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Abstract: It is well-documented that individuals care about how others around them are doing. This
paper studies a production economy in which consumers provide labor supply to a representative
firm to earn income for consumption, and their utility depends on their own leisure time, their
own consumption level, as well as their neighbors’ consumption levels. We characterize the unique
equilibrium for such an economy, allowing for three different types of effects of the neighborhood size:
linear effect, zero effect, and nonlinear effect. Four network structures (empty network, ring network,
star network, and core-periphery network) with different production technologies are analyzed. Our
work contributes to a better understanding of the general equilibrium effect of social preferences and
network structures.
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1. Introduction

It has been well-documented that individuals care about how other individuals around them are
doing. Beginning with the pioneering work of Veblen (1899) [1], economists have studied preferences
with social comparisons among individuals and how such preferences influence individuals' decision
making [2–7]. More recently, network structures have played an important role in modeling economic
behavior with social interactions, serving as a natural tool to study social preferences in scenarios
where acquaintances and strangers are treated differently [8–13].

In order to study the general equilibrium effect of social preferences with network structure, there
are two basic potential frameworks: the pure exchange economy model and the production economy
model. Each of them captures a different aspect of real world markets. The pure exchange economy
framework emphasizes the relative prices between different consumption goods, while the production
economy framework more realistically incorporates firms’ profit maximization using consumers’ labor
as an input to production.

Ghiglino and Goyal (2010) study the phenomenon of “keeping up with the neighbors” in a pure
exchange economy, where agents consume two goods, one of which involves social comparison [12].
In contrast to Ghiglino and Goyal (2010), we focus on the production economy where agents provide
labor supply to a representative firm to earn income for consumption, and their utility depends on
their own leisure time, their own consumption level, as well as their neighbor’s consumption level.
Note that that we do not model leisure as a consumption involving social comparison. In addition,
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we assume that in this economy there is only one representative firm on the production side of the
market, and that the firm is uniformly owned by all consumers, i.e., every consumer receives an equal
share of the profit of the firm.

Alexeev and Chiv (2015), whose work is most related to ours, also consider the status competition
in a production economy with network structures [13]. However, their study differs from ours in two
aspects: First, they assume a linear production technology while we consider a production technology
exhibiting decreasing returns-to-scale; Second, they only consider a linear effect of neighborhood
size while we analyze three different types of effects of neighborhood size: linear effect, zero effect
(an effect which does not depend specifically on neighborhood size, but this does not mean that there
is no network effect present.), and nonlinear effect. In addition, we also provide concrete examples for
four network structures with different production technologies: empty network, ring network, star
network, and core-periphery network.

The contribution of our work is threefold. First, we extend the general equilibrium model with
social network structure to a production economy, and solve for the unique equilibrium under different
types of neighborhood size effects. Second, we show by illustration that under each of the four
network structures mentioned above, as the production technology improves, the equilibrium wage,
the equilibrium consumption and the equilibrium labor supply all increase. Third, we show that
when the total number of links in the economy increases, the equilibrium wage decreases while the
equilibrium consumption and the equilibrium labor supply increase.

The results highlight one reason that examining network consumption effects in a production
economy is important for understanding the overall effects of network-based comparisons of
consumers. In the absence of production, consumers care only about their consumption but not
meaningfully about their leisure time, since in that case the consumer does not have any chance to be
employed in the production process. By accounting for the labor and leisure decision when consumers
are also shareholders of firms, a more complete understanding regarding what consumers must do to
“keep up with the neighbors” is obtained, as well as an assessment of the economic conditions which
make these consumer objectives more easily attainable.

Our paper is related to a recent line of literature that has studied the effects of social status
or consumption externalities in economies [2–4,14–24]. Bilancini and Boncinelli (2012) consider
an economy in which individuals are status-concerned, and the possibility of social redistribution
policy is considered. In a status signaling game in which people convey their relative standing by
consuming a conspicuous good, they show that when social status is defined cardinally rather than
ordinally, progressive redistribution can generate a Pareto improvement; the key reason being that
redistribution reduces the competition for being high status [2]. A related study by Hopkins and
Kornienko (2010) compares endowment inequality and reward inequality in a societal tournament
setting. They show that the effect of inequality on social welfare depends distinctly on the type of
inequality, namely that inequality of rewards is harmful to most of society due to the increased effort
exerted; by contrast, the middle class may benefit under inequality of endowments [3]. Lian et al.
(2018) consider nine different types of preferences with social comparisons and study how these
preferences affect consumption, price, and welfare in a general equilibrium model with international
trade [4]. These studies model the interaction between consumers or households, but abstract from
both the production side of the economy and network structures among consumers, as we consider in
this paper.

There is another literature on consumption externalities and economic growth, which is related
to our work [5,6]. García-Peñalosa and Turnovsky (2008) examine an economy with heterogeneous
consumers and consumption externalities among groups of consumers. They derive the conditions
under which the equilibrium with heterogenous consumers replicates the typical model with a
representative consumer. One of their main results is that consumption externalities can reduce
inequality compared to the benchmark case if the economy is in a growing state [5]. Bilancini and
D'Alessandro (2012) analyze an endogenous growth model with externalities in leisure, consumption
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and production to examine the relationship between growth and welfare. Notably, they provide a
condition for an optimal growth path which includes production and consumption downscaling, while
providing an increase in welfare [6]. However, similarly to the previously mentioned studies, these
studies also do not analyze the network structure with regard to the consumption externalities.

Our paper is also related to a broader literature on social preferences and reference
dependence [7,25–39]. Sobel (2005) summarizes the literature on social preference models in
economics [7]. Postlewaite (1998) studies the social basis of interdependent preferences [26]. Lien and
Zheng (2017) experimentally test reference-dependent preferences in a social comparison domain [35].
Zhang and Zheng (2017) investigate the bubble equilibrium in an economy with reference-dependent
agents [39]. In contrast to our work, none of these studies consider a production economy with a
network structure.

Last but not least, we relate our work to the literature on network-based origins of social
preferences [8–11,40]. Jackson (2010) describes frameworks for analyzing strategic interactions between
players on a network, in which players may have a payoff or belief that depends on the choices that
their direct or indirect neighbors made [8]. An example is Golub and Jackson (2010), which models
a situation in which agents form their opinions by naively taking the weighted average of their
neighbors’ opinions [9]. Calvo-Armengol and Jackson (2010) provide a model of positive and negative
peer pressure in a framework where agents care about their neighbors’ actions and can exert costly
pressure on them [10]. Immorlica et al. (2017) consider a network model where agents with status
seeking preferences play a social status game [11]. The main difference between these studies and ours
is that they focus on game theoretical interactions while we use the general equilibrium approach to
study social comparisons in a production economy.

The rest of the paper is organized as follows. Section 2 sets up the basic model, solves for the
unique equilibrium, and provides examples for different network structures; Section 3 discusses
alternative ways to model the effect of neighborhood size; Section 4 concludes.

2. Model

2.1. Setup

We consider a production economy populated with N consumers, indexed i = 1, · · · , N. Let
N(i) be the set of neighbors of consumer i and ni = |N(i)| be the cardinal number of set N(i), i.e.,
the number of neighbors for individual i. The pattern of neighborhood is represented by the adjacent
matrix G, which is a N× N matrix. The element Gij equals to 1 if i and j are directly connected, that is, i
and j are each other’s neighbors, and takes the value of 0 otherwise. We also set the diagonal elements
to be 0. To put it formally, we have:

Gij =

{
1 i f j ∈ N(i)
0 i f j /∈ N(i)

Each consumer is endowed with one unit of time that could be spent for providing labor (denoted
by Li) or leisure (li). In this economy, besides leisure, there is only one kind of consumption good x,
which is the numeraire good. We assume that a consumer i’s utility depends on her leisure time (1− Li),
her own consumption level xi, and her neighbors’ consumption levels xj, j ∈ N(i). To specifically
model such a preference with social comparison, we consider the following adjusted Cobb-Douglas
utility functional form:

ui(Li, xi, x−i) = (1− Li)
σ(xi + ρS(ni)(xi −

1
ni

∑
j∈N(i)

xj))
1−σ

Note that σ ∈ (0, 1) measures the importance of leisure relative to consumption in the utility;
ρ > 0 represents consumers’ incentive to keep up with the neighbors: A consumer’s utility is negatively
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affected by an increase in consumption by neighbors; S(ni) captures the effect of the neighborhood
size: In the baseline model, we set S(ni) = ni to study the linear effect of the neighborhood size,
and we later consider alternative assumptions in which S(ni) = 1 (no effect of the neighborhood size)
or S(ni) =

√
ni (nonlinear effect of the neighborhood size).

On the production side, we assume there exists a representative profit-maximizing firm, evenly
owned by all the consumers. This firm hires labor at per unit cost (wage) w to produce the
consumption good, with production function Q = Lα, where α ∈ (0, 1) represents decreasing
returns-to-scale technology.

2.2. Analysis

2.2.1. Consumer’s Utility Maximization Problem

A typical consumer i in this economy faces the following optimization problem:

max{xi ,Li} ui = (hi − Li)
σ(xi + ρni(xi − 1

ni
∑

j∈N(i)
xj))

1−σ

s.t. xi ≤ wLi +
1
N π;

0 ≤ Li ≤ 1; xi ≥ 0,

(1)

where π is the profit of the representative firm.
First note that at optimum the inequality constraints 0 ≤ Li ≤ 1; xi ≥ 0 in the above optimization

problem are not binding. Thus, applying the Lagrange multiplier method to the optimization problem,
we have the following Lagrange function:

`(Li, xi, λ) = (1− Li)
σ(xi + ρni(xi −

1
ni

∑
j∈N(i)

xj))
1−σ

+ λ(wLi +
π

N
− xi) (1)

Given that li = 1− Li, we obtain the following first order conditions (FOCs):

• −σliσ−1(xi + ρni(xi − 1
ni

∑
j∈N(i)

xj))
1−σ

+ λw = 0 (for Li);

• liσ(1− σ)(1 + ρni)(xi + ρni(xi − 1
ni

∑
j∈N(i)

xj))
−σ − λ = 0 (for xi);

• xi + wli − w− π
N = 0 (for λ).

From the first two FOCs, we can express the wage w in terms of li and xi:

σ(xi + ρni(xi − 1
ni

∑
j∈N(i)

xj))

li(1− σ)(1 + ρni)
= w (3)

Combining (3) with the third FOC, we obtain:

xi −
σρ

1 + ρni
∑

j∈N(i)
xj = (1− σ)(w +

π

N
) (4)

(4) can be expressed in matrix form as:

X∗ = (1− σ)(w +
π

N
)B (5)

where B = (I − σρG∗)−1 J, G∗i = Gi/(1 + ρni) is the normalized version of Gi, Gi is the i-th row of G,
G is the adjacency matrix, and J is a N × 1 column vector with all elements taking value of 1. The
notation we adopt for the network structures follow Ghiglino and Goyal (2010) [12] and Alexeev and
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Chih (2015) [13]. It should be noted that each element Bi of vector B represents the Katz-Bonacich
network centrality of consumer i. Let B = 1

N ∑N
k=1 Bk, so B measures the average centrality of the

network structure.
With the above notation set up to characterize the properties of any given network, we can derive

the optimal choice of a typical consumer i’s utility maximization problem:

x∗ i = (1− σ)(w +
π

N
)Bi (6)

L∗ i = (1− σ)Bi + ((1− σ)Bi − 1)
π

wN
(7)

2.2.2. Firm’s Profit Maximization Problem

A representative firm in this economy faces the following optimization problem:

maxL π = Q− wL = Lα − wL (8)

where Q is the output of production in the economy, L is the input of labor, and w is the wage. From
first order condition, we obtain

αLα−1 − w = 0

Thus, we can derive the optimal choice of the firm’s profit maximization problem:

L∗ = (
w
α
)

1
α−1 (9)

Q∗ = (
w
α
)

α
α−1 (10)

π∗ = (
w
α
)

α
α−1

(1− α) (11)

2.2.3. Equilibrium

In equilibrium the commodity market clears, requiring:

Q∗ = ∑N
i=1 x∗i (12)

(In equilibrium the labor market also clears, requiring L∗ = ∑N
i=1 l∗i = ∑N

i=1 (1− L∗i ). Note that
we only need one market clearing condition to derive the equilibrium).

Combing (12) together with (6), (10) and (11), we have:

(w
α )

α
α−1 = ∑N

i=1 (1− σ)(w + π
N )Bi

= w(1− σ)NB + (1− σ)((w
α )

α
α−1 − w(w

α )
1

α−1 )B
= w(1− σ)NB + (1− σ)(w

α )
α

α−1 (1− α)B
= (1− σ)B(wN + (w

α )
α

α−1 (1− α))

(13)

Rearranging (13), we can solve for the equilibrium wage w:

w∗ = αα

(
(1− σ)NB

(1− (1− σ)(1− α)B)

)α−1

(14)

Substituting (14) into (11), we can derive the firm’s equilibrium profit:

π∗ = (1− α)

(
α(1− σ)NB

(1− (1− σ)(1− α)B)

)α

(15)
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Similarly, substituting (14) and (15) into (6) and (7) respectively, we can derive the individual
consumer’s equilibrium consumption level and labor supply:

x∗i =
Bi

NB

(
α(1− σ)NB

1− (1− σ)(1− α)B

)α

(16)

L∗i = (1− σ)Bi + ((1− σ)Bi − 1)
(1− σ)(1− α)B

1− (1− σ)(1− α)B
(17)

Note that since 0 ≤ Li ≤ 1, it must be that for any i,

(1− α)B ≤ Bi ≤
1

1− σ
(18)

Substituting (14) into (10), we can solve for the equilibrium commodity supply:

Q∗ =
(

α(1− σ)NB
1− (1− σ)(1− α)B

)α

(19)

Substituting (14) into (9), we can also solve for the equilibrium labor demand:

L∗ =
α(1− σ)NB

1− (1− σ)(1− α)B
(20)

We describe the general equilibrium of this production economy in the following proposition.

Proposition 1. Suppose S(ni) = ni and condition (18) holds. In this N-consumer 1-firm production
economy, where consumer’s problem is specified by (1) and firm’s problem is specified by (8), the equilibrium
(x∗i , L∗i ; Q∗, L∗; w∗) uniquely exists and is determined by (16), (17), (19), (20), and (14).

2.3. Applications

In this subsection, keeping other parameters fixed (σ = ρ = 0.5, N = 8), we consider four different
network structures (empty, ring, star, core-periphery) by three different production technologies
(α = 0.3, 0.5, 0.7), and study how the social network effect and the technology effect shape the general
equilibrium pattern.

The four network structures are described in Figure 1, where in the empty network every consumer
is isolated from others (without any neighbor), in the ring network every consumer is connected to
two other consumers, in the star network seven consumers (2 ≤ i ≤ 8) have one common neighbor
(consumer 1), and in the core-periphery network, four consumers (1 ≤ i ≤ 4) have four neighbors and
the other four consumers (5 ≤ i ≤ 8) have only one neighbor.

For the parameters σ = ρ = 0.5, N = 8, we assume these values by following Ghiglino and Goyal
(2010) [12]. In addition, since σ measures the importance of leisure relative to consumption in the
utility, σ = 0.5 represents the case where leisure and consumption have an equal weight in consumer’s
utility function. Since ρ captures consumers’ incentive to keep up with the neighbors, ρ = 0.5 describes
the case where such an incentive is moderate. We set N = 8 so that the network structures we consider
can be rich enough without becoming too complex.

For the production technology parameter α, we consider three values in the paper: α = 0.3, 0.5, 0.7.
Since α lies in (0, 1), the benchmark case we consider is to set α at the middle point of the (0, 1) interval,
that is α = 0.5. Note that in order to have a sensible equilibrium, the parameters must satisfy condition
(18), that is (1− α)B ≤ Bi ≤ 1

1−σ . Given that σ = 0.5, condition (18) becomes (1− α)B ≤ Bi ≤ 2. Note
that for each of the four network structures we consider, Bi ≤ 2 holds for every agent in the network;
simple calculations provide the following results: (1) for the empty network, Bi = 1, ∀i; (2) for the ring
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network, Bi =
4
3 , ∀i; (3) for the star network, Bi =

{
126
101 , 150

101

}
, ∀i; (4) for the core-periphery network,

Bi =
{ 66

53 , 78
53
}

, ∀i. Thus, we only need to make sure that ∀i, (1− α)B ≤ Bi holds for the values of α we
choose, which is equivalent to (1− α)B ≤ miniBi. It is easy to see that the lower the value of α, the
less likely can (1− α)B ≤ miniBi hold. Therefore, we choose a relatively safe lower bound for the low
value of α, that is α = 0.3. By assuming that the upper bound and the lower bound have an equal
distance to the benchmark case α = 0.5, we choose α = 0.7 as the high value of α.
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2.3.1. Empty Network

For the empty network, when α = 0.3, the equilibrium is characterized by profile
(0.15, 0.23; 1.2, 1.84; 0.2; α = 0.3), where the first entry indicates the homogeneous individual
consumption level, the second entry indicates the homogeneous individual labor supply, the third
entry is aggregate consumption, the fourth entry is aggregate labor supply, the fifth entry is wage,
and the last entry denotes the technology parameter. When α = 0.5, the equilibrium is characterized
by profile (0.20, 0.33; 1.6, 2.64; 0.31; α = 0.5). When α = 0.7, the equilibrium is characterized by profile
(0.29, 0.41; 2.32, 3.28; 0.49; α = 0.7).

2.3.2. Ring Network

For the ring network, when α = 0.3, the equilibrium is characterized by profile
(0.17, 0.37; 1.36, 2.96; 0.14; α = 0.3), where every entry has the same meaning as for the empty network.
When α = 0.5, the equilibrium is characterized by profile (0.25, 0.50; 2.00, 4.00; 0.25; α = 0.5). When
α = 0.7, the equilibrium is characterized by profile (0.37, 0.58; 2.96, 4.64; 0.44; α = 0.7).

2.3.3. Star Network

For the star network, when α = 0.3, the equilibrium is characterized by profile
((0.20, 0.17), (0.53, 0.32); 1.37, 2.77; 0.15; α = 0.3), where the first entry indicates heterogeneous
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individual consumption levels, the second entry indicates heterogeneous individual labor supplies,
the third entry is the aggregate consumption, the fourth entry is the aggregate labor supply,
the fifth entry is the wage, and the last entry denotes the technology parameter. When α = 0.5,
the equilibrium is characterized by profile ((0.28, 0.24), (0.62, 0.45); 1.96, 3.77; 0.26; α = 0.5). When
α = 0.7, the equilibrium is characterized by profile ((0.41, 0.35), (0.68, 0.53); 2.86, 4.39; 0.45; α = 0.7).

2.3.4. Core-Periphery Network

For the core-periphery network, when α = 0.3, the equilibrium is characterized by profile
((0.19, 0.16), (0.50, 0.28); 1.40, 3.12; 0.14; α = 0.3), where every entry has the same meaning as for
the ring network. (When α = 0.3, the wage under the ring network is greater than the wage
under the core-periphery network, wr = 0.1390389170 > wc = 0.1356416276). When α = 0.5,
the equilibrium is characterized by profile ((0.27, 0.23), (0.60, 0.43); 2.00, 4.12; 0.25; α = 0.5). When
α = 0.7, the equilibrium is characterized by profile ((0.40, 0.34), (0.67, 0.53); 2.96, 4.80; 0.44; α = 0.7).

We summarize the equilibrium outcomes for the four types of network structures under three
different technology environments in Table 1.

Table 1. Equilibrium outcomes under four types of networks and three technology environments
(S(ni) = ni).

α
Empty Ring Star Core-Periphery

0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

High consumption
0.15 0.2 0.29 0.17 0.25 0.37

0.20 0.28 0.41 0.19 0.27 0.40
Low consumption 0.17 0.24 0.35 0.16 0.23 0.34

High labor
0.23 0.33 0.41 0.37 0.50 0.58

0.53 0.62 0.68 0.50 0.60 0.67
Low labor 0.32 0.45 0.53 0.28 0.43 0.53

Wage 0.2 0.31 0.49 0.14 0.25 0.44 0.15 0.26 0.45 0.14 0.25 0.44
Aggregate consumption 1.2 1.6 2.32 1.36 2.00 2.96 1.37 1.96 2.86 1.40 2.00 2.96

Aggregate labor 1.84 2.64 3.28 2.96 4.00 4.64 2.77 3.77 4.39 3.12 4.12 4.80

For each network structure, comparing the equilibrium outcomes among three scenarios with
different production technologies (α = 0.3, 0.5, 0.7), we have the following observation:

Observation 1: Under each of the four network structures, as the production technology improves
(α increases), the equilibrium wage increases, the equilibrium individual (and aggregate) consumption
increases, and the equilibrium individual (and aggregate) labor supply increases.

The intuition behind Observation 1 is the following. For a better technology, the marginal product
of labor will be higher, thus the equilibrium wage for labor will be higher. When the wage becomes
higher, consumers tend to consume more (especially due to social comparison) and have less leisure.
Since for a typical consumer leisure and labor supply add up to a constant level, less leisure implies
greater labor supply.

With each production technology, comparing the equilibrium outcomes among four different
network structures (empty, ring, star, core-periphery), we have the following observation:

Observation 2: With each of the three production technologies, as the total number of links in the
economy increases, the equilibrium wage decreases, the equilibrium aggregate consumption increases,
and the equilibrium aggregate labor supply increases.

The intuition behind Observation 2 is the following. For an economy with more links, due to
the social comparison preferences of “keeping up with the neighbors”, a higher level of aggregate
consumption will appear in equilibrium. Higher aggregate consumption requires higher output of
the production, which in turn determines a lower level of marginal product due to the assumption
of non-linear (indeed concave) production function. Since the wage measures the marginal product
level, this means the equilibrium wage will be lower. Given a lower wage, in order to have a higher
consumption level, consumers have to increase their labor supply.
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We can also compare the individual consumer’s behavior within a heterogenous network structure
(namely the ring network and the core-periphery network), and have the following observation:

Observation 3: With each of three production technologies, under either the ring network or the
core-periphery network, the more neighbors a consumer has, the higher individual consumption she
has, and the higher individual labor supply she provides.

The intuition behind Observation 3 is the following. For a given network structure, for those
consumers who have more links, the impact of the social comparison preferences of “keeping up with
the neighbors” on their utility is larger compared to those consumers who have fewer links. Such a
larger impact will lead to a higher individual consumption level for those consumers. Since the wage
rate is the same for all consumers, regardless of the number of their neighbors, in order to have a
higher consumption level, those with more neighbors must have higher labor supply compared to
those with fewer neighbors.

3. Discussion

3.1. No Effect of the Neighborhood Size

Now we consider the case where S(ni) = 1. This assumption captures the scenario where
consumers do not care about the size of their neighborhood and only the average consumption by
neighbors matters. Many scenarios where consumers care about their own income as well as how
their own income compares with the average income of people they are familiar with, can be modeled
under such an assumption.

A typical consumer i in this economy now faces the following optimization problem:

max{xi ,Li} ui = (hi − Li)
σ(xi + ρ(xi − 1

ni
∑

j∈N(i)
xj))

1−σ

s.t. xi ≤ wLi +
1
N π;

0 ≤ Li ≤ 1; xi ≥ 0.

(21)

Similar to the analysis in Section 2.2, applying the Lagrange multiplier method to the optimization
problem, we have the following Lagrange function:

`(Li, xi, λ) = (1− Li)
σ(xi + ρ(xi −

1
ni

∑
j∈N(i)

xj))
1−σ

+ λ(wLi +
π

N
− xi) (22)

Solving for the first order conditions, we can obtain the optimal consumption in matrix form:

X∗ = (1− σ)(w +
π

N
)B′ (23)

where B′ = (I − σρG′∗)−1 J and G
′∗
i = Gi/(1 + ρ)ni is the normalized version of Gi (We define G

′∗
i = 0

if ni = 0 (and Gi = 0), where 0 is the N × 1 column vector with all elements taking value of 0). Note
that G

′∗
i is different from G∗i , since G

′∗
i = Gi/(1 + ρ)ni while G∗i = Gi/(1 + ρni). Let B′ = 1

N ∑N
k=1 B′k,

so B′ measures the average centrality of the network structure when S(ni) = 1.
Now we can derive the optimal choice of a typical consumer i’s utility maximization problem

when S(ni) = 1:
x∗ i = (1− σ)(w +

π

N
)B′i (24)

L∗ i = (1− σ)B′i + ((1− σ)B′i − 1)
π

wN
(25)

Since the firm’s profit maximization problem is independent of the network structure, the analysis
remains the same for the case S(ni) = 1, compared to the case S(ni) = ni. Thus, when we use the
market clearing condition to pin down the equilibrium, we can simply substitute B′ for B and B′ for
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B in Equations (14)–(20) (equilibrium characterization when S(ni) = ni), in order to obtain all the
equilibrium outcomes for the case S(ni) = 1. Namely,

w∗ = αα

(
α(1− σ)NB′

(1− (1− σ)(1− α)B′)

)α−1

(26)

π∗ = (1− α)

(
α(1− σ)NB′

(1− (1− σ)(1− α)B′)

)α

(27)

x∗i =
B′i

NB′

(
α(1− σ)NB′

(1− (1− σ)(1− α)B′)

)α

(28)

L∗i = (1− σ)B′i + ((1− σ)B′i − 1)
(1− σ)B′

1− (1− σ)(1− α)B′
(29)

Q∗ =

(
α(1− σ)NB′

(1− (1− σ)(1− α)B′)

)α

(30)

L∗ =
α(1− σ)NB′

(1− (1− σ)(1− α)B′)
(31)

Note that since 0 ≤ Li ≤ 1, it must be that for any i,

(1− α)B′ ≤ Bi ≤
1

1− σ
(32)

We describe the general equilibrium of this production economy when S(ni) = 1 in the
following proposition.

Proposition 2. Suppose S(ni) = 1 and condition (32) holds. In this N-consumer 1-firm production
economy, where consumer’s problem is specified by (21) and firm’s problem is specified by (8), the equilibrium
(x∗i , L∗i ; Q∗, L∗; w∗) uniquely exists and is determined by (28), (29), (30), (31), and (26).

3.2. Nonlinear Effect of the Neighborhood Size

Now we consider the case where S(ni) =
√

ni. This assumption captures the scenario where
the marginal effect of the neighborhood size is positive but decreasing. Those scenarios where the
difference between a consumer’s own consumption and the average consumption of his/her friends
generates a diminishing marginal utility as the number of his/her friends increases, can be modeled
under such an assumption.

A typical consumer i in this economy now faces the following optimization problem:

max{xi ,Li} ui = (hi − Li)
σ(xi + ρ

√
ni(xi − 1

ni
∑

j∈N(i)
xj))

1−σ

s.t. xi ≤ wLi +
1
N π;

0 ≤ Li ≤ 1; xi ≥ 0.

(33)

Solving for the first order conditions, we can obtain the optimal consumption in matrix form:

X∗ = (1− σ)(w +
π

N
)B′′ (34)

where B′′ = (I − σρG′′ ∗)−1 J and G′′ ∗i = Gi/(
√

ni + ρni) is the normalized version of Gi. (We define
G
′∗
i = 0 if ni = 0 (and Gi = 0), where 0 is the N × 1 column vector with all elements taking value of



Mathematics 2018, 6, 162 11 of 14

0.). Note that G′′ ∗i is different from G∗i and G
′∗
i , since G′′ ∗i = Gi/(

√
ni + ρni) while G∗i = Gi/(1 + ρni)

and G
′∗
i = Gi/(1 + ρ)ni. Let B′′ = 1

N ∑N
k=1 B′′k , so B′′ measures the average centrality of the network

structure when S(ni) =
√

ni.
Similarly to the analysis in Section 3.1, we can simply substitute B′′ for B and B′′ for B in Equations

(14)–(20) to obtain all the equilibrium outcomes for the case S(ni) =
√

ni. Namely,

w∗ = αα

(
α(1− σ)NB′′

(1− (1− σ)(1− α)B′′ )

)α−1

(35)

π∗ = (1− α)

(
α(1− σ)NB′′

(1− (1− σ)(1− α)B′′ )

)α

(36)

x∗i =
B′′i

NB′′

(
α(1− σ)NB′′

(1− (1− σ)(1− α)B′′ )

)α

(37)

L∗i = (1− σ)B′′i + ((1− σ)B′′i − 1)
(1− σ)B′′

1− (1− σ)(1− α)B′′
(38)

Q∗ =
(

α(1− σ)NB′′

(1− (1− σ)(1− α)B′′ )

)α

(39)

L∗ =
α(1− σ)NB′′

(1− (1− σ)(1− α)B′′ )
(40)

Note that since 0 ≤ Li ≤ 1, it must be that for any i,

(1− α)B′′ ≤ Bi ≤
1

1− σ
(41)

We describe the general equilibrium of this production economy when S(ni) =
√

ni in the
following proposition.

Proposition 3. Suppose S(ni) =
√

ni and condition (41) holds. In this N-consumer 1-firm production
economy, where consumer’s problem is specified by (33) and firm’s problem is specified by (8), the equilibrium
(x∗i , L∗i ; Q∗, L∗; w∗) uniquely exists and is determined by (37), (38), (39), (40), and (35).

4. Conclusions

In this paper, we study a production economy where a representative firm hires labor to produce
a consumption good and consumers’ utility depends on their own leisure time, their own consumption
level, as well as their neighbor’s consumption level. We characterize the unique equilibrium for such
an economy and analyze examples with four network structures and three production technologies.
We also consider three different types of effects of the neighborhood size.

Our work contributes to the literature in three perspectives: First, we are among the first to
study the social interaction in a production economy with non-linear technology and various types
of effects of neighborhood size. It is noted that the last paragraph in Ghiglino and Goyal (2010) [12]
comments that: “We have focused on the case of pure exchange. The impact of social comparisons on
incentives, and the work leisure trade-off is worth studying . . . In future work we hope to explore
these ideas” [2]. By extending their framework, we are able to provide an answer to the question
they raised eight years ago by carefully studying the impact of social comparisons on a production
economy. Furthermore, we extend Alexeev and Chih’s (2015) [13] linear production technology to a
more general non-linear environment and consider three different types of effects of the neighborhood
size: linear effect, zero effect, and nonlinear effect. Such a generalization makes our study on social
comparisons more applicable to real-world situations.
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Second, we analyze how the equilibrium is affected by the change in production technology under
each of the four network structures (empty network, ring network, star network, and core-periphery
network). Our result shows that as the production technology improves, the equilibrium wage,
the equilibrium consumption and the equilibrium labor supply all increase. We also provide intuitive
explanations for this result, which very much reflects how technology advances improve people’s
living standard in modern society.

Third, we provide insights on how equilibrium changes when the network structure changes.
When the network becomes more complex in terms of having more links, we find that the equilibrium
wage drops while both the equilibrium aggregate consumption and the equilibrium labor supply
increase. The intuition behind this result is also provided. An implication from this observation is that
a society with more socially involved individuals tends to have more consumption, less leisure and
lower wages.

To better understand the role that social comparisons play in the production economy, there are
several potential directions for future work. In this paper we assume all agents are homogeneous
in terms of productivity, while an economy with heterogeneous agents may function differently.
We currently only consider the Cobb-Douglas utility function, whereas alternative preferences, for
example, CES (constant elasticity of substitution) utility function or Leontief utility function, may lead
to new results. Another direction may be to consider the interplay between social interactions and the
dynamic interactions between different generations.
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