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Abstract: Data envelopment analysis has been applied in a number of papers to measure the
performance of mutual funds, besides a great many applications on the more diverse fields of
performance evaluation. The data envelopment analysis models proposed in the mutual funds
literature do not generally set restrictions on the weights assigned to the input and output variables.
In this paper, we study the effects of the introduction of different weight restrictions on the results of
the performance evaluation of mutual funds. In addition, we provide a unified matrix representation
for three widely used approaches on weight restrictions: virtual weight restrictions with constraints
on all decision-making units (DMUs) (on all funds); virtual weight restrictions with constraints
only on the target unit; assurance regions. Using the unified matrix representation of the weights
constraints, we formulate the data envelopment analysis (DEA ) efficiency model and express the
efficient frontier in a unified way for the different weight restrictions considered. We investigate the
effects of the different weight restrictions on the performance evaluation by means of an empirical
application on a set of European mutual funds. Moreover, we study the behaviour of the fund
performance scores as the restrictions on the weights become increasingly strict.

Keywords: mutual fund performance evaluation; data envelopment analysis (DEA); virtual weight
restrictions; assurance regions

1. Introduction

In the last two decades, the data envelopment analysis (DEA) methodology has been applied in
different ways to measure the performance of mutual funds, besides a great many applications on the
more diverse fields of performance evaluation (more than 10,000 journal articles have been published
on DEA; for a recent review, see [1]). By now, there is a wide selection of literature in the mutual funds
field, counting more than a hundred papers; for a review, see [2]. In addition, there are many DEA
applications to other financial services industry; the majority of studies focus on the banking sector,
but several DEA applications to non-banking financial services are also found in the literature; see [3]
for a general survey of DEA applications and [4] for recent DEA applications to financial services
including mutual funds, banks, insurance, mergers and acquisitions (M&A), and stock selection.

In general, the models proposed in the literature for mutual funds do not impose particular
restrictions on the weights of the DEA models, weights which represent the variables of the
optimization problems that have to be solved in order to compute the performance scores of the
mutual funds analyzed.

Nevertheless, in general DEA models, it is sometimes useful to set proper restrictions on the
weights of the input and/or output variables (see, for example, [5,6]).
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In this paper, we study the effects of the introduction of different weight restrictions on the results
of the performance evaluation of mutual funds.

In addition, a second purpose of this paper is to provide a unified matrix representation for
different widely used approaches on weight restrictions, namely:

1. virtual weight restrictions with constraints on all decision-making units (DMUs) (see Sections 3.1
and 4.1);

2. virtual weight restrictions with constraints only on the target DMU (see Sections 3.1 and 4.2);
3. weight restrictions with assurance regions (see Section 3.2 and 5).

This unified matrix representation enables us to formulate the DEA efficiency model and to
express the efficient frontier in a unified way for the models with the different weight restrictions
considered (Section 6).

The effects of the different weight restrictions on the performance evaluation of mutual funds
are analyzed by carrying out an empirical application on a set of 312 European mutual funds. In the
empirical application, we study the behaviour of the fund performance scores as the restrictions on the
weights become increasingly strict.

The paper is organized as follows. In Section 2, we define the DEA model without restrictions
adopted to evaluate the performance of mutual funds, which will be extended to include weight
restrictions in the following sections; this is model DEA-V proposed in [2,7]. The different types of
restrictions that can be set on the weights of DEA models are introduced and discussed in Section 3.
In Sections 4 and 5, we derive the matrix representation of the constraints related to the virtual weight
restrictions and to assurance regions, respectively. Section 6 defines the DEA efficiency and the efficient
frontier for the DEA models with the weight restrictions considered. Section 7 presents the results of
the empirical application on European mutual funds carried out and compares the outcomes obtained
with the various types of weight restrictions. Finally, Section 8 presents some concluding remarks.

2. An Output Oriented DEA Model for Mutual Funds

Currently, several articles published in the literature have adopted a data envelopment analysis
approach to evaluate the performance of mutual funds (see [2] for a review of DEA models for mutual
funds and [8] for an introduction to DEA).

Let us start by considering an output oriented DEA model for mutual funds with variable returns
to scale that has been proposed in [7] and was extended in [2] to evaluate the performance of a set of
European mutual funds.

Let {1, 2, . . . , n} indicate the set of mutual funds to be evaluated. Let us denote by cI j and cEj
the initial and exit fees of an investment in mutual fund j ∈ {1, 2, . . . , n}, respectively, and let Kj be
the initial payout (net of the initial fee) required by fund j to start with an initial capital equal to 1;
moreover, let Mj denote the final value of the investment at the end of the holding period T, net of the
exit fee.

The initial payout Kj can be computed as follows:

Kj =
1

1− cI j
j = 1, 2, . . . , n. (1)

If we indicate with Rj the mean instantaneous rate of return of fund j in the investment period
[0, T], measured on an annual basis using the continuous compounding law, the final value of the
investment Mj can be written as follows:

Mj = eRjT(1− cEj) j = 1, 2, . . . , n. (2)

It is interesting to point out the substantial importance of the initial payout K when the holding
period is rather short (say T ≤ 1), while its effect tends to be damped when the duration of the
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investment increases, as in this latter case the initial fees are spread over several years. Let us also
observe that, keeping constant the mean return measured on an annual base, Rj, the final value Mj
varies exponentially with the length of the holding period T.

The DEA model adopted for the performance evaluation of mutual funds has the final value
of the investment M as unique output variable; as for the input variables, the model considers the
initial payout K and a set of risk measures that may shed light on different features of the financial
risk of mutual funds (see [2]). In this paper, we include two risk measures of the returns of fund j
(j = 1, 2, . . . , n), the β-coefficient and the downside risk.

The β-coefficient, β j, represents the ratio of the covariance between the mutual fund return Rj
and the market portfolio return Rm to the variance of the market portfolio return:

β j =
Cov(Rj, Rm)

Var(Rm)
j = 1, 2, . . . , n. (3)

As is well known, the β-coefficient is relevant as a measure of risk when the investors’ portfolios
are well diversified.

On the other hand, the downside risk takes into account the fact that investors see as unfavourable
only the lowest returns while the highest ones are welcomed. If we consider as desirable the returns not
lower than a target value m, which represents the minimum acceptable return, a proper risk measure
is given by the downside risk DRj, defined as the lower semi-deviation of the returns from the target
value m:

DRj =

√√√√ 1
T

T

∑
t=1

(min[rjt −m, 0])2 j = 1, 2, . . . , n. (4)

In the numerical application presented in Section 7, we set m equal to the riskless rate of return.
The input and output variables have been chosen by focusing on the objectives of investors,

which are assumed to be risk averse and profit maximizing, as usual in financial theory.
Moreover, the output variable Mj can only take positive values by construction, so that no

modification of the model is necessary in order to deal with negative output data. Even if some of
the values of the input variable beta may sometimes be negative, the problem of negative input data
can easily be overcome by translating the beta variable adding a suitable positive constant; indeed,
it is well known that the variable returns to scale DEA model with output orientation is translation
invariant with respect to inputs (see [8], p. 94).

The use of a DEA model leads to the determination of an efficiency score for each mutual fund,
which is computed as the highest value of the ratio of the weighted sum of outputs to the weighted
sum of inputs (see e.g., [8]).

There are various typologies of DEA models, which differ with respect to the type of returns to
scale and the orientation. In this paper, we consider a DEA model with variable returns to scale and
an output orientation; for the appropriateness of the choice of an output oriented DEA model with
variable returns to scale for the evaluation of mutual funds, see [2,7].

In such a case, the efficiency score for each mutual fund o ∈ {1, 2, . . . , n} is the optimal value
DEA-V∗o of the objective function of the following fractional programming problem:

max
{u,vi}

uMo

v1Ko + v2βo + v3DRo − v0
, (5)

subject to

uMj

v1Kj + v2β j + v3DRj − v0
≤ 1, j = 1, 2, . . . , n, (6)

u ≥ ε, (7)

vi ≥ ε i = 1, 2, 3, (8)
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where u is the weight assigned to the final value Mj, v1 is the weight assigned to the initial payout
Kj, v2 and v3 are the weights assigned to the β-coefficient β j and the downside risk DRj, respectively,
and v0 characterizes the variable returns to scale models.

ε is a non-Archimedean infinitesimal that prevents the weights from vanishing and is introduced
in order to prevent that, under particular conditions, units that are not efficient are incorrectly declared
as efficient (see [9]). Actually, the DEA efficiency requires not only that the efficiency score DEA-V∗o
reaches its maximum value, equal to 1 because of constraint (6), but also that it is not possible to
achieve this result by reducing an input or augmenting an output while maintaining the value of the
other inputs and outputs constant (see, for example, [8]).

As is usual in fractional programming, to solve models (5)–(8), we can conveniently transform it
into an equivalent linear programming problem. By adopting the output orientation, we can write the
following equivalent linear programming problem:

min
{u,vi}

v1Ko + v2βo + v3DRo − v0, (9)

subject to

uMo = 1, (10)

v1Kj + v2β j + v3DRj − uMj − v0 ≥ 0 j = 1, 2, . . . , n, (11)

u ≥ ε, (12)

vi ≥ ε i = 1, 2, 3, (13)

where the numerator of the objective function ratio (5) is set equal to 1 (constraint (10)) and we
minimize the denominator. The efficiency score of mutual fund o coincides with the reciprocal of the
optimal function value (5).

The dual of problems (9)–(13) can be written as follows:

max z0 + ε(s+ +
3

∑
i=1

s−i ), (14)

subject to

Moz0 −
n

∑
j=1

Mjλj + s+ = 0, (15)

n

∑
j=1

Kjλj + s−1 = Ko, (16)

n

∑
j=1

β jλj + s−2 = βo, (17)

n

∑
j=1

DRjλj + s−3 = DRo, (18)

n

∑
j=1

λj = 1, (19)

λj ≥ 0 j = 1, 2, . . . , n, (20)

s+ ≥ 0, s−i ≥ 0 i = 1, 2, 3, (21)

where z0 is the dual variable associated with the equality constraint (10), λj are the dual variables
associated with constraints (11), s+ is the dual variable associated with the output weight constraint
(12) and s−i (for i = 1, 2, 3) are the dual variables associated with the input weight constraints (13).
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The dual variables s+ and s−i associated with the output and input weight constraints are usually
called slacks since they can just be interpreted as slacks of the dual constraints in which they appear.

Let us observe that in problems (14)–(21) the convexity constraint (19), ∑n
j=1 λj = 1, means that we

restrict the set of benchmark portfolios that can be considered to the convex hull of the funds analyzed,
so that only convex combinations of the existing funds are allowed.

The dual problems (14)–(21) is the one commonly used to compute the efficiency score and
determine the efficient units. The efficiency score of mutual fund o is given by the reciprocal of the
optimal value of z0, i.e., DEA-V∗o = 1/z∗0 .

It is known that the presence in programs (14)–(21) of the non-Archimedean infinitesimal ε may
cause computational problems when, as it is often done in commercial softwares, it is replaced by a
small positive real number (for instance 10−6); see [10,11]. In order to overcome these problems, it is
possible to use a special two-phase procedure that avoids using the non-Archimedean infinitesimal ε by
splitting the process of efficiency evaluation in two subsequent linear programs (see [12]); the two-phase
procedure has the advantage of reducing the computational drawbacks while providing the same
efficiency characterization (see [8] (pp. 46, 73–75)).

The two-phase procedure tackles the linear program in dual form; in Phase I, we solve the
following linear program:

Phase I
max z0, (22)

subject to

Moz0 −
n

∑
j=1

Mjλj + s+ = 0, (23)

n

∑
j=1

Kjλj + s−1 = Ko, (24)

n

∑
j=1

β jλj + s−2 = βo, (25)

n

∑
j=1

DRjλj + s−3 = DRo, (26)

n

∑
j=1

λj = 1, (27)

λj ≥ 0, j = 1, 2, . . . , n, (28)

s+ ≥ 0, s−i ≥ 0 i = 1, 2, 3, (29)

which differs from the dual problems (14)–(21) only because its objective function lacks the term
ε(s+ + ∑3

i=1 s−i ). With respect to the primal program, this corresponds to replace the constraints (12)
and (13) involving ε with simple non-negativity constraints on the input and output weights.

Let z∗0 be the optimal solution of the Phase I problem (22)–(29). In order to see whether a fund with
z∗0 = 1 is fully efficient, we need to check if it is not possible to achieve the same score by increasing
an output and maintaining the value of the other inputs and outputs constant. In terms of linear
programs, this entails checking that there exists a solution for problems (14)–(21) with all the output
and input slacks, s+ and s−i , equal to zero, and this can be done by solving the following Phase II
problem in which z0 is set equal to its optimal value achieved in Phase I, z∗0 :

Phase II

max s+ +
3

∑
i=1

s−i , (30)
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subject to

Moz∗0 −
n

∑
j=1

Mjλj + s+ = 0, (31)

n

∑
j=1

Kjλj + s−1 = Ko, (32)

n

∑
j=1

β jλj + s−2 = βo, (33)

n

∑
j=1

DRjλj + s−3 = DRo, (34)

n

∑
j=1

λj = 1, (35)

λj ≥ 0, j = 1, 2, . . . , n, (36)

s+ ≥ 0, s−i ≥ 0 i = 1, 2, 3. (37)

In conclusion, a mutual fund o is efficient if and only if z∗0 = 1 and the optimal value of the Phase
II objective function (30) is equal to 0.

3. Restrictions on the Weights of a DEA Model

One of the main features of standard DEA models lies in the weight flexibility, which means that
the models look for the optimal values of input and output weights and maximize the efficiency of
the target unit without imposing particular restrictions on the weights; only positivity constraints
such as constraints (12) and (13) are usually considered.

This fundamental feature of the DEA approach allows for highlighting the input and output
variables that put in the best light the units examined, but it may sometimes lead to some drawbacks
in the performance evaluation process. For example, a given unit may be evaluated as efficient despite
having very high values of some inputs. In the DEA applications to mutual funds, for example,
this could cause an investment fund to be assessed as efficient despite exhibiting a very high risk or
requiring a very high initial payout (because of a high initial fee). In a different situation, if we need to
evaluate the performance of socially responsible investment funds and we include a measure of the
fund social responsibility as an additional output ([7]), a fund could be stated as efficient although its
involvement in social responsibility is negligible, or it could be declared efficient even though its final
value is very low.

In the cases in which it is advisable to ensure that we do not neglect some important input and
output variables in the efficiency analysis, we can introduce some appropriate restrictions on the
weights associated with these variables in the DEA model.

Moreover, a second reason that may suggest the introduction of additional weight restrictions in
the DEA model is to somehow take into account eventual preference information of decision makers or
experts on the respective importance of the variables that can be synthesized in a range for the weights.

It may be shown that the weight restrictions suggested in the literature often lead to models
with a greater discriminatory power (see, for example, [13]) that provide a lower number of efficient
decision-making units (DMUs). Especially when the number of DMUs is low, this feature may
represent a third motivation for adopting a DEA model with weight restrictions; an example of an
effective increase in the discrimination obtained with weight restrictions is presented in [14].

Several typologies of weight restrictions have been proposed in the DEA literature to reduce
weight flexibility (for a review, see Allen et al. [5] and Thanassoulis et al. [6]).
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A simple approach is given by the so-called absolute weight restrictions, which consists of lower
and upper bounds set directly on the value of the input and output weights ([15]):

LX
i ≤ vi ≤ UX

i (i = 1, . . . , m), (38)

LY
r ≤ ur ≤ UY

r (r = 1, . . . , t), (39)

where LX
i and UX

i are the lower and upper bounds imposed on the input weight vi and LY
r and UY

r are
the analogous bounds of the output weight ur.

These constraints are simple, but, on the other hand, the meaning of the bounds may be not
always clear; moreover, they can give rise to infeasibility problems.

Two other well known types of weight restrictions will be described more in detail in the following
part of this section since the remaining of this paper will be focused on them.

3.1. Virtual Weight Restrictions

Another approach imposes lower and upper limits not directly on the value of the weights but
rather on the proportional contribution of the virtual inputs or outputs to the overall weighted sum of
inputs or outputs. These kinds of restrictions are called virtual weights (VW, in brief) restrictions and
were proposed by Wong and Beasley [16]; see also Sarrico and Dyson [17] for further details.

In general, let us consider a DEA model with n DMUs employing m inputs to produce t outputs.
Let us denote by yrj the amount of output r (r = 1, . . . , t) produced by DMU j (j = 1, . . . , n) and by xij
the amount of input i (i = 1, . . . , m) used by the same DMU. The virtual input related to the i-th input
variable for DMU j is defined as the product of the level of the input and the corresponding optimal
weight vi), i.e., vixij. Analogously, the virtual output related to the r-th output variable is defined as
the product of the level of the output and the corresponding optimal weight ur), uryrj.

The virtual weight restrictions applied to inputs restrict the proportion of each virtual input with
respect to the total virtual input:

LX
i′ ≤

vi′xi′ j

∑m
i=1 vixij

≤ UX
i′ (i′ = 1, . . . , m; j = 1, . . . , n), (40)

where LX
i′ and UX

i′ are the lower and upper percentage values that limit the virtual input i′; for example,
we may require that the proportion of the total virtual input for the first input variable falls between
20% and 80%.

Analogous proportional restrictions may be defined for the virtual outputs, too:

LY
r′ ≤

ur′yr′ j

∑t
r=1 uryrj

≤ UY
r′ (r′ = 1, . . . , t; j = 1, . . . , n), (41)

where LY
r′ and UY

r′ are the lower and upper percentage values set for the virtual output r′.
Let us remark that the virtual weight restrictions can be easily interpreted and therefore it is more

straightforward to assign reasonable numerical values to the lower and upper bounds. In the case of a
DEA model for mutual fund assessment, for instance, by setting lower bounds on the proportion of
the virtual input, we may require that each risk measure contribute to the total virtual input for at least
a minimum percentage and for not more than a maximum percentage and that similar percentage
restrictions hold for the initial payout.

Notice that, in the case of models (5)–(8), it has little meaning to assign proportional weights
restriction to the (single) virtual output. Nevertheless, in the following, we will present both input and
output restrictions, which are also useful for more general models. For mutual funds, in particular, a
general treatment can be used to generalize the DEA model including multiple output variables; with
regard to that, we may refer to the DEA models for socially responsible investment funds ([7]).



Mathematics 2018, 6, 164 8 of 24

It is straightforward to write the lower and upper constraints (40) and (41) in an equivalent linear
form, more convenient to add to the linear constraints of a DEA primal problem:

−
m

∑
i=1

vi(LX
i′ xij) + vi′xi′ j ≥ 0 (i′ = 1, . . . , m; j = 1, . . . , n), (42)

m

∑
i=1

vi(UX
i′ xij)− vi′xi′ j ≥ 0 (i′ = 1, . . . , m; j = 1, . . . , n), (43)

and, respectively,

−
t

∑
r=1

ur(LY
r′yrj) + ur′yr′ j ≥ 0 (r′ = 1, . . . , t; j = 1, . . . , n), (44)

t

∑
r=1

ur(UY
r′yrj)− ur′yr′ j ≥ 0 (r′ = 1, . . . , t; j = 1, . . . , n). (45)

3.2. Restrictions with Assurance Regions

In the DEA practice, the most commonly used restrictions are given by the so called assurance
regions (AR) ([18]), which impose restrictions on the ratios between the weights of inputs and/or
outputs. More specifically, Type I assurance regions consider lower and upper bounds on the ratio
between the weights of either the inputs:

LX
i′i ≤

vi
vi′
≤ UX

i′i (i′ = 1, . . . , m; i = 1, . . . , m) (46)

or the outputs:

LY
r′r ≤

ur

ur′
≤ UY

r′r (r′ = 1, . . . , t; r = 1, . . . , t), (47)

where LX
i′i and UX

i′i are non-negative lower and upper bounds that limit the ratio of the input weights
vi
vi′

and, analogously, LY
r′r and UY

r′r are the bounds of the output weights ratio ur
ur′

. Notice that for i′ = i
and r′ = r the lower bounds may take any non-negative value lower than or equal to 1 and the upper
bounds may take any value greater than or equal to 1 and the restrictions are redundant. Of course,
a lower bound equal to 0 corresponds to the case without a limitation from below.

In addition, once the lower bounds are set, the upper bounds are redundant since they can be
derived from the lower bounds; indeed, if we take the reciprocal of a weights ratio, we have:

LX
i′i ≤

vi
vi′

⇔ vi′

vi
≤ 1

LX
i′i

(48)

so that UX
ii′ =

1
LX

i′ i
. In general, we have:

UX
ii′ =

1
LX

i′i
(i′ = 1, . . . , m; i = 1, . . . , m), (49)

UY
rr′ =

1
LY

r′r
(r′ = 1, . . . , t; r = 1, . . . , t) (50)

and constraints (46) and (47) can be equivalently written in linear forms as follows:

vi − LX
i′ivi′ ≥ 0 (i′ = 1, . . . , m; i = 1, . . . , m) (51)

and
ur − LY

r′rur′ ≥ 0 (r′ = 1, . . . , t; r = 1, . . . , t). (52)
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We remark that in the literature very often type I assurance regions are defined using a more
parsimonious representation which takes into consideration only the weights ratios computed with
respect to one of the weights, usually the first one ( for example [8]):

LX
1i ≤

vi
v1
≤ UX

1i (i = 2, . . . , m), (53)

LY
1r ≤

ur

u1
≤ UY

1r (r = 2, . . . , t). (54)

The restrictions considered in Type I assurance regions may be appropriate when these restrictions
come from a production technology that provides some technological information on the marginal
rates of technical substitution between the inputs or the outputs.

We may cite another type of restrictions that falls in the assurance regions category, even if we
will not use them for mutual funds; they impose cross restrictions that link input and output weights
and give rise to the so called Type II assurance regions; for example, [5].

4. Matrix Representation of Virtual Weights Restrictions

In Section 3, we have presented two different ways to define restrictions on the weights of a DEA
model incorporating some value judgements conveyed by experts or decision makers. In the present
and the next sections, we derive a matrix representation for these restrictions that will be incorporated
in the DEA models in Section 6.

In particular, in this section, we focus on the virtual weight restrictions (42)–(45), which seem
better fit for the performance evaluation of mutual funds.

First of all, let us observe that in general there are two different ways to impose VW restrictions in
a DEA model, since we may either impose only the input and output constraints regarding the target
DMU o or we may impose the constraints regarding all the DMUs under analysis simultaneously. In the
first case, the number of constraints that are added is equal to 2(m + t). In the second case, this number
is multiplied by the number n of DMUs, i.e., it is 2(m + t)n. The first case is computationally less
cumbersome, but it has the serious drawback that the projection on the efficient frontier of a non
efficient DMU may not satisfy the virtual weights constraints (see, e.g., [14]).

On the other hand, the case in which the VW constraints are imposed for all DMUs simultaneously
ensures that this projection satisfies all the constraints (indeed, all the necessary constraints are present
in the optimization problem), but at the cost of a more cumbersome optimization problem. Moreover,
the high number of constraints included may sometimes lead to infeasibility problems, if the lower
and upper bounds in the VW constraints are too strict.

Let us now write in a convenient matrix form the VW constraints (42)–(45). Let X = (xij) be the
m× n matrix of inputs, Y = (xrj) be the t× n matrix of outputs, v = (v1, . . . , vm) be the row vector
of the input weights, u = (u1, . . . , ut) be the row vector of the output weights, LX = (LX

1 , . . . , LX
m) be

the row vector of the lower bounds on the proportional virtual inputs, UX = (UX
1 , . . . , UX

m) be the row
vector of the upper bounds on the proportional virtual inputs, LY = (LY

1 , . . . , LY
t ) be the row vector of

the lower bounds on the proportional virtual outputs, UY = (UY
1 , . . . , UY

t ) be the row vector of the
upper bounds on the proportional virtual outputs.

Let us start with the input constraints. Constraint (42) can be equivalently written in matrix form
in the following way:

vPL
j ≥ 0 (j = 1, . . . , n), (55)
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where 0 ∈ Rm is a null row vector and PL
j is the following m×m matrix:

PL
j =


(−LX

1 + 1)x1j −LX
2 x1j . . . −LX

mx1j
−LX

1 x2j (−LX
2 + 1)x2j . . . −LX

mx2j
...

−LX
1 xmj −LX

2 xmj . . . (−LX
m + 1)xmj

 = DX
j − xjLX . (56)

xj = (x1j, . . . , xmj)
′ is the j-th column of the input matrix X and DX

j is the diagonal matrix with the
elements of xj on the main diagonal.

Constraint (43) can be written in matrix form as follows:

vPU
j ≥ 0 (j = 1, . . . , n), (57)

where PU
j is the following m×m matrix:

PU
j =


(UX

1 − 1)x1j UX
2 x1j . . . UX

m x1j
UX

1 x2j (UX
2 − 1)x2j . . . UX

m x2j
...

UX
1 xmj UX

2 xmj . . . (UX
m − 1)xmj

 = −DX
j + xjUX . (58)

In a similar manner, we may write in matrix form the output constraints. Constraint (44) is
equivalent to:

uQL
j ≥ 0 (j = 1, . . . , n); (59)

here, 0 ∈ Rt, QL
j is the t× t matrix:

QL
j =


(−LY

1 + 1)y1j −LY
2 y1j . . . −LY

t y1j
−LY

1 y2j (−LY
2 + 1)y2j . . . −LY

t y2j
...

−LY
1 ytj −LY

2 ytj . . . (−LY
t + 1)ytj

 = DY
j − yjLY. (60)

yj = (y1j, . . . , ytj)
′ is the j-th column of the output matrix Y and DY

j is the diagonal matrix with the
elements of yj on the main diagonal.

Constraint (45) can be written as follows:

uQU
j ≥ 0 (j = 1, . . . , n), (61)

where QU
j is the following t× t matrix:

QU
j =


(UY

1 − 1)y1j UY
2 y1j . . . UY

t y1j
UY

1 y2j (UY
2 − 1)y2j . . . UY

t y2j
...

UY
1 ytj UY

2 ytj . . . (UY
t − 1)ytj

 = −DY
j + yjUY. (62)

We have seen that in the DEA optimization problem for the computation of the efficiency score
of the target DMU o (let us recall that the DEA approach requires the solution of an optimization
problem for each of the DMUs analyzed) we may either simultaneously impose the VW input and
output constraints regarding all DMUs or we may consider only the constraints regarding the target
DMU. Of course, the choice of the first or the second alternative leads to different representations
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of the constraints to be included in the DEA optimization problem. Let us thus examine the two
alternatives separately.

4.1. Case 1: Constraints on All DMUs

In the first case, the constraints to be added to the optimization problem that allows us to compute
the efficiency score of DMU o (with o ∈ { 1, 2, . . . , n}) are the same for all DMUs, since the VW
constraints of all DMUs are present in the optimization problems to compute the efficiency scores of
all DMUs:

vPL
j ≥ 0 (j = 1, . . . , n), (63)

vPU
j ≥ 0 (j = 1, . . . , n), (64)

uQL
j ≥ 0 (j = 1, . . . , n), (65)

uQU
j ≥ 0 (j = 1, . . . , n). (66)

It is immediate to see that constraint (63) can be written in matrix form as follows:

vPL ≥ 0, (67)

where 0 ∈ Rm×n and PL is the following m× (mn) matrix:

PL =
(

PL
1 PL

2 . . . PL
n

)
. (68)

Analogously, constraint (64) can be written as:

vPU ≥ 0, (69)

where PU is the m× (mn) matrix:
PU =

(
PU

1 PU
2 . . . PU

n

)
; (70)

constraint (65) can be written as:
uQL ≥ 0, (71)

where 0 ∈ Rt×n and QL is the following t× (tn) matrix:

QL =
(

QL
1 QL

2 . . . QL
n

)
(72)

and constraint (66) can be written as:
uQU ≥ 0, (73)

where QU is the t× (tn) matrix:
QU =

(
QU

1 QU
2 . . . QU

n

)
. (74)

4.2. Case 2: Constraints Only on the Target DMU

In the second case, the constraints to be added to the optimization problem that allows us to
compute the efficiency score of DMU o (with o ∈ { 1, 2, . . . , n}) are only those related to the target
DMU o:
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vPL
o ≥ 0, (75)

vPU
o ≥ 0, (76)

uQL
o ≥ 0, (77)

uQU
o ≥ 0. (78)

To use the same matrix notation adopted in case 1, by setting PL = PL
o , PU = PU

o , QL = QL
o ,

QU = QU
o , we can write equivalently:

vPL ≥ 0, (79)

vPU ≥ 0, (80)

uQL ≥ 0, (81)

uQU ≥ 0, (82)

where it is clear that the constraints on the proportional virtual weights can be written in a similar
form for cases 1 and 2, only the construction of the matrices PL, PU , QL, QU involved changes.

5. Matrix Representation of Assurance Region Weight Restrictions

It is possible to represent in a matrix form analogous to (79)–(82) also the weight restrictions
(51) and (52) defined with the assurance region method. This will allow us to proceed with a unified
formulation of the DEA programs in the next section.

Of course, for our representation of the assurance regions, we may set PU and QU equal to null
matrices. As for the matrices PL and QL, to see how they can be written, let us first write the matrix PL

in the case m = 3:

PL =

 0 1 1 −LX
21 0 0 −LX

31 0 0
0 −LX

12 0 1 0 1 0 −LX
32 0

0 0 −LX
13 0 0 −LX

23 1 1 0

 . (83)

By examining this matrix, we can see that, in the general case, PL can be written as the m×m2 matrix:

PL =
(

PL
1 PL

2 . . . PL
m

)
, (84)

where the submatrices PL
i are m×m matrices defined as follows:

PL
i = IX

i − D̄X
i , (85)

with IX
i defined as the m× m matrix with the elements in the i-th row equal to 1 and all the other

elements equal to 0 and D̄X
i is the m×m diagonal matrix with the lower bounds LX

i1, LX
i2, . . . , LX

im on
the main diagonal; here, we set LX

ii = 1.
Analogously, QL can be written as the t× t2 matrix:

QL =
(

QL
1 QL

2 . . . QL
t

)
, (86)

where the submatrices QL
r are t× t matrices defined as:

QL
r = IY

r − D̄Y
r , (87)

with IY
r defined as the t × t matrix with the elements in the r-th row equal to 1 and all the other

elements equal to 0 and D̄Y
r is the t× t diagonal matrix with the lower bounds LY

r1, LY
r2, . . . , LY

rt on the
main diagonal; here, LY

rr = 1.
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6. DEA Efficiency Evaluation with Virtual Weights Restrictions and Assurance Regions

We are finally ready to incorporate the weight restrictions that have been discussed in the previous
sections in a general DEA output oriented model with either constant or variable returns to scale in
matrix form.

We have been able to represent both the virtual weight restrictions (for either case 1 or case 2) and
the assurance regions in the following compact form:

vPL ≥ 0, (88)

vPU ≥ 0, (89)

uQL ≥ 0, (90)

uQU ≥ 0. (91)

Let us consider the general output oriented DEA model in the two-phase dual formulation. We can
take into account these constraints in the Phase I problem, which can be written in the following way:

max zo, (92)

subject to

Xλ + PLρL + PUρU + s− = xo, (93)

zoyo −Yλ + QLτL + QUτU + s+ = 0, (94)

1λ = 1, (95)

λ ≥ 0, ρL ≥ 0, ρU ≥ 0, τL ≥ 0, τU ≥ 0, s− ≥ 0, s+ ≥ 0, (96)

where ρL, ρU , τL and τU are the column vectors of the dual variables associated with the weights
constraints (88)–(91), respectively.

The optimal solution of program (92)–(96), denoted by z∗o , provides the reciprocal of the efficiency
score of DMU o.

In phase II, zo is set equal to z∗o and we solve the following linear program which maximises the
sum of the input and output slacks s− = (s−1 , . . . , s−m) and s+ = (s+1 , . . . , s+t ):

max 1s− + 1s+, (97)

subject to

Xλ + PLρL + PUρU + s− = xo, (98)

z∗o yo −Yλ + QLτL + QUτU + s+ = 0, (99)

1λ = 1, (100)

λ ≥ 0, ρL ≥ 0, ρU ≥ 0, τL ≥ 0, τU ≥ 0, s− ≥ 0, s+ ≥ 0. (101)

It is well known that by omitting constraint (95) in the dual problems (92)–(96) and (97)–(101), we
obtain the model with constant returns to scale.

Let us now formalize the definitions of efficiency and efficient frontier for the DEA models with
virtual weight restrictions and assurance regions analyzed.

Definition 1. Let (z∗o , λ∗, ρL∗, ρU∗, τL∗, τU∗, s−∗, s+∗) be an optimal solution of the Phase I dual program
(92)–(96) and Phase II program (97)–(101), with o ∈ { 1, . . . , n }. DMU o is called WR-efficient if and only if
this solution satisfies z∗o = 1, s−∗ = 0 and s+∗ = 0, i.e., if it has an efficiency score equal to 1 and it is zero-slack.
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Definition 2. Let (z∗o , λ∗, ρL∗, ρU∗, τL∗, τU∗, s−∗, s+∗) be an optimal solution of the Phase I dual program
(92)–(96) and Phase II program (97)–(101), with o ∈ { 1, . . . , n }. The WR-projection on the efficient frontier of
an inefficient DMU o, (x̂o, ŷo), is represented by:

x̂o = xo − PLρL − PUρU − s−∗ = Xλ∗, (102)

ŷo = z∗o yo + QLτL∗ + QUτU∗ + s+∗ = Yλ∗. (103)

The WR-projection on the efficient frontier may suggest the direction of efficiency improvements
for inefficient DMUs. Let us only recall that in the case of virtual weight restrictions applied only to
the target DMU o (case 2, Section 4.2) the WR-projection on the efficient frontier may not be feasible
since it may violate the VW constraints.

7. An Experimental Application to European Mutual Funds

7.1. Design of the Analysis

The DEA models with weight restrictions studied in Sections 3–5 have been applied to the
evaluation of the performance of a wide set of European mutual funds.

The aim of the empirical analysis is to investigate the effects on the performance scores of the
introduction of restrictions on the weights of the DEA model. In addition, we compare the results
obtained with the different restriction methods, namely the virtual weight restrictions with constraints
on all DMUs, the virtual weight restrictions with constraints only on the target DMU and the restrictions
based on assurance regions.

The analysis has taken into consideration 312 mutual funds randomly chosen among the mutual
funds domiciled in Western Europe. The mutual funds analyzed coincide with those studied in [2]
and regards the period 30 November 2006 to 30 November 2013. We have also tested the data for the
eventual presence of DEA-outliers, but there does not seem to be any outlier.

We have applied an output oriented DEA model with variable returns to scale with the input
and output variables described in Section 2. The historical data have been used to calculate the mean
instantaneous return measured on an annual basis Rj, the β-coefficient β j (computed with respect
to the STOXX Europe Total Market Index, TMI, which represents a market portfolio for the Western
Europe region) and the downside risk DRj (computed with respect to the 12 month Euribor rate) for
all funds j.

Some of the European funds investigated show negative mean returns in the time period
considered, a situation that can commonly be found in times of economic and financial recession.
However, by construction, the final value of the investment Mj (as defined in Equation (2)) is positive
anyway. In the empirical analysis carried out, none of the input variables exhibited negative values,
not even the beta, so that no translation of the input variables was necessary in order to deal with
negative data.

We have observed in Section 2 that if the period in which an investor is assumed to maintain the
mutual fund shares (the holding period) is short, the initial payout K determined by the fund initial
fee (see Equation (1) may have a great importance. On the contrary, its effect is lessened for a longer
holding period, as the initial fee is spread over several years.

On the other hand, the exponential dynamics of the final value Mj (see Equation (2) makes Mj
heavily dependent on the length of the holding period considered in the analysis.

In order to study both situations, we have decided to carry out the analysis for two different
holding periods: a short one-year period (T = 1) and a longer seven-year period (T = 7).

Obviously, since the DEA model considered has only one output (Mj), we have only considered
restrictions on the input weights.
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7.2. Applying Virtual Weights Restrictions with Constraints on All DMUs

In this subsection, we synthesize the results of the analysis carried out for the case of the virtual
weight restrictions with constraints on all DMUs (case 1, Section 4.1).

As anticipated, we have considered holding periods with two different lengths, T = 1 and T = 7.
Moreover, we have conducted a sensitivity analysis of the restrictions by comparing the results with
respect to a parameter d that affect the strictness of the bounds, with d ∈ [0, 0.25]. The case d = 0
corresponds to the case without weight restrictions, while as the value of d increases, the restrictions
on the weights become more and more strict.

Table 1 reports the lower and upper bounds applied. As can be seen, we have considered three
different cases: a symmetric case in which the bounds are the same for all input variables (equal to d)
and two asymmetric cases in which the bounds for the initial payout K are different from the bounds
of the risk measures β and DR. In particular, in the one-year case, the bounds for K are higher than the
others, in order to stress the higher relevance of the initial payout when the holding period is short;
on the contrary, in the seven-year case, the bounds for K are set lower than the others, to lessen its
relevance in the long term.

Table 1. Lower and upper bounds considered for the virtual weight restrictions applied in the
performance analysis of mutual funds; d ∈ [0, 0.25].

Input Variables LX
i UX

i

Symmetric bounds
Initial payout K d 1− 2d
β-coefficient d 1− 2d
Downside risk DR d 1− 2d

Asymmetric bounds—one-year holding period
Initial payout K 2d 1− 2d
β-coefficient d 1− 3d
Downside risk DR d 1− 3d

Asymmetric bounds—seven-year holding period
Initial payout K 0.5d 1− 2d
β-coefficient d 1− 1.5d
Downside risk DR d 1− 1.5d

The main results are summarized in Tables 2–5, for the symmetric and asymmetric bounds and for
T = 1 and T = 7. The tables display some summary statistics on the performance scores (minimum,
mean and median values, standard deviation) the number of efficient funds and a measure of the
changes recorded with respect to the case without weight restrictions (d = 0), the mean absolute
variation of the ranking position of all funds (actually, the tables report the mean absolute variation
divided by 2, to take into account the fact that, for a fund which improves its ranking, another one will
worsen it).
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Table 2. Main results for the virtual weights (VW) restrictions with constraints on all decision-making
units (DMUs) in the case of symmetric bounds and T = 1. Summary statistics on the performance
scores (minimum, mean and median values, standard deviation), number of efficient funds and mean
absolute variation (divided by 2) of the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.7690 0.9233 0.9193 0.0327 6 –
0.05 0.7598 0.9132 0.9117 0.0325 5 10.1795
0.10 0.7593 0.9125 0.9110 0.0325 5 10.5240
0.15 0.7582 0.9120 0.9103 0.0325 4 10.7885
0.20 0.7542 0.9014 0.9002 0.0293 1 11.6891
0.25 0.7542 0.9014 0.9002 0.0293 1 11.6891

Table 3. Main results for the VW restrictions with constraints on all DMUs in the case of symmetric
bounds and T = 7. Summary statistics on the performance scores (minimum, mean and median
values, standard deviation), number of efficient funds and mean absolute variation (divided by 2) of
the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.1583 0.5948 0.5635 0.1401 6 –
0.05 0.1461 0.5502 0.5277 0.1302 4 11.1442
0.10 0.1453 0.5476 0.5256 0.1296 4 11.5272
0.15 0.1439 0.5457 0.5240 0.1293 4 11.7564
0.20 0.1388 0.5022 0.4873 0.1081 1 12.7340
0.25 0.1388 0.5022 0.4873 0.1081 1 12.7340

Table 4. Main results for the VW restrictions with constraints on all DMUs in the case of asymmetric
bounds and T = 1. Summary statistics on the performance scores (minimum, mean and median
values, standard deviation), number of efficient funds and mean absolute variation (divided by 2) of
the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.7690 0.9233 0.9193 0.0327 6 –
0.05 0.7598 0.9131 0.9117 0.0325 5 10.1827
0.10 0.7586 0.9123 0.9106 0.0325 4 10.6042
0.15 0.7542 0.9014 0.9002 0.0293 1 11.6891
0.20 0.7542 0.9014 0.9002 0.0293 1 11.6891

Table 5. Main results for the VW restrictions with constraints on all DMUs in the case of asymmetric
bounds and T = 7. Summary statistics on the performance scores (minimum, mean and median
values, standard deviation), number of efficient funds and mean absolute variation (divided by 2) of
the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.1583 0.5948 0.5635 0.1401 6 –
0.05 0.1461 0.5502 0.5278 0.1303 4 11.1554
0.10 0.1456 0.5480 0.5260 0.1297 4 11.5176
0.15 0.1449 0.5467 0.5251 0.1295 4 11.7083
0.20 0.1438 0.5454 0.5239 0.1293 4 11.8093
0.25 0.1388 0.5022 0.4873 0.1081 1 12.7340



Mathematics 2018, 6, 164 17 of 24

We may observe that the number of efficient funds decreases as the bounds becomes stricter
(as d increases); moreover, the more considerable change in the ranking occurs when we first introduce
the weight restrictions by setting d > 0, thus requiring that no variable may be neglected in the
computation of the performance score.

These conclusions hold both for the symmetric and asymmetric cases, and for both the short and
long holding periods.

By comparing the one-year and seven-year results, we may note that in the seven-year case the
values of the efficiency scores are more dispersed than in the one-year case (the minimum, mean and
median values are all lower); this is clearly an effect of the exponential law used for the computation of
the final value: it is well known that the effect of the compound interest regime becomes more marked
as time increases.

7.3. Applying Virtual Weights Restrictions with Constraints on the Target DMU

In this subsection, we present the results of the analysis for the case in which the virtual weights
constraints are imposed only on the target DMU (case 2, Section 4.2).

The structure of the empirical investigation is analogous to that described in Section 7.2 and
the results are summarized in Tables 6–9. Many of the remarks made in Section 7.2 for the case in
which the virtual weight restrictions are set for all DMUs are valid also for the case of virtual weight
restrictions with constraints only on the target DMU. However, we may remark that, in this latter case,
the number of efficient DMUs is higher, so that the discriminatory power is somewhat lower.

Table 6. Main results for the VW restrictions with constraints only on the target DMU in the case of
symmetric bounds and T = 1. Summary statistics on the performance scores (minimum, mean and
median values, standard deviation), number of efficient funds and mean absolute variation (divided
by 2) of the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.7690 0.9233 0.9193 0.0327 6 –
0.05 0.7619 0.9168 0.9142 0.0327 5 6.2997
0.10 0.7600 0.9145 0.9121 0.0326 5 8.8013
0.15 0.7595 0.9135 0.9118 0.0326 5 9.6747
0.20 0.7592 0.9130 0.9114 0.0325 5 10.0994
0.25 0.7588 0.9126 0.9108 0.0325 4 10.3157

Table 7. Main results for the VW restrictions with constraints only on the target DMU in the case of
symmetric bounds and T = 7. Summary statistics on the performance scores (minimum, mean and
median values, standard deviation), number of efficient funds and mean absolute variation (divided
by 2) of the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.1583 0.5948 0.5635 0.1401 6 –
0.05 0.1488 0.5663 0.5404 0.1341 5 6.7821
0.10 0.1463 0.5559 0.5319 0.1315 4 9.5176
0.15 0.1456 0.5517 0.5274 0.1304 4 10.5112
0.20 0.1452 0.5495 0.5268 0.1299 4 10.9984
0.25 0.1447 0.5479 0.5261 0.1296 4 11.2708
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Table 8. Main results for the VW restrictions with constraints only on the target DMU in the case of
asymmetric bounds and T = 1. Summary statistics on the performance scores (minimum, mean and
median values, standard deviation), number of efficient funds and mean absolute variation (divided
by 2) of the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.7690 0.9233 0.9193 0.0327 6 –
0.05 0.7619 0.9168 0.9142 0.0327 5 6.2965
0.10 0.7600 0.9145 0.9121 0.0326 5 8.7821
0.15 0.7594 0.9135 0.9117 0.0326 5 9.6651
0.20 0.7590 0.9129 0.9108 0.0325 4 10.0962

Table 9. Main results for the VW restrictions with constraints only on the target DMU in the case of
asymmetric bounds and T = 7. Summary statistics on the performance scores (minimum, mean and
median values, standard deviation), number of efficient funds and mean absolute variation (divided
by 2) of the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.1583 0.5948 0.5635 0.1401 6 –
0.05 0.1488 0.5663 0.5404 0.1341 5 6.7853
0.10 0.1463 0.5559 0.5320 0.1315 4 9.5240
0.15 0.1456 0.5518 0.5274 0.1304 4 10.5272
0.20 0.1452 0.5496 0.5270 0.1299 4 11.0144
0.25 0.1449 0.5482 0.5263 0.1297 4 11.3077

Figures 1 and 2 compare the dynamics of the mean performance score in the cases of virtual
weight restrictions set for all DMUs and of virtual weight restrictions with constraints on the target
DMU as the bounds become more and more strict (as d increases) for T = 1 and T = 7, respectively.
The case represented is that of symmetric bounds, but the dynamic behaviour in the asymmetric cases
is analogous. The difference in the dynamics is appreciable mainly for the higher values of d.

0.9

0.905

0.91

0.915

0.92

0.925

0 0.05 0.1 0.15 0.2 0.25

d

Mean performance score for VWR - 1-year horizon 

Bounds on all DMUs Bounds only on DMU o

Figure 1. Comparison of the dynamics of the mean performance scores of virtual weights (VW)
restrictions in the cases with constraints on all decision-making units (DMUs) and only on the target
DMU as d increases, for T = 1 and symmetric bounds.
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Figure 2. Comparison of the dynamics of the mean performance scores of VW restrictions in the
cases with constraints on all DMUs and only on the target DMU as d increases, for T = 7 and
symmetric bounds.

7.4. Applying Assurance Region Weight Restrictions

In this subsection, we summarize the results of the analysis that regards the weight restrictions
with assurance regions.

In order to investigate the results of the performance evaluation as the restrictions on the assurance
regions become increasingly strict, we have computed the performance scores for different values
of the lower bounds on the ratio between the input weights (let us recall that the upper bounds are
redundant once the lower bounds are set, see Section 3.2).

More precisely, we have compared the results with respect to a parameter d which affects the
value of the lower bounds, with d ∈ [0, 0.9]. The case d = 0 corresponds to the case without weight
restrictions, while, as the value of d increases, the lower bounds on the assurance regions increase.

As with the virtual weight restrictions, we have considered three different cases: a symmetric
case in which the bounds are the same for all input variables and two asymmetric cases in which the
bounds for the initial payout K are different from the bounds of the risk measures β and DR.

In the symmetric case, the lower bounds are calculated in the following way:

LX
i′i =

d
Mean(Xi)
Mean(Xi′ )

, (104)

where Xi represents the i-th input variable and the means are computed with respect to all mutual funds
analyzed. By defining the lower bound LX

i′i in this way, we “standardize” it, in a sense, with respect to
the magnitude of the input variables, making it independent of the units of measurement chosen for
the variables.
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As for the asymmetric cases, in the one-year case, the bounds involving K are set so that the
relevance of the initial payout is stressed when the holding period is short (T = 1) while it is lessened
in the seven-year case. In particular, the bounds involving K for T = 1 are set as follows:

LX
Kβ =

0.5d
Mean(β)
Mean(K)

LX
K,DR =

0.5d
Mean(DR)
Mean(K)

, (105)

LX
βK =

2d
Mean(K)
Mean(β)

LX
DR,K =

2d
Mean(K)

Mean(DR)

, (106)

and the bounds involving K for T = 7 are set as follows:

LX
Kβ =

2d
Mean(β)
Mean(K)

LX
K,DR =

2d
Mean(DR)
Mean(K)

, (107)

LX
βK =

0.5d
Mean(K)
Mean(β)

LX
DR,K =

0.5d
Mean(K)

Mean(DR)

. (108)

The lower bounds imposed are summarized in Table 10, which shows the numerator of
Formulas (104)–(108); the lower bounds for all pairs of input variables are calculated by dividing the
values reported in the table by the ratio between the mean values of the variables, computed over all
the mutual funds.

Table 10. Lower bounds considered for the assurance regions (AR) restrictions in the performance
analysis of mutual funds for d ∈ [0, 0.9]. The lower bounds are calculated dividing the values reported
in the table by the ratio between the mean values of the variables.

Input Variables K β DR

Symmetric bounds
Initial payout K 1 d d
β-coefficient d 1 d
Downside risk DR d d 1

Asymmetric bounds—one-year holding period
Initial payout K 1 0.5d 0.5d
β-coefficient 2d 1 d
Downside risk DR 2d d 1

Asymmetric bounds—seven-year holding period
Initial payout K 1 2d 2d
β-coefficient 0.5d 1 d
Downside risk DR 0.5d d 1

The main results of the analysis carried out are summarized in Tables 11–14, for the symmetric
and asymmetric bounds and for T = 1 and T = 7. In general, the behaviour of both the performance
scores and the differences in the rankings are similar to that observed for the virtual weight restrictions.
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Table 11. Main results for AR restrictions in the case of symmetric bounds and T = 1. Summary
statistics on the performance scores (minimum, mean and median values, standard deviation), number
of efficient funds and mean absolute variation (divided by 2) of the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.7690 0.9233 0.9193 0.0327 6 –
0.10 0.7601 0.9150 0.9126 0.0330 5 8.4119
0.20 0.7597 0.9136 0.9114 0.0327 5 9.7500
0.30 0.7593 0.9131 0.9111 0.0326 5 10.1122
0.40 0.7590 0.9127 0.9109 0.0326 5 10.3429
0.50 0.7587 0.9125 0.9107 0.0326 4 10.4679
0.60 0.7585 0.9124 0.9105 0.0326 4 10.5417
0.70 0.7582 0.9122 0.9103 0.0326 4 10.6298
0.80 0.7580 0.9121 0.9102 0.0326 4 10.6955
0.90 0.7579 0.9120 0.9100 0.0326 4 10.7372

Table 12. Main results for AR restrictions in the case of symmetric bounds and T = 7. Summary
statistics on the performance scores (minimum, mean and median values, standard deviation), number
of efficient funds and mean absolute variation (divided by 2) of the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.1583 0.5948 0.5635 0.1401 6 –
0.10 0.1464 0.5589 0.5325 0.1341 5 9.0929
0.20 0.1458 0.5522 0.5276 0.1310 4 10.5657
0.30 0.1453 0.5499 0.5271 0.1304 4 11.0208
0.40 0.1449 0.5486 0.5264 0.1301 4 11.2708
0.50 0.1446 0.5477 0.5256 0.1299 4 11.3766
0.60 0.1442 0.5471 0.5249 0.1297 4 11.4631
0.70 0.1439 0.5465 0.5245 0.1296 4 11.5737
0.80 0.1437 0.5461 0.5242 0.1295 4 11.6362
0.90 0.1435 0.5458 0.5239 0.1294 4 11.6779

Table 13. Main results for AR restrictions in the case of asymmetric bounds and T = 1. Summary
statistics on the performance scores (minimum, mean and median values, standard deviation), number
of efficient funds and mean absolute variation (divided by 2) of the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.7690 0.9233 0.9193 0.0327 6 –
0.10 0.7614 0.9170 0.9143 0.0330 6 6.3045
0.20 0.7600 0.9150 0.9120 0.0330 5 8.4183
0.30 0.7596 0.9140 0.9114 0.0328 5 9.3077
0.40 0.7593 0.9134 0.9110 0.0327 5 9.7468
0.50 0.7590 0.9131 0.9108 0.0327 5 9.9840
0.60 0.7588 0.9129 0.9106 0.0326 5 10.1378
0.70 0.7586 0.9127 0.9105 0.0326 5 10.2708
0.80 0.7583 0.9125 0.9104 0.0326 4 10.3670
0.90 0.7582 0.9124 0.9104 0.0326 4 10.4551

Figures 3 and 4 illustrate the dynamics of the mean performance score for the short and long
holding periods considered (T = 1 and T = 7), respectively. As observed for the results obtained with
VW restrictions, we may notice that the behaviour of the dynamics of the mean performance scores is
similar, although the mean values are rather different since the values of the scores in the seven-year
case are more dispersed than in the one-year case.
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Table 14. Main results for AR restrictions in the case of asymmetric bounds and T = 7. Summary
statistics on the performance scores (minimum, mean and median values, standard deviation), number
of efficient funds and mean absolute variation (divided by 2) of the ranking positions.

d Minimum
Score

Mean
Score

Median
Score

Std Dev
of Score

Number of
Efficient Funds

Mean Abs. Variation
of Ranking

0.00 0.1583 0.5948 0.5635 0.1401 6 –
0.10 0.1461 0.5525 0.5281 0.1311 4 10.5978
0.20 0.1456 0.5493 0.5271 0.1301 4 11.2772
0.30 0.1451 0.5480 0.5255 0.1299 4 11.4744
0.40 0.1447 0.5471 0.5248 0.1297 4 11.5689
0.50 0.1443 0.5466 0.5244 0.1296 4 11.6490
0.60 0.1440 0.5461 0.5241 0.1295 4 11.7324
0.70 0.1437 0.5457 0.5237 0.1295 4 11.7869
0.80 0.1435 0.5454 0.5234 0.1294 4 11.8093
0.90 0.1433 0.5451 0.5232 0.1294 4 11.8189
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Mean performance score for AR - 1-year horizon

Figure 3. Dynamics of the mean performance scores of AR restrictions as d increases, for T = 1 and
symmetric bounds.
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Figure 4. Dynamics of the mean performance scores of AR restrictions as d increases, for T = 7 and
symmetric bounds.
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8. Conclusions

The introduction of weight restrictions in DEA models which are adopted to evaluate the
performance of mutual funds may be important to ensure that no relevant variables are neglected in
the assessment of the fund performance.

In this contribution, we provide a unified matrix representation for three types of weight
restrictions: virtual weight restrictions with constraints on all funds, virtual weight restrictions with
constraints only on the target fund and restrictions with assurance regions.

In addition, in order to investigate the effect of the introduction of these restrictions on the DEA
models and undertake a detailed sensitivity analysis, we carry out an empirical study on a large
number of European mutual funds.

The experimental application carried out aims both to investigate the effects on the performance
scores of the three different kinds of weight restrictions considered, and to analyze the behaviour of
the fund performance scores as the restrictions on the weights become increasingly strict.

In summary, the results show that, by setting restrictions on the weights into a DEA model for
mutual funds, the performance scores and the fund ranking change in a sensible manner but not
drastically. The mean performance score and the number of efficient funds diminish as the bounds
become stricter and this effect is more pronounced in the case of virtual weight restrictions with
constraints on all funds.

Let us point out that in this paper we have focused on a general DEA model with variable returns
to scale and an output orientation; however, it is possible to derive a similar matrix representation also
for input oriented models and for models exhibiting constant returns to scale.
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