Vi(x(t)) ≤ ρi, for t ∈ [tk, tk+1), which validates the
assumption used in deriving this result and guarantees that x(t) ∈ Ωρi for t ∈ [tk, tk+1) when
x(tk) ∈ Ωρe,i and the LMPC of Equations (61)–(67) is used to determine the input to the process of
Equation (1). Because Ωρi ⊆ Ωρ1 , x(t) ∈ Ωρ1 for t ∈ [tk, tk+1).

Consider now the case that the constraint of Equation (67) is activated. In this case, we have from
this constraint and Equation (3) that

∂Vi(x(tk))

∂x
f (x(tk), u(tk), 0)

≤ ∂Vi(x(tk))

∂x
f (x(tk), hi(x(tk)), 0) ≤ −α3,i(|x(tk)|)

(81)

from which we can obtain:

∂Vi(x(t))
∂x

f (x(t), u(tk), w(t))

=
∂Vi(x(t))

∂x
f (x(t), u(tk), w(t))

− ∂Vi(x(tk))

∂x
f (x(tk), u(tk), 0)

+
∂Vi(x(tk))

∂x
f (x(tk), u(tk), 0)

≤
∣∣∣∣∂Vi(x(t))

∂x
f (x(t), u(tk), w(t))

−∂Vi(x(tk))

∂x
f (x(tk), u(tk), 0)

∣∣∣∣− α3,i(|x(tk)|)

≤ L′x,i|x(t)− x(tk)|+ L′w,i|w| − α3,i(|x(tk)|)
≤ L′x,i M∆ + L′w,iθ − α3,i(|x(tk)|)

(82)

for t ∈ [tk, tk+1), where the last inequality follows from Equations (7) and (8). Furthermore, if x(tk) ∈
Ωρi /Ωρs,i , we can obtain from Equation (82) that:

∂Vi(x(t))
∂x

f (x(t), u(tk), w(t))

≤ L′x,i M∆ + L′w,iθ − α3,i(α
−1
2,i (ρs,i))

(83)

If Equation (74) holds, then

∂Vi(x(t))
∂x

f (x(t), u(tk), w(t)) ≤ −εw,i/∆ (84)

Integrating Equation (84) gives that Vi(x(t)) ≤ Vi(x(tk)), ∀t ∈ [tk, tk+1), such that if x(tk) ∈
Ωρi /Ωρs,i , then x(t) ∈ Ωρi , ∀t ∈ [tk, tk+1).

If instead x(tk) ∈ Ωρs,i ⊂ Ωρi , then from Equation (76), x(t) ∈ Ωρmin,i ⊂ Ωρi for t ∈ [tk, tk+1).
Therefore, if Equations (61)–(67) are used to compute the input trajectory at tk and x(tk) ∈ Ωρi and
Equation (67) is applied, x(t) ∈ Ωρi for t ∈ [tk, tk+1) (this holds regardless of whether Equation (66)
is simultaneously applied since this proof relied only on whether Equation (67) is applied and not
whether the other constraints were simultaneously applied). Because Ωρi ⊆ Ωρ1 , this indicates
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that when the LMPC of Equations (61)–(67) is used with the constraint of Equation (67) activated to
determine the control action at tk when x(tk) ∈ Ωρi , then x(t) ∈ Ωρ1 for t ∈ [tk, tk+1).

Finally, consider the case that x(tk) ∈ Ωρi and hi(x(tk)) is used to control the process of
Equation (1) from tk to tk+1. In this case, the following holds:

∂Vi(x(tk))

∂x
f (x(tk), h(x(tk)), 0) ≤ −α3,i(|x(tk)|) (85)

as follows from Equation (3). Using a similar series of steps as in Equation (82), we obtain:

∂Vi(x(t))
∂x

f (x(t), h(x(tk)), w(t))

≤ L′x,i M∆ + L′w,iθ − α3,i(|x(tk)|)
(86)

If x(tk) ∈ Ωρi /Ωρs,i , then as for Equation (83), we obtain:

∂Vi(x(t))
∂x

f (x(t), h(x(tk)), w(t))

≤ L′x,i M∆ + L′w,iθ − α3,i(α
−1
2,i (ρs,i))

(87)

If Equation (74) holds, then we can use a similar series of steps as for Equation (84) to derive
that Vi(x(t)) ≤ Vi(x(tk)), ∀t ∈ [tk, tk+1), such that if x(tk) ∈ Ωρi /Ωρs,i , then x(t) ∈ Ωρi , ∀t ∈ [tk, tk+1).
If x(tk) ∈ Ωρs,i , then when Equation (76) holds, we obtain that x(t) ∈ Ωρmin,i , t ∈ [tk, tk+1), so that
x(t) ∈ Ωρi for t ∈ [tk, tk+1). Since Ωρi ⊆ Ωρ1 , we again obtain that if x(tk) ∈ Ωρi and hi(x(tk)) is
applied for t ∈ [tk, tk+1), then x(t) ∈ Ωρ1 , ∀ t ∈ [tk, tk+1).

The above results indicate that throughout every sampling period, if the conditions of Theorem 1
hold and the implementation strategy in Section 5.3.1 is used, then the closed-loop state does not
leave Ωρ1 , implying that it also holds throughout all time if x(t0) ∈ Ωρ1 . This completes the proof.

Remark 7. Theorem 1 only speaks to the closed-loop state remaining in a bounded region of operation. If the
randomness is removed and the i = 1 controller is selected to be used with the constraint of Equation (67)
activated for all subsequent times (i.e., Equations (14)–(20) with t > t′), the closed-loop state is guaranteed
to be ultimately bounded in a neighborhood of the origin [60]. If the randomness is not removed but t > t′ in
Equations (61)–(67), the i-th controller will cause Vi(x(t)) < Vi(x(tk)), t ∈ (tk, tk+1] as noted in Section 2.4.
However, consider the case that x(tk) ∈ Ωρi and x(tk) ∈ Ωρz , but the i-th controller is selected at tk. The decrease
in Vi throughout the sampling period as a result of using the i-th controller does not necessarily imply that
Vz(x(t)) < Vz(x(tk)), ∀t ∈ (tk, tk+1]. If the randomness is removed, however, and only the i = 1 controller is
used with t > t′, V1(x(t)) < V1(x(tk)), t ∈ (tk, tk+1] in every sampling period (i.e., a continuous decrease of
the same Lyapunov function is ensured so that the closed-loop state is guaranteed to move to lower level sets of
this Lyapunov function and not to again leave them) until the closed-loop state reaches Ωρs,1 , after which point it
remains ultimately bounded in Ωρmin,1 . Another idea for driving the closed-loop state to a neighborhood of the
origin with a randomized LMPC implementation strategy would be to change the implementation strategy at t′

to only allow controllers to be selected in Steps 1-2 for which V1 and h1 are used in their design (e.g., h1 and the
i = 1 LMPC) so that each of the potential controllers would cause a decrease in the same Lyapunov function
value over time.

Remark 8. The stability analysis reveals that despite the intuitive nature of the approach for deterring
cyberattackers, it suffers the same problem as the controller in Section 5.2; namely, it does not meet Definition 4,
and once the controller learns the implementation strategy itself, he or she could develop an attack policy that
is not guaranteed to maintain closed-loop stability according to the proof methodology above. We can see a
potential for the lack of resilience by referring again to Figure 3 and noting that if the actual state measurement
is at xa, the closed-loop stability proof relies on the i = 2 controller not being an option; however, a false state
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measurement of xb may cause the i = 2 controller to be chosen when x(tk) = xa, such that the conditions
required for the closed-loop stability proof in Theorem 1 (i.e., that the implementation strategy in Section 5.3.1
is correctly followed) do not hold. However, the closed-loop stability issues with the proposed design in the
presence of a cyberattack are deeper than this; the problem is not necessarily that the control action computed
by a controller that would not otherwise have been selected is used, but rather that regardless of whether that
controller should have been allowed to be used per the implementation strategy in Section 5.3.1 is used or not, the
input applied to the process has no relationship to the state in the sense that, for example, the state constraints in
Equations (66) and (67) are not necessarily met (or even close to being met) by the actual process state even if the
controller used at tk indicated feasibility of the control action with respect to these constraints. This is because
the controller is using a different initial condition than the actual process initial condition and therefore will
compute, potentially, a state trajectory under the input selected as optimal by the LMPC that is very different
from the actual process state trajectory under that same input, even in the absence of disturbances/plant-model
mismatch. Mismatch is introduced by the cyberattack at the initial condition for the model of Equation (62).

5.3.2. Problems with Incorporating Randomness in LMPC Design

In this section, we demonstrate the use of the randomized LMPC for the CSTR example of
Section 5.2.1 during routine operation and also in the case that false state measurements are provided
to demonstrate that the randomized LMPC implementation strategy can maintain closed-loop stability
under normal operation, but may at best in certain sensor cyberattack cases only delay an unsafe
condition from being reached (i.e., randomness by itself, without giving the properties in Definition 4,
does not create cyberattack resilience in control). We first develop the set of LMPC’s to be used to
control the process of Equations (46) and (47). We begin by developing seven (i.e., np = 7) potential
combinations of Vi, hi, Ωρi , and Ωρe,i . The form of each Vi is xT Pix, where Pi is a symmetric positive
definite matrix of the following form: [

P11 P12

P12 P22

]
(88)

Sontag’s control law [80] was used to set the value of the component of every hi = [hi,1 hi,2]
T

corresponding to u2 as follows:

hi,2(x) =

−
L f̃ Vi+

√
L f̃ V2

i +Lg̃2 V4
i

Lg̃2 Vi
, if Lg̃2 Vi 6= 0

0, if Lg̃2 Vi = 0
(89)

where if hi,2 fell below or exceeded the upper or lower bound on u2, hi,2 was saturated at the
respective bound. L f̃ Vi and Lg̃k Vi represent the Lie derivatives of Vi with respect to f̃ and g̃k, k = 1, 2.
For simplicity, hi,1 was taken to be 0 kmol/m3 for i = 1, . . . , 7. Using the values of the entries of each Pi
associated with each Vi in Table 3 and the associated hi, i = 1, . . . , 7, the stability regions in Table 3 were
obtained by discretizing the state-space and choosing an upper bound on each Lyapunov function
in a region of state-space where V̇i was negative at the discretized points under the controller hi,
i = 1, . . . , 7 (the discretization was performed in increments of 0.01 kmol/m3 in CA for CA between
0 and 4 kmol/m3, and in increments of 1 in T for T between 340 and 560 K). Subsets of the stability
regions were selected to be Ωρe,i with the goal of allowing several different control laws to be developed.
For i = 2, . . . , 7, Ωρi ⊆ Ωρ1 . The value of ρe,i was not more than 80% of ρi in each case.
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Table 3. i-th controller parameters.

i P11 P12 P22 ρi ρe,i

1 1200 5 0.1 180 144
2 2000 –20 1 180 144
3 1500 –20 10 180 144
4 0.2 0 2000 180 144
5 1200 5 0.1 180 100
6 1200 5 0.1 180 130
7 1200 5 0.1 180 30

Initially, we evaluate the closed-loop stability properties of the process of Equations (46) and (47)
for normal operation under the randomized LMPC implementation strategy and, for comparison,
under the i = 1 LMPC used for all times. The process was initialized from xinit = [−0.4 kmol/m3

20 K]T . For the randomized LMPC design, the implementation strategy in Section 5.3.1 was followed
with the exception that, for simplicity, δ was set to 0 at every sampling time, and only h1(x) was
considered as a candidate controller at a given sampling time as an alternative to controllers in
Table 3. Therefore, at every sampling time, both the LMPC of Equations (61)–(67) with i = 1 and h1(x)
were allowable control actions, and the i-th controller in Table 3 was also allowable if x(tk) ∈ Ωρi .
The simulations were implemented in MATLAB using fmincon and the seed rng(5) and random
integer generation function randi when the randomized LMPC implementation strategy was used.
The integration step for the model of Equations (46) and (47) was set to 10−4 h, N = 10, and ∆ =

0.01 h, with 1 h of operation used. The Lyapunov-based stability constraint activated when x(tk) ∈
Ωρe,i was enforced at the end of every sampling period in the prediction horizon, and whenever
the Lyapunov-based stability constraint involving the time-derivative of the Lyapunov function
was enforced, the other Lyapunov-based constraint was implemented at the end of the sampling
periods after the first. The initial guess provided to fmincon in both cases was the steady-state input
vector. The maximum and minimum values of u2 were multiplied by 10−5 in numerically solving the
optimization problem.

Figures 4–6 show the state, input, and state-space trajectories resulting from controlling the
process with one LMPC throughout the time period of operation, and Figures 7–9 show the results
of controlling the LMPC with one of the eight potential control laws selected at every sampling time,
but depending on the position of the state measurement in state-space. The figures indicate that both
the single LMPC implemented over time and the randomized LMPC implementation strategy were
able to maintain the closed-loop state within Ωρ1 . Figure 10 shows which controller (i in Table 3)
was selected by the randomized LMPC implementation strategy at each sampling time. Notably,
the control laws associated with i = 2, 3, and 4 in Table 3 were not chosen, which is consistent with
the requirement that a control law can only be available to be selected if x(tk) ∈ Ωρi (from Figure 9,
we see that the closed-loop state did not enter, for example, Ωρ2 and Ωρ3 , and the results of the
simulations indicate that though the closed-loop state sometimes entered Ωρ4 as shown in Figure 9, it
was never in this region at a sampling time, which explains why these controllers were never selected
by the randomized implementation strategy). The time-integral of Equation (48) was monitored
for the process of Equations (46) and (47) under the inputs applied to the process, and also for
steady-state operation. For the single LMPC implemented over time, it evaluated to 32.2187, while
for the randomized LMPC implementation strategy, it evaluated to 27.7536. There is some profit
loss due to the randomized LMPC implementation strategy, and also large variations in states and
inputs shown in Figures 7 and 8. If the randomized LMPC implementation strategy was able to deter
cyberattacks, one could consider whether that made the variations and profit loss acceptable. Despite
the decrease in profits due to the randomization, both the single LMPC over time and the LMPC’s
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implemented within the randomized implementation strategy significantly outperformed steady-state
operation, which had a value of the time-integral of Equation (48) of 13.8847.

After analyzing normal operation for the LMPC and randomized LMPC implementation strategy,
we look at differences in their response to the cyberattack policy determined in Section 5.2.1, where
the attack on the sensors is simulated for 10 sampling periods and the process is initialized at xinit.
The metric that we use for comparing the results in the two scenarios is the time until the closed-loop
state exceeds its threshold of 55 K for x2 (as x2 > 55 K occurs outside the stability region, the closed-loop
state exits the stability region before this unsafe condition is reached). For the single LMPC, x2 first
exceeds it threshold around 0.0142 h. In the case of the randomized LMPC, different input policies (i.e.,
different sequences of randomly selected control laws) give different behavior in the presence of the
cyberattack. Therefore, in Table 4, we present the approximate time that x2 exceeds its threshold for
10 different arguments provided to the MATLAB seeding function rng to create 10 different seeds for
the random number generator that selects which control law to randomly select at each sampling time.
The table indicates that the randomization may slightly delay the time at which x2 first exceeds its
threshold compared to the case that the single LMPC is used. However, in none of the cases simulated
was it able to prevent the cyberattack from driving the value of x2 above its threshold in 0.1 h of
operation. If a cyberattacker believes that some delay in the attack may cause him or her to be caught,
this strategy may help with deterring some types of attacks. However, the results indicate that it is not
cyberattack-resilient according to Definition 4. Figure 11 shows the results of the simulations for 0.1 h
with the randomized LMPC implementation strategy for different arguments of rng in state-space.

Figure 12 displays data on the inputs and value of V1(x) over time under both the randomized
LMPC implementation strategy and the single LMPC, as well as the selected control law among the
8 possibilities at each sampling time in the case that the argument of rng is set to 20. This figure
suggests that some of the difficulty with maintaining the closed-loop state in a bounded region under
the attack is that for the falsified state measurement, the available controllers (the i = 3 and i = 4
controllers are not available because the false state measurement that the controller receives and uses
in determining which control laws should be made available according to the randomized LMPC
implementation strategy is outside of Ωρ3 and Ωρ4 ) compute inputs with similarities to each other and
to the inputs which the single LMPC would compute in the sense that they are either close in value or
create similar effects on the closed-loop state (i.e., the fact that different control laws may be chosen to
compute an input is not very effective in this case at obscuring the mapping between x(tk) and the
inputs applied to the process). From Figure 12, we see that all of the available control laws were used
at some point, but the inputs computed in every case except for the i = 8 controller were close to those
of the single LMPC, and the i = 8 controller was also not effective at causing a direction change in the
value of V1, despite that it has some more noticeable differences compared to the trajectory computed
by the single LMPC.

The attack policy chosen plays a role in the amount of delay in the success of an attack which
the randomized LMPC implementation strategy of Section 5.3.1 may cause. For example, consider
instead the falsified initial condition x1 = 0.0632 kmol/m3 and x2 = 21.2056 K, which is also within
the stability region (but not within the stability regions of the i = 2, 3, or 4 controllers). If used at
each sampling time, it can cause x2 > 55 K in 0.0319 h under the single LMPC. For this attack policy,
the approximate time after which x2 > 55 K for the randomized LMPC implementation strategy is
reported in Table 5. Some of the delays in the success of the attack at driving x2 > 55 K in this case are
much more significant than in Table 4. The simulation results demonstrate that the lack of resiliency of
the randomized LMPC policy can come from the lack of correlation between the inputs applied and the
actual process state at each sampling time, as discussed in Remark 8. For example, for the case where
the seed used is 5, the same inputs are applied to the process in both the case that the single LMPC is
used and the case that the randomized LMPC implementation strategy is used at the sampling period
beginning at tk = 0.02 h, but because the initial condition at tk in both cases is different (caused by the
different input policies computed in the prior sampling period by the use of the different control laws),
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these same inputs in one case drive the closed-loop state out of the stability region in the sampling
period, and in the other case they do not succeed in driving it out in the sampling period. Conversely,
in the sampling periods between tk = 0.03 h and 0.05 h, the inputs applied to the process under the
randomized LMPC implementation strategy are not the values that would have been computed if the
single LMPC had been used, but they drive the closed-loop state out of the stability region. Though
the randomness may be beneficial at helping delay the success of attacks in some cases, it does not
address the fundamental lack of correlation between the applied inputs and the actual process state
that causes the cyberattack success.
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Figure 4. State trajectories under the single Lyapunov-based model predictive controller (LMPC) for
the CSTR of Equations (46) and (47).
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Figure 5. Input trajectories under the single LMPC for the CSTR of Equations (46) and (47).
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Figure 6. State-space trajectories under the single LMPC for the CSTR of Equations (46) and (47).
The figure indicates that the closed-loop trajectory settled on the boundary of Ωρe,1 to optimize the
objective function while meeting the constraints. For simplicity, only one level set for each of the np

potential LMPC’s is shown (Ωρi is shown if Vi 6= V1, and Ωρe,i is shown if Vi = V1, i > 1).
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Figure 7. State trajectories under the randomized LMPC implementation strategy for the CSTR of
Equations (46) and (47).
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Figure 8. Input trajectories under the randomized LMPC implementation strategy for the CSTR of
Equations (46) and (47).
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Figure 9. State-space trajectories under the randomized LMPC implementation strategy for the CSTR
of Equations (46) and (47). For simplicity, only one level set for each of the np potential LMPC’s is
shown (Ωρi is shown if Vi 6= V1, and Ωρe,i is shown if Vi = V1, i > 1).
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Figure 10. Scatter plot showing the control law chosen (i in Table 3) in each sampling period by the
randomized LMPC implementation strategy.

Table 4. Approximate time after which x2 > 55 K for various seed values of rng for the randomized
LMPC design subjected to a cyberattack on the sensors determined in Section 5.2.1.

Seed Time x2 > 55 K (h)

5 0.0143
10 0.0148
15 0.0146
20 0.0324
25 0.0146
30 0.0142
35 0.0143
40 0.0147
45 0.0248
50 0.0231
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Figure 11. State-space trajectories for all of the situations in Table 4. The numbers in the caption
represent the seed values for rng. ‘S’ represents the single LMPC.
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Figure 12. Trajectories of u1, u2, and V1 under the randomized LMPC implementation strategy for
rng(20) (denoted by ‘Randomized’ in the figure) and under the single LMPC (denoted by ‘Single’ in
the figure). The value of ρ1 is denoted by the horizontal line in the plot for the value of V1. The bottom
plot indicates the controller selected by the randomized LMPC implementation strategy at each of the
10 sampling times in the simulation.

Table 5. Approximate time after which x2 > 55 K for various seed values of rng for the randomized
LMPC design subjected to a cyberattack on the sensors with x1 = 0.0632 kmol/m3 and x2 = 21.2056 K.

Seed Time x2 > 55 K (h)

5 0.0674
10 0.0458
15 0.0555
20 0.0767
25 0.0569
30 0.0418
35 0.0457
40 0.0874
45 0.0580
50 0.0950

Simulations were also performed in the case that it was attempted to operate the process at
steady-state (instead of in a time-varying fashion) by removing the constraint of Equation (66) and
using the following quadratic stage cost:

Le = x̃TQx̃ + uT Ru (90)

where Q = diag(104, 100) and R = diag(104, 10−6). In this case, the LMPC and randomized LMPC
implementation strategy with rng(5) drive the closed-loop state to a neighborhood of the origin in
the absence of a cyberattack. If the falsified state measurement determined in Section 5.2.1 is applied
(without attempting to see whether there may be a more problematic input policy for the tracking
control design), x2 > 55 K in 0.0834 h under the single LMPC and 0.1395 h under the randomized
LMPC strategy with rng(5). This demonstrates that processes operated at steady-state are not immune
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to cyberattacks when operated under LMPC or a randomized LMPC implementation strategy because
again in this case, the value of x(tk) becomes decoupled from the input being applied. In a coupled
nonlinear system, this may result in state trajectories that do not drive the (actual) closed-loop state to
the origin.

Remark 9. The last result concerning steady-state operation indicates that the difficulties with the randomized
LMPC design with respect to Definition 4 hold regardless of whether δ in Equations (61)–(67) is fixed at 0 or 1,
as the issue does not stem from whether the controller is attempting to drive the state predictions it is making
toward the steady-state through the inputs it computes or whether it is attempting to operate the process in a
time-varying fashion, but rather stems from the disconnect between what the controller thinks it is achieving and
what it is actually achieving due to the falsified state measurements. This also indicates that having the inputs
computed by the different potential controllers be significantly different from one another to create significant
randomness in what input would be applied to the process may help in some cases (particularly if it sometimes
reverses the direction in which V1 changes), but it cannot address the input-state disconnect unless the manner
in which random control laws are selected or generated can be proven to cause Definition 4 to be met. The fact
that an allowable input policy exists that can cause problems means that even random attack strategies may pose
a problem. Therefore, while a cyberattacker who cannot afford any delay in an attack might be deterred by the
randomized LMPC implementation strategy, it is unlikely that this policy would provide a sufficient barrier
to attacks.

5.3.3. Creating Unpredictable Controller Outputs: Other Types of Randomness in MPC Design

There are many other techniques besides the randomized LMPC design of the prior sections
which could be used to create randomness in control selection/design. For example, the closed-loop
stability proofs for LMPC in [60] are independent of the objective function; therefore, one method for
introducing randomness in the operation of the process of Equation (1) under LMPC without losing
closed-loop stability during normal operation would be to make random modifications to the objective
function of Equations (14)–(20) at each sampling time by adding penalty terms which change/are
randomly generated at every sampling time (e.g., in some sampling periods they are zero, in some
sampling periods they may penalize the difference between the input values from randomly selected
values within the input bounds). The LMPC could also seek to generate input policies that create
significant input variation over time by using penalty terms in the objective function on the similarity
between the input trajectory computed at tk and that applied at tk−1 (through, for example, terms such
as ∑m

i=1(ui(tk)− ui(tk−1))
2 subtracted from the stage cost to minimize the objective function more

strongly if the difference between the inputs is greater between two sampling periods; this is not a
randomly generated penalty but it is one that can differ between sampling times as u(tk−1) can be
different at each sampling time). A potential disadvantage of this approach, however, is that it causes
other terms in the objective function, which are chosen to be meaningful with respect to operating
objectives such as profit or steady-state tracking, to compete with randomly generated terms.

Another idea for creating randomness within the control design that does not impact the objective
function (and therefore does not require the difficult task of determining an appropriate tuning
that can trade off meaningful terms against randomly generated terms, as in the policies of the
prior paragraph) would be to randomly generate constraints for an MPC at every sampling time.
For example, the state constraint of Equation (17) might be modified to become x̃(t) ∈ X̃, t ∈ [tk, tk+N),
where X̃ is a state-space region that is randomly generated at every sampling time (but X̃ ⊂ X to
ensure that the modified state constraint maintains the closed-loop state predictions in X). As an
example, consider that x̃(t) ∈ X represents a state constraint of the form xmin ≤ x̃(t) ≤ xmax,
t ∈ [tk, tk+N). A constraint of the form x̃(t) ∈ X̃ might require that at every sampling time, xrand,min ≤
x̃(t) ≤ xrand,max, where xrand,min and xrand,max are two randomly selected real numbers (at every
sampling time) with xrand,min ≥ xmin, xrand,max ≤ xmax, and xrand,min ≤ xrand,max. However, these
modified state constraints are hard constraints that are not guaranteed to be satisfied throughout
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Ωρ1 (x̃ ∈ X can be guaranteed to be satisfied by defining Ωρ1 to be in X, but it is not guaranteed
that x̃ can be maintained in randomly generated subsets of X that may only constitute subsets of
the stability region that are not necessarily related to V1 and therefore are not necessarily forward
invariant). Therefore, the randomly generated hard constraints may impact feasibility of an LMPC.
Methods for handling this could include reformulating the hard constraints as soft constraints in the
objective function when the problem is determined to be infeasible at tk, or generating multiple (i.e.,
up to p̄) random subsets of X at tk, and up to p̄ LMPC’s using these different subsets to form the
state constraints of Equation (17), and then attempting to solve these LMPC’s in order from 1 to p̄ to
see whether one is feasible and can be used to compute a control action before applying a backup
control law that guarantees closed-loop stability such as h1(x). Closed-loop stability of the system of
Equation (1) under the LMPC of Equations (14)–(20) with Equation (17) modified to allow for random
state constraint generation would follow from the results in [60] if feasibility is maintained. One could
also consider other methods for developing randomly generated state constraints, such as exploring
the potential for randomly generating constraints on regions for the closed-loop state to avoid [9–11]
at each sampling time. However, even if optimization-based control designs with randomly generated
constraints are feasible at a sampling time, they may also have disadvantages with respect to profit.
For example, if the objective function is related to process economics and subsets of the allowable
operating region are disallowed by hard constraints, the inputs seek to optimize the economics with a
more restricted constraint set than is actually available, which would be expected to negatively impact
profits. This is because the goal of the randomization would be to cause the controller to compute
inputs which it would not normally compute if the constraint set was less restrictive in order to prevent
an attacker from mapping x(tk) to an input. If the global optimum of the objective function within
the allowable constraint set is assumed to be achieved with the solution to the controller without
the randomization, then any deviations of the solution from this optimal value for the purpose of
making the input-state measurement mapping difficult to determine would result in a decrease in
profit compared to the optimum condition. If the global optimum is achieved, however, this means
that the randomization is not succeeding in computing inputs which are difficult to map to the state
measurements. Therefore, the premise of the randomized constraint designs would cause a profit
reduction in cases where the economics are being optimized in the objective function (though popular
techniques for solving nonlinear optimization problems (e.g., [83]) may find local rather than global
optima, making it less obvious whether the randomization strategy will result in a profit loss compared
to the (local) solution which might be found without the randomization).

The results of the prior sections of this work indicate that cyberattack-deterring control policies
incorporating randomness cannot rely on randomness alone to prevent cyberattacks from being
successful or from being attempted; the inputs computed by any cyberattack-resilient policy according
to Definition 4 must have a structure that prevents the fact that they are decoupled from the state
measurements from driving the closed-loop state out of a set of safe operating conditions.

5.4. Deterring Sensor Measurement Falsification Cyberattacks on Safety: Using Open-Loop Controller Outputs

Whereas the “intuitive” approaches of the prior sections failed to be cyberattack-resilient, in this
section, we show that it may be possible to develop operating policies for which sensor falsification
cyberattacks intended to impact process safety cannot be successful. The policy to be examined
is specific to a subset of the class of systems of Equation (1), specifically those which have an
open-loop asymptotically stable equilibrium. For clarity of notation in the following, we will denote
the set of nonlinear systems of the form of Equation (1) with an open-loop asymptotically stable
equilibrium as follows:

ẋ = fas(x, u, w) (91)
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where fas is a locally Lipschitz vector function of its arguments and fas(0, 0, 0) = 0. The following
conditions hold for all x ∈ D′ ⊂ Rn, where D′ is a neighborhood of the origin:

α5(|x|) ≤ V′(x) ≤ α6(|x|) (92)

∂V′(x)
∂x

fas(x, us, 0) ≤ −α7(|x|) (93)

where us = 0 denotes the steady-state input, V′ : Rn → R+ is a sufficiently smooth positive definite
Lyapunov function, and the functions α5, α6 and α7 are of class K. We define a level set of V′

within D′ where x ∈ X as a stability region Ωρ′ of the nominal system of Equation (91) under us

(Ωρ′ := {x ∈ X ∩ D′ : V′(x) ≤ ρ′}). In the remaining developments, we assume that V′ can be chosen
to be the same as V1.

5.4.1. Using Open-Loop Controller Outputs: Integration with LMPC

For the system of Equation (91), us itself is a cyberattack-deterring input policy according to
Definition 4 when x(t0) ∈ Ωρ1 ⊂ Ωρ′ ⊂ X because it drives the closed-loop state to the origin
and is independent of the sensor measurements. However, it does not use feedback of the process
state to impact the speed with which the steady-state is approached. Furthermore, it cannot drive
the closed-loop state off of the steady-state in a fashion that seeks to optimize process economics.
It therefore lacks the desirable properties of feedback controllers for non-attack scenarios, but in the
case of cyberattacks on sensors, it has advantages over feedback control in that it is not dependent on
sensor readings. This indicates that us and feedback controllers complement one another; the former is
beneficial for preventing cyberattack success, and the latter is beneficial for normal operation. Therefore,
in this section, we explore integrating these two types of control in an implementation strategy that,
as will be proven in the next section, is guaranteed under sufficient conditions to maintain closed-loop
stability both in the presence and absence of cyberattacks (i.e., it meets Definition 4). For developing
this implementation strategy, we again use LMPC because the a priori characterizable region Ωρ1 within
which LMPC maintains the process state during normal operation can be beneficial for developing a
controller implementation strategy that guarantees that Definition 4 is met (in general, the results of this
work suggest that theory-based control designs may be important for allowing cyberattack-resilient
control designs to be developed, indicating that an important direction of future research may be
making theory-based control designs easier to use in an industrial setting). The implementation
strategy proposed is as follows:

Step 1. Given x(t0) ∈ Ωρ1 ⊂ Ωρ′ ⊂ X, apply us for N1 sampling periods. Go to Step 2.
Step 2. Utilize an LMPC with the form in Equations (14)–(20) to control the process of Equation (91)

for N2 sampling periods. Go to Step 3.
Step 3. Apply us for N1 sampling periods. Return to Step 2.
Characterizations of N1 and N2 that allow closed-loop stability of the system of Equation (91) to

be guaranteed, even in the presence of cyberattacks and sufficiently small disturbances, under this
implementation strategy are presented in the next section.

Stability Analysis of Open-Loop Control Integrated with LMPC

This section presents the conditions under which closed-loop stability of the system of
Equation (91) under the implementation strategy in Section 5.4.1 is guaranteed in both the presence
of and absence of a cyberattack that provides false state measurements x f ∈ Ωρ1 at every sampling
time (where the notation x f represents a falsified sensor signal that in general can be different at each
sampling time). The results are presented in a theorem that relies on the following proposition.
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Proposition 4. Ref. [62] Consider us for the system of Equation (91) such that the inequalities of Equations (92)
and (93) are met with Lyapunov function V′(·) = V1(·). If ρ′ > ρ′min > ρ′s, and θ > 0, ∆ > 0, and ε′w >

0 satisfy:
− α7(α

−1
6 (ρ′s)) + L′w,1θ ≤ −ε′w/∆ (94)

then ∀x(tk) ∈ Ωρ′/Ωρs′ ,
V′(x(t)) ≤ V′(x(tk)) (95)

for t ∈ [tk, tk+1) and x(t) ∈ Ωρ′ . Furthermore, if ρ′min is defined as follows:

ρ′min = max{V′(x(t + ∆)) : V′(x(t)) ≤ ρ′s} (96)

then the closed-loop state is ultimately bounded in Ωρ′min
in the sense that:

lim sup
t→∞

|x(t)| ∈ Ωρ′min
(97)

Theorem 2. Consider the system of Equation (91) under the implementation strategy of Section 5.4.1 based
on controllers us and h1(x) that satisfy Equations (92) and (93) and (2)–(5), respectively, and consider
that the conditions in Proposition 4 hold, as well as those in Proposition 3 and Equation (78) with i = 1.

If x(t0) ∈ Ωρ1 , Ωρ′s ⊂ Ωρ′min
⊂ Ωρe,1 ⊂ Ωρ1 ⊂ Ωρ′ , V′(·) = V1(·), N ≥ 1, N1 = d (ρ1−ρ′min)

ε′w
e,

and N2 = b (ρ1−ρ′min)

(α4,1(α
−1
5 (ρ1)))M∆

c, then the state x(t) of the closed-loop system is always bounded in Ωρ1 , ∀ t ≥ 0,

regardless of the value of x̃(tk) in Equation (16), ∀ k ≥ 0, if x̃(tk) ∈ Ωρ1 when Equations (14)–(20) are used at
a sampling time for computing the control action applied to the process according to the implementation strategy
in Section 5.4.1.

Proof. The proof consists of four parts. In the first part, feasibility of the LMPC of Equations (14)–(20)
at every sampling time in which it is used according to the implementation strategy in Section 5.4.1 will
be demonstrated, regardless of whether the state measurements provided to the LMPC in Equation (16)
are accurate or falsified, if they are within Ωρ1 . The second part will demonstrate that for any
x(tk) ∈ Ωρ1 , x(tk+N1) ∈ Ωρ′min

when us is used for N1 sampling periods. The third part demonstrates
that if x(tk) ∈ Ωρ′min

and the LMPC of Equations (14)–(20) is used for the next N2 sampling periods to
control the system of Equation (91) with potentially falsified state measurements, then x(tk+N2) ∈ Ωρ1 .
The fourth part combines the results of the prior three parts to demonstrate that the implementation
strategy of Section 5.4.1 guarantees that the closed-loop state remains in Ωρ1 at all times, whether or
not cyberattacks which provide falsified state measurements occur.

Part 1. When the input us is applied to the system of Equation (91) according to the implementation
strategy in Section 5.4.1, no optimization problem is solved, and therefore there is no feasibility issue
with using us at tk. However, if the LMPC of Equations (14)–(20) is used, then if the state measurement
x̃(tk) ∈ Ωρ1 (regardless of whether x̃(tk) equals the true state measurement x(tk) or a falsified state
measurement x f (tk) ∈ Ωρ1), h1(x̃(tq)), q = k, . . . , k + N − 1, t ∈ [tq, tq+1), is a feasible solution to all
constraints of the optimization problem when x̃(tk) ∈ Ωρe,1 or when x(tk) ∈ Ωρ/Ωρe,1 for the reasons
noted in the proof of Part 1 of Theorem 1. While x f can always be chosen to be in Ωρ1 to guarantee
feasibility when the LMPC is used in computing control actions, the proof that x(tk) is always in
Ωρ1 when the LMPC is used so that the feasibility guarantees at each sampling time hold when no
cyberattack occurs at tk will be developed in subsequent parts of this proof.
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Part 2. To demonstrate that for any x(tk) ∈ Ωρ1 , x(tk+N1) ∈ Ωρ′min
, we look at the change in the

value of V′ along the closed-loop state trajectory of the system of Equation (91) as follows:

V̇′(x(t)) =
∂V′(x(t))

∂x
fas(x(t), us, w(t)) +

∂V′(x(t))
∂x

fas(x(t), us, 0)− ∂V′(x(t))
∂x

fas(x(t), us, 0)

≤ −α7(|x(t)|) +
∣∣∣∣∂V′(x(t))

∂x
fas(x(t), us, w)− ∂V′(x(t))

∂x
fas(x(t), us, 0)

∣∣∣∣
≤ −α7(|x(t)|) + L′w,1θ

(98)

which follows from Equations (93) and (7) (since V′ = V1 and systems of the form of
Equation (91) are members of the class of Equation (1)), and the bound on w. If we consider that
x(tk) ∈ Ωρ1 /Ωρ′s , then from Equation (92), α−1

6 (ρ′s) ≤ |x(t)| such that the upper bound on V̇′(x(t)) is
determined as follows:

V̇′(x(t)) ≤ −α7(α
−1
6 (ρ′s)) + L′w,1θ (99)

If Equation (94) holds, then dV′
dt ≤ −ε′w/∆. Integrating this equation gives:

V′(x(t)) ≤ V′(x(tk))−
ε′w(t− tk)

∆
(100)

for t ≥ tk while x(t) ∈ Ωρ1 /Ωρ′s .
We are interested in the amount of time that it would take to drive the closed-loop state from any

x(tk) ∈ Ωρ1 into Ωρ′min
using us. In a worst case, V′(x(tk)) = V1(x(tk)) = ρ1, and we would like V′ at

t to be ρ′min. From Equation (100), the worst-case time tWC that it would take to drive x(tk) from the

boundary of Ωρ1 to the boundary of Ωρ′min
using us is tWC =

(ρ1−ρ′min)∆
ε′w

. However, tWC may not be an
integer multiple of a sampling period; to guarantee that at least the worst-case amount of time passes
after tk during which us is applied to the process, N1 = d tWC

∆ e is the number of sampling periods
throughout which us must be applied to guarantee that for any x(tk) ∈ Ωρ1 , x(tk+N1) ∈ Ωρ′min

.
Part 3. We next demonstrate that if x(tk) ∈ Ωρ′min

, it will not exit Ωρ1 within N2 sampling periods
under any input within the input bounds (i.e., under any input which the LMPC of Equations (14)–(20)
may compute in the presence or absence of cyberattacks). Specifically, the following inequality holds
for the time derivative of V′ along the closed-loop state trajectory of the system of Equation (91) for
any x ∈ Ωρ1 , u ∈ U, and w ∈W:

∂V′(x)
∂x

fas(x, u, w) ≤
∣∣∣∣∂V′(x)

∂x
fas(x, u, w)

∣∣∣∣
≤
∣∣∣∣∂V′(x)

∂x

∣∣∣∣ | fas(x, u, w)|

≤ α4,1(|x|)M

≤ α4,1(α
−1
5 (ρ1))M

(101)

which follows from Equations (4) and (8) ( fas is a member of the class of systems of Equation (1)),
Equation (92), and V′ = V1. The result of Equation (101) can be integrated to give:

V′(x(t)) ≤ V′(x(tk)) + α4,1(α
−1
5 (ρ1))M(t− tk) (102)

for t ≥ tk.
To find the shortest possible time that it would take for a sequence of inputs u(t) ∈ U applied in

sample-and-hold to drive the closed-loop state to the border of Ωρ1 , we compute t in Equation (102) if
V′(x(tk)) = ρ′min and V′(x(tST)) = ρ1, where tST denotes the first possible time at which V′(x(t)) = ρ1.

This gives a shortest time of tST =
(ρ1−ρ′min)

(α4,1(α
−1
5 (ρ1)))M

. However, this may not be an integer multiple of
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a sampling period, so that the maximum number of sampling periods over which the LMPC of
Equations (14)–(20) can be used in the implementation strategy of Section 5.4.1 while guaranteeing
closed-loop stability even in the presence of cyberattacks on the sensor measurements is N2 = b tST

∆ c.
Part 4. Finally, we prove the results of Theorem 2 by combining the results of the prior parts of

the proof. According to the implementation strategy of Section 5.4.1, for any x(t0) ∈ Ωρ1 , us will be
applied for N1 sampling periods. From Part 2 of this proof, this will drive the closed-loop state into
Ωρ′min

by tk+N1 and also, from Proposition 4, will maintain the closed-loop state in Ωρ1 at all times from
Equations (95)–(97). Subsequently, the LMPC of Equations (14)–(20) may be used for N2 sampling
periods. In this case, the closed-loop state will also remain bounded within Ωρ1 from Part 3 of this
proof. Then, us will be used again for N1 sampling periods, and will again maintain the closed-loop
state in Ωρ1 . This sequence of steps will then continue according to the implementation strategy of
Section 5.4.1 such that the closed-loop state will be maintained within Ωρ1 at all times.

Remark 10. Minimal assumptions are made on the trajectory of x f over time in the above proof (only that
x f (tk) ∈ Ωρ1 , ∀tk ≥ 0). Therefore, the applied policy can handle attacks where x f changes at each sampling
time, regardless of the manner in which it changes as long as the assumptions are met (e.g., there is no need for
separate implementation strategies for different types of sensor attack policies such as surge, bias, geometric,
or replay attacks [20,84]). us is also an attack-resistant policy for denial-of-service attacks [46] of any length,
and the implementation strategy can handle such attacks if an additional statement of what the LMPC should do
when it is not provided a state measurement at tk is added (the proof of Theorem 2 indicates that the controller
could choose any u ∈ U if no sensor signal is provided to it at tk when the LMPC should be used and if the
implementation strategy is followed, closed-loop stability is maintained). Furthermore, the implementation
strategy can also be used with closed-loop stability guarantees if x f is received at some sampling times and x(tk)

at others (as both meet the requirement of Theorem 2 that the state measurement must be in Ωρ1). The results
also hold if only a partially falsified state measurement is received (i.e., only some components of the state vector
are falsified due to only some sensors being compromised), as long as the full state measurement vector received
by the controller at every sampling time is in Ωρ1 (if not, this may indicate that a cyberattack may be occurring
and could trigger the use of us only so that closed-loop stability is still guaranteed but without the potential
benefits of trading it off with a feedback controller).

5.4.2. Problems with Integrating Open-Loop Control and LMPC

Despite the guarantees which are developed in the prior section for open-loop control integrated
with LMPC, the fact that open-loop inputs are required and that both N1 and N2 depend on the process
dynamics through, for example, ε′w and α4,1, α5, and M indicates that this method has fundamental
limitations based on the process time constants. The open-loop policy removes the benefits of feedback
control in terms of speeding up the process response. The values of N1 and N2 may be such that
the process would essentially always have to operate in open-loop (i.e., N1 is large and N2 is zero)
to guarantee that no cyberattack can impact closed-loop stability. Open-loop control is not a viable
alternative for feedback control as an operating strategy at all times.

Another problem that may occur with the proposed approach is that the region Ωρ′ within
which us is guaranteed to drive the closed-loop state to the steady-state may be very small. V′ might
be adjusted to try to increase the size of Ωρ′ , but it is not guaranteed that the input us can drive
the closed-loop state to the steady-state from a large region around the steady-state, as only local
asymptotic stability is implied by Equations (92) and (93). Therefore, the fact that Ωρ′ is small may
be a fundamental limitation of the system for any V′. Because the results of Theorem 2 require
Ωρ1 ⊂ Ωρ′ , a small Ωρ′ means that Ωρ1 must be small as well, which can significantly limit the
potential of the LMPC to enforce a policy that is not steady-state operation or that is economically
beneficial compared to steady-state operation. If steady-state operation is desired, a small Ωρ1 means
that closed-loop stability is only guaranteed in a small region around the steady-state, requiring
small sampling times and small disturbances to maintain the closed-loop state in the resulting small
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Ωρ′1
⊂ Ωρ′min

⊂ Ωρ1 ⊂ Ωρ′ per Equations (94) and (74), which may not be practical for certain processes
with larger disturbances or larger computation time requirements that restrict the minimum size
of ∆. For this reason as well, the proposed technique, despite the guarantees of Theorem 2, is not
likely to pose a viable solution to the cyberattack problem. Furthermore, the approach only holds
for an open-loop stable steady-state; this is overly restrictive as there are many cases where it may
be desirable to operate around an open-loop unstable steady-state. It may be necessary to utilize
additional assumptions (e.g., that there is an alternative way to obtain a state measurement that is
known to be accurate at certain times) to develop cyberattack-resilient controllers in general that meet
Definition 4.

5.5. Deterring Sensor Measurement Falsification Cyberattacks on Safety: Perspectives

The prior sections demonstrated that due to the fundamental nonlinear dynamics considerations
which define cyberattacks, concepts for deterring cyberattacks on chemical process control systems
that at first seem intuitive may not be proper solutions to the problem. However, the characteristics of
proper solutions can be explicitly defined mathematically. Some policies which meet the mathematical
definition, however, such as the policy developed in Section 5.4, may be undesirable for some processes
under normal operation. Though policies like that in Section 5.4 might be considered to be a reasonable
policy if a cyberattack is detected (i.e., it becomes reasonable to give up the benefits of feedback control),
the difficulty of predicting the responses of nonlinear systems to changes in the process inputs a priori
makes it difficult to assess all cyberattack possibilities during the design of the detection policies
to ensure that detection policies will not miss any attacks; therefore, there is value in continuing
to search for control laws/implementation strategies which are resilient to any cyberattack of a
certain type. The results of the prior sections suggest that cyberattack-resilient control designs may
need to incorporate special features compared to techniques such as LMPC that do not account for
cyberattack-resilience, potentially making them more conservative than control designs which do
not account for cyberattacks in the sense that they may not achieve instantaneous profits as large
as those with alternative controllers; however, a company could assess the potential for profit loss
over time with a cyberattack-resilient controller compared to potential reductions in information
technology-related security costs and the potential economic and human costs of accidents without
cyberattack-resilient control when selecting a controller for a process.

The control designs presented in Sections 5.2–5.4 for investigating the nature of cyberattacks and of
cyberattack-resilient control demonstrated several principles that can be used to guide future research.
The design in Section 5.2 led to the presentation of a potential cyberattack-development methodology
that uses optimization to attempt to systematically determine attack policies in terms of both inputs
and false sensor measurements. Though only one potential computational technique for cyberattack
development was explored, it suggests that cyberattack development for non-intuitive situations,
such as large-scale processes under control laws with many constraints, may be able to be approached
computationally, rather than requiring a trial-and-error approach, which is critical for enabling research
on cyberattack-resilient control designs for the process industries to include simulation case studies.
The developments in Section 5.3 demonstrate that randomness that impacts process operation may be
able to be achieved with closed-loop stability guarantees as part of a cyberattack prevention policy,
and therefore can be considered in developing future designs geared toward addressing Definition 4.
Finally, in Section 5.4, we demonstrated that despite the strength of the conditions required to meet
Definition 4, it may be possible to develop control laws with their implementation policies that do
satisfy the definition, particularly by relying on the implementation strategy or potentially additional
assumptions on the process dynamics or instrumentation setup/accurate measurement availability.
For example, though it is not guaranteed in the strategy presented in Section 5.4 that if V1(x(t0)) = ρ1,
there is no input that could be computed by the LMPC of Equations (14)–(20) for any provided false
state measurement in Ωρ1 , the implementation strategy that trades off the use of LMPC with the
open-loop input policy prevents the state from ever reaching a condition where closed-loop stability
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would be compromised in the face of a cyberattack. It may also be beneficial to consider control designs
such as LMPC that are based on theory that allow rigorous guarantees to be made even in the presence
of disturbances, particularly from a set of initial conditions that can be characterized a priori, since
cyberattack-resilience according to Definition 4 depends on the allowable set of initial conditions for
the system.

A final outcome of the results in this work is that they indicate the utility of the recent theoretical
developments resulting from the study of the stability properties of economic model predictive
control (EMPC) [85–90], which have included notions of stability developed for processes operated
in a time-varying fashion, in studying cybersecurity even for processes that would be operated
at steady-state without cyberattacks. Closed-loop stability when analyzing cyberattacks requires
characterizing the boundedness of the closed-loop state in operating regions in state-space under the
attack (in a sense, the state is being manipulated in a time-varying fashion by the attacker) and not
necessarily driving the state to the steady-state under the attack, as the attacker’s goal for a process
typically operated at steady-state would involve moving it off of that steady-state. As we consider
more complex process [91,92] and control designs (in the sense of greater coupling between process
states due to process designs and controllers intended to improve efficiency and enhance economics),
it may become more difficult to predict all the potential methods by which a cyberattacker may attack
a plant, enhancing the need for cyberattack-resilient systems by process and control design.

6. Conclusions

This work developed a comprehensive nonlinear systems characterization of cyberattacks of
different kinds on chemical process control systems, which indicated that cyberattacks on control
systems in the chemical process industries are first and foremost a chemical engineering problem
which should be considered during process and control design. We subsequently focused on a specific
type of cyberattack in which sensor measurements to feedback controllers are compromised with
the goal of impacting process safety and discussed the nonlinear systems definition of a process
system resilient to these types of cyberattacks. We used three control designs to explore the concept of
cyberattack-resilience against sensor measurement attacks geared toward impacting process safety
and to explore the properties required of controllers for making cyberattack-resilience guarantees.
The results indicate that a control design/implementation strategy which can be effective at deterring
sensor measurement falsification-based cyberattacks geared toward impacting process safety should:
(1) maintain closed-loop stability under normal operating conditions and also guarantee closed-loop
stability when inputs that have no relationship to the state measurement are applied to the process;
and (2) result in a desirable operating policy (i.e., not open-loop) during normal operation (i.e., in the
absence of cyberattacks).

Future work will explore cyberattack-resilient control design for larger-scale, more realistic and
complex chemical process models. It will also seek to use the insights gained on cyberattack-resilient
control for nonlinear systems as developed in this work to create cyberattack-resilient controllers, and to
more thoroughly investigate a range of MPC designs which handle disturbances or measurement noise
in control designs such as MPC (e.g., [93–97]) in the context of cyberattack-resilience. All future work
will consider that a defining feature of cyberattacks is that they remove the association between the
input physically implemented on the process and the process state, attempting to make the controller a
vehicle for computing a problematic process input (i.e., misusing the controller) rather than using the
controller formulation to maintain closed-loop stability in the case that state measurements are falsified.
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