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1. Introduction

The determination of free resolutions for polynomial modules is a fundamental task in
computational commutative algebra and algebraic geometry. Free resolutions are needed for derived
functors like Ext and Tor and many important homological invariants like the projective dimension or
the Castelnuovo-Mumford regularity are defined via the minimal resolution. Furthermore, already the
Betti numbers, which measure the size of the minimal free resolution, give valuable information about
the geometry and topology of varieties.

Unfortunately, resolutions are computationally rather expensive. A rough estimate says that a
resolution of length ` requires to compute ` Gröbner bases. In many situations, partial information
like the Betti numbers already suffice. However, all classical algorithms for the computation of
Betti numbers require to always determine a full resolution. Indeed, one can observe in computer
algebra systems like SINGULAR that computing the Betti numbers needs as much computation time as
computing a full resolution.

In the recent work [1], we developed a novel approach to this question consisting of a combination
of the theory of involutive bases—in the form of Pommaret bases—(see [2] for a general survey on
involutive bases) and of algebraic discrete Morse theory (see [3,4]). We also implemented it in the
COCOALIB [5]. To the best of our knowledge, this approach is the only one that is able to compute
(even individual) Betti numbers without first determining a full resolution. For most ideals, it is
therefore much faster than classical methods (see the detailed benchmarks given in [1,6]). Furthermore,
the new approach can be easily parallelised and scales much better with the problem size.

Because of these advantages, a generalisation of our approach to other situations is of great interest.
Furthermore, it should be noted that Pommaret bases exist only in generic coordinates. As a first step,
we extended it therefore to Janet bases [6], as these can be computed more efficiently and always exist.
While the proofs follow the same lines, the use of a different involutive division entailed the adaption
of many technical points. Furthermore, we are currently considering the use of alternative ideal bases
not necessarily coming from an involutive division, but inducing combinatorial decompositions of the
ideal with essentially the same properties. The development of a syzygy theory for such bases again
proceeds along the same ideas, but various proofs have to be modified in minor ways.

In a different line of work, we recently introduced the concept of a module marked on a
quasi-stable submodule which is very useful for the explicit determination of equations for Hilbert
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and Quot schemes [7,8]. The marking induces a combinatorial decomposition based on Pommaret
multiplicative variables, but this time the key issue is that the head terms are not chosen with respect
to a term order. Nevertheless, we showed that the most important results on resolutions presented [1]
still remain essentially true. Again the proofs follow the same basic ideas, but require smaller technical
modifications at some places.

This article represents a revised and expanded version of [9] which was presented at the conference
Computer Algebra in Scientific Computing. Its main objective is to unify all our above-mentioned works
in a general axiomatic framework. It centers about the novel concept of a resolving decomposition
of an ideal. It refines the classical Stanley decompositions by certain additional axioms implying the
existence of standard representations and normal forms. We then discuss how a free resolution and
Betti numbers can be determined from a resolving decomposition.

The goal of this unification is not the development of any new algorithms. In particular,
no algorithm for the construction of resolving decomposition will be presented. Instead, our results
should be considered as a “meta-machinery” which augments any concept of a basis that induces a
resolving decomposition with an effective syzygy theory. As already mentioned above, we applied
this “meta-machinery” already for the special case of Janet or Pommaret bases (including a concrete
implementation in the COCOALIB) [1,6]. The case of marked bases is considered in great detail in [7,8]
(the latter reference also describes a concrete implementation in COCOALIB for the case of ideals).

The article is structured as follows. The next section provides the definition of a resolving
decomposition and shows explicitly that all the cases mentioned above are contained in it. The third
section discusses the construction of a syzygy resolution out of a resolving decomposition and some of
its properties. In the fourth section, an explicit formula for the differential of this resolution is derived
by relating our construction with the work of Sköldberg [10]. Finally, some conclusions are given.

2. Resolving Decompositions

Throughout this article, we will use the following notations. Let k be a field and P = k[x]
the polynomial ring in the variable x = (x0, . . . , xn). We write T for the set of terms xµ ∈ P .
Let Pm

d =
⊕m

i=1 P(−di)e
(0)
i be a finitely generated free P-module with grading d = (d1, . . . , dm)

and free generators e(0)1 , . . . , e(0)m . A module U ⊆ Pm
d is called monomial module, if it is of the form

⊕m
k=1 J(k)e(0)k with each J(k) a monomial ideal in P . A module term (with index i) is a term of the form

xµe(0)i . If J ⊆ P is a monomial ideal, we denote by N (J) ⊆ T the set of terms in T not belonging to J.

In the case of monomial module U, we analogously write N (U) =
⋃m

k=1N (J(k))e(0)k . The support of
an element f ∈ Pm

d is the set supp(f) of all module terms appearing in f with a non-zero coefficient,

thus f = ∑xαe(0)iα
∈supp(f)

cαxαe(0)iα . If B is a set of homogeneous elements of degree s in Pm
d , we write

〈B〉k for the k-vector space generated by B in (Pm
d )s. For a module U ⊆ Pm

d , we denote by pd (U) the
projective dimension and by reg (U) the (Castelnuovo-Mumford) regularity of U.

Let B = {h1, . . . , hs} be a finite set of homogeneous elements in Pm
d . We need the following

data to define a resolving decomposition of the submodule U defined by B. For every generator
hi ∈ B, we choose a term xµi e(0)ki

∈ supp hi denoted by hm (hi) and call it the head module term of
hi. Furthermore, we define the head module terms of B by hm (B) :=

{
hm (h) | h ∈ B

}
and the head

module of U by hm (U) = 〈hmB〉. Obviously, the monomial module hm (U) depends on the choice of
both the generating set B and the head module terms hm (B). Furthermore, we assign to every head
module term hm(h) with h ∈ B a set of multiplicative variables XB(h) ⊆ x and denote by XB the set of
all these sets. Finally, we choose a term order ≺B on P s with s the number of generators in B.

Definition 1. The above introduced quadruple (B, hm (B), XB ,≺B) defines a resolving decomposition of a
submodule U ⊆ Pm

d , if the following five properties hold:

(i) U = 〈B〉.
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(ii) Let h ∈ B be an arbitrary generator. Each module term xµe(0)k ∈ supp(h) \ {hm(h)} must satisfy

xµe(0)k /∈ hm(U).
(iii) The assigned multiplicative variables induce direct sum decompositions of both the head module

hm(U) =
⊕
h∈B

k[XB(h)] · hm(h) (1)

and the module itself
U =

⊕
h∈B

k[XB(h)] · h . (2)

(iv) We have a direct sum decomposition (Pm
d )r = Ur ⊕ 〈N (hm(U))r〉k for all degrees r ≥ 0.

(v) Let {e(1)1 , . . . , e(1)s } denote the canonical basis of the free module P s. Given an arbitrary term xδ ∈ T
and an arbitrary generator hα ∈ B, we find for every term xεe(0)i ∈ supp(xδhα) ∩ hm(U) a unique

hβ ∈ hm(B) such that xεe(0)i = xδ′ hm(hβ) with xδ′ ∈ k[XB(hβ)] by (iii). Then the inequality

xδe(1)α �B xδ′e(1)β holds with respect to the term order ≺B .

In the sequel, we will always assume that (B, hm (B), XB ,≺B) is a resolving decomposition of
the finitely generated module U = 〈B〉 ⊆ Pm

d . In addition to the multiplicative variables, we define
for h ∈ B the non-multiplicative variables as XB(h) = {x0, . . . , xn} \ XB(h).

Remark 1. Resolving decompositions refine the classical concept of Stanley decompositions [11]. Indeed,
the equalities (1) and (2) simply represents Stanley decompositions of the head module of U and of U itself,
respectively. This observation makes it straightforward to compute the Hilbert functions of hm(U) and of U,
respectively. Since the two Stanley decompositions possess an identical structure, the arising Hilbert functions
trivially coincides. This fact represents a built-in term order free version of the well-known Macaulay theorem
for Gröbner bases—see e.g., [12]).

Condition (iii) implies the existence of a unique standard representation

f =
s

∑
α=1

Pαhα

with Pα ∈ k[XB(hα)] for every f ∈ U. Note that these representations are indeed unique due to the fact
that each coefficient may only depend on the multiplicative variables. Condition (iv) implies the existence of
unique normal forms modulo U for all homogeneous elements f ∈ Pm

d . Due to it, we find a unique coefficient
Pα ∈ k[XB(hα)] for each generator hα ∈ B such that f′ = f−∑s

α=1 Pαhα ∈ 〈N (hm(U))〉k. It also follows
trivially from (1) that for every generator in the basis B a different head module term is chosen.

For the goals of this article, the mere existence of normal forms suffices. Nevertheless, we remark
that Condition (v) entails that these normal forms can be effectively determined. The head terms and
multiplicative variables inherent to a resolving decomposition allows for the definition of a natural
reduction relation. If there exists a term xεe(0)i ∈ supp (f) ∩ hm (U) for some module element f ∈ Pm

d ,

then we find a unique head module term h ∈ hm(B) such that xεe(0)i = xδ hm(h) with xδ ∈ k[XB(h)]
and consequently a reduction f B−→ f− cxδh is possible for a suitably chosen scalar c ∈ k.

Lemma 1. For any resolving decomposition (B, hm (B), XB ,≺B) the transitive closure B−→∗ of the reduction

relation B−→ is Noetherian and confluent.

Proof. It is sufficient to prove that for every term xγe(0)k in hm(U), there is a unique g ∈ Pm
d such

that xγe(0)k
B−→∗ g and g ∈ 〈N (hm(U))〉. Since xγe(0)k ∈ hm(U), there exists a unique xδhα ∈ U such

that xδ hm(hα) = xγe(0)k and xδ ∈ XB(hα). Hence, xγe(0)k
B−→ xγe(0)k − cxδhα for a suitably chosen
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coefficient c ∈ k. Denoting again the canonical basis of P s by {e(1)1 , . . . , e(1)s }, we associate the term

xδe(1)α with this reduction step. If we could proceed infinitely with further reduction steps, then the
reduction process would induce a sequence of terms in P s containing an infinite chain which, by
Condition (v) of Definition 1, is strictly descending for ≺B . However, this is impossible, since ≺B is a

well-ordering. Hence B−→∗ is Noetherian. Confluence is immediate by the uniqueness of the element
that is used at each reduction step.

The following examples show that involutive and marked bases, respectively, do indeed induce
resolving decomposition as claimed in the introduction. In fact, one can say that the definition of
resolving decompositions evolved from an abstraction and combination of these two basic examples:
the emphasis on Stanley decompositions and unique normal forms represents a key feature of
involutive bases and the somewhat convoluted last condition in Definition 1 stems from the theory of
marked bases where it allows for the introduction of a Noetherian reduction relation without having
head terms selected by a term order. The cited literature implicitly provides many concrete instances of
resolving decompositions stemming either from involutive or marked bases. We refrain from repeating
them, as this is, at least in the first case, rather standard now.

Example 1. An involutive basis is a Gröbner basis with additional combinatorial properties (see [2] for a general
introduction and a survey of their basic theoretical and algorithmic properties). It is defined with respect to a
term order ≺ on the free module Pm

d and an involutive division L (see ([2], Definition 2.1)). Given a finite set
B ⊂ Pm

d of terms, an involutive division associates with each term in B a set of multiplicative variables. B is
an L-involutive basis, if it suffices to multiply each term with terms in each multiplicative variable to obtain
the whole module generated by B. The extension to general polynomial modules is straightforward using the
term order ≺ and normal form arguments. Note that the existence of Stanley decompositions induced by the
multiplicative variables is thus a central part of the definition of involutive bases.

Assume now that L is a continuous division,≺ an arbitrary term order and B ⊂ Pm
d a finite, L-involutively

autoreduced set ([2], Definition 5.8) which defines a strong L-involutive basis ([2], Definition 5.1) of the
polynomial submodule U ⊆ Pm

d it generates. We choose the head module hm(B) = {lt(h1), . . . , lt(hs)} via
the leading terms for the given term order ≺. The multiplicative variables XB are of course assigned according
to the involutive division L. Finally, we take for the term order ≺B the classical Schreyer order induced by B
and ≺ as it appears in Schreyer’s theorem (see e.g., ([13], Chapt. 5, Thm. 3.3)). Then the quadruple (B, hm (B),
XB ,≺B) defines a resolving decomposition of U.

The proof that all conditions of Definition 1 are satisfied consists simply of recalling some basic results
about involutive bases. Condition (i) is entailed by ([2], Corollary 5.5). Condition (ii) follows from the fact that
the set B is assumed to be involutively autoreduced and Condition (iii) is a consequence of ([2], Lemma 5.12).
Furthermore, by ([2], Proposition 5.13), every module element f ∈ Pm

d has a unique normal form with respect to
U. Remark 1 discusses that this property is equivalent to the fourth condition. Finally, Condition (v) is satisfied
because of ([14], Lemma 5.5), asserting the existence of an L-ordering for any continuous division.

Example 2. The key point about marked modules and marked bases, introduced in the first version of [8], is that
no term order is used for the selection of the head terms. Given a basis B of the polynomial module U ⊂ Pm

d ,
one can in principle choose any term in the support of a generator as head term. However, in general such a choice
will not lead to a Noetherian reduction relation. Therefore, certain restrictions apply. The chosen head terms
must define a quasi-stable module which is equivalent to saying that they form a Pommaret basis of the head
module. This fact immediately entails that most polynomial modules do not possess a marked basis. Indeed, the
point of marked bases is not that one wants to compute one for a given module U ⊂ Pm

d , but that one prescribes
a quasi-stable module V ⊆ Pm

d by giving its Pommaret basis and then constructs all possible marked bases
where the set of head terms coincides with this Pommaret basis. This construction is a key step for obtaining
local equations for Hilbert and Quot schemes modulo coordinate transformations (see [7,8] for more details).
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More precisely, let H = {xµ1e(0)k1
, . . . xµs e(0)ks

} be a monomial Pommaret basis and V ⊆ Pm
d the

quasi-stable module generated byH. A marked basis B = {h1, . . . , hs} then firstly satisfies hm(hi) = xµi e(0)ki

and supp(hi − xµi e(0)ki
) ⊆ 〈N (V)

deg(xµi e(0)ki
)
〉k for each index 1 ≤ i ≤ s. Secondly, we require that the

homogeneous component N (V)r of degree r induces a k-linear basis of the factor module (Pm
d )r/〈B〉r for any

r ≥ 0. Note that this fact entails the decompositions (Pm
d )r = 〈B〉r ⊕ 〈N (V)r〉k for all r. For a more detailed

discussion of marked bases, we refer to ([8], Section 2). For the desired resolving decomposition, we take as
multiplicative variables XB simply the multiplicative variables of the Pommaret basisH. Recall that if 1 ≤ c ≤ n
is the minimal index value such that the multi index µ has a non-zero entry at position c (this value is called the
class of µ), then the variables x1, . . . , xc are Pommaret multiplicative for xµe(0)k . Finally, we choose as module
term order ≺B the standard TOP lift of the classical lexicographic order [15].

We claim now again that (B, hm (B), XB ,≺B) defines a resolving decomposition of U. Indeed, it follows
immediately by construction that the Conditions (i), (ii) and (iv) are satisfied. The first part of Condition (iii)
is a consequence of the fact that H = hm(B) is a Pommaret basis and the second part of the uniqueness of
the reduction process ([8], Lemma 5.1) (here it is crucial that in this particular case the reduction process is
essentially the Pommaret normal form algorithm, as otherwise no Noetherian reduction relation would arise).
Finally, Condition (v) is entailed by ([8], Lemma 3.6).

The main obstacle in checking whether or not a given quadruple (B, hm (B), XB ,≺B) defines a
resolving decomposition is Condition (v). It can be tackled with the help of a directed graph induced by
any decomposition (B, hm (B), XB ,≺B) satisfying the first four conditions of Definition 1. Its vertices
are given by the elements in B. If xj ∈ XB(h) for some h ∈ B, then, by definition, B contains a unique
generator h′ such that xj hm (h) = xµ hm (h′) with xµ ∈ k[XB(h′)]. In this case we include a directed
edge from h to h′. We call the thus defined graph the B-graph and show now that acyclicity of it is a
necessary condition for a resolving decomposition.

Proposition 1. The B-graph of a resolving decomposition (B, hm (B), XB ,≺B) is always acyclic.

Proof. Assume the B-graph was cyclic. Then we can find pairwise distinct generators hk1 , . . . , hkt ∈ B
plus a non-multiplicative variable xij ∈ XB(hm(hkj

)) and a multiplicative term xµj ∈ k[XB(hm(hkj
))]

for each j ∈ {1, . . . , t} such that

xi1 hm(hk1) = xµ2 hm(hk2),

xi2 hm(hk2) = xµ3 hm(hk3),
...

xit hm(hkt) = xµ1 hm(hk1).

Multiplying with some variables, we obtain the following chain of equations:

xi1 · · · xit hm(hk1) = xi2 · · · xit x
µ2 hm(hk2)

= xi3 · · · xit x
µ2 xµ3 hm(hk3)

...

= xit x
µ2 · · · xµt hm(hkt)

= xµ1 · · · xµt hm(hk1)

which implies that xi1 · · · xit = xµ1 · · · xµt . Furthermore, Condition (v) of Definition 1 implies in P s the
following chain:

xi1 · · · xit e
(1)
k1
�B xi2 · · · xit x

µ2e(1)k2
�B · · · �B xµ1 · · · xµt e(1)k1

.
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Because of xi1 · · · xit = xµ1 · · · xµt , we must have throughout equality entailing that k1 = · · · = kt

which contradicts our assumptions.

The following two results provide a converse of this proposition for the special case of a monomial
generating set B by showing that whenever the B-graph of such a set is acyclic, then there exists a
term order satisfying Condition (v).

Lemma 2. Let B be a generating set consisting only of module terms. Assume that for the chosen multiplicative
variables XB , the B-graph is acyclic. Then it is not possible to find a chain of equalities of the form

xν1hk1 = xµ2hk2 , (3a)

xν2hk2 = xµ3hk3 , (3b)
...

xνt hkt = xµ1hk1 (3c)

with multiplicative terms xµi ∈ k[XB(hki
)] and arbitrary terms xνi ∈ T. Furthermore, whenever an equality

xν hm(hi) = xµ hm(hj) holds with a multiplicative term xµ ∈ k[XB(hj)], then the B-graph contains a
directed path from hi to hj.

Proof. We show that any chain of the form (3) induces a cycle in the B-graph and thus violates
the assumed acyclicity. Without loss of generality, we may assume that gcd(xνi , xµi+1) = 1 and
xνi /∈ k[XB(hki

)]. This implies the existence of a non-multiplicative variable xi0 ∈ XB(hk1) dividing xν1 .
Set xρ0 = xν1 /xi0 and let the normal form of xi0hk1 be xτ1hl1 . Then xρ0 xτ1hl1 = xµ2hk2 . By assumption,
there exists a non-multiplicative variable xi1 ∈ XB(hl1) dividing xρ0 xτ1 . Now set xρ1 = xρ0 xτ1 /xi1 and
repeat the procedure.

Due to the fact that the B-graph is acyclic and that there are only finitely many terms xρ, xτ

and generators hl such that xρxτhl = xµ2 hk2 , we find after finitely many steps xlt and hlt such that
xlt ∈ XB(hlt) divides xρt−1 xτt and such that the normal form of xlt hlt is xµ2 hk2 . Now we do the same
for hk2 , hk3 , . . . at the end we reach again hk1 . Hence, we have constructed a cycle in the B-graph.

The final assertion follows immediately from the construction above.

Lemma 3. Let B = {h1, . . . , hs} be a generating set consisting only of module terms. Assume that for the
chosen multiplicative variables XB Conditions (i) to (iv) of Definition 1 are satisfied. Furthermore, let the
B-graph be acyclic and the elements of B be numbered in such a way that for any path from hi to hj in the

B-graph we always have i < j. If ≺B is an arbitrary term order on P s such that xαe(0)i �B xβe(0)j whenever
i < j, then (B, hm (B), XB ,≺B) is a resolving decomposition.

Proof. We first remark that a numbering of the set B as assumed in the Lemma always exists for an
acyclic graph. Now we only have to check Condition (v) of Definition 1. Take a generator hi ∈ B
and an arbitrary term xδ ∈ T. Then xδhi = xαhj for a suitable multiplicative term xα ∈ k[XB(hj)].
By Lemma 2, there exists a path from hi to hj in the B-graph and hence i < j. However, this implies

xδe(0)i �B xαe(0)j proving the missing condition in the definition of a resolving decomposition.

The last lemma provides us with a simple check whether a monomial generating set together with
the chosen assignment of multiplicative variables can be used for defining a resolving decomposition:
we only have to check whether the induced B-graph is acyclic. If this is the case, then we can choose any
term order satisfying the property of Lemma 3 to complete the definition of a resolving decomposition.
The existence of such a term order is obvious, as every POT lift fulfils this property [16].
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Example 3. Set P = k[x0, x1, x2, x3] with the standard grading and m = 1. Let U be the ideal generated by
x0x1, x2

1, x2x3, x3
3 in P . A Stanley decomposition of U is then given by the set

B = {h1 = x0x1, h2 = x0x1x2, h3 = x2
0x1, h4 = x2

1, h5 = x2
1x3,

h6 = x0x1x3, h7 = x2
1x2

3, h8 = x0x1x2
3, h9 = x3

3, h10 = x2x3}

with multiplicative variables

XB(h1) = ∅, XB(h2) = {x0, x2}
XB(h3) = {x0, x2}, XB(h4) = {x0, x1, x2}
XB(h5) = {x1}, XB(h6) = {x0, x1}
XB(h7) = {x1}, XB(h8) = {x0, x1}
XB(h9) = {x0, x1, x3}, XB(h10) = {x0, x1, x2, x3} .

The corresponding B-graph is

h2 //

��

h10

h1

??

//

  
88

h4 // h5

>>

//

��

h7

OO

//

��

h9

``

h3

OO

// h6 //

FF

h8.

>>

ii

and obviously acyclic. Hence we can choose an arbitrary term order ≺B as described in Lemma 3 to complete the
definition of a resolving decomposition (B, hm (B), XB ,≺B).

Example 4. It should be emphasised that not even in the monomial case does every Stanley decomposition induce
a resolving decomposition, i.e., we cannot always find a corresponding term order ≺B . A simple counterexample
can already be given based on the homogeneous maximal ideal U in P for n = 4 and the standard grading.
In ([17], Page 31), it is shown that a Stanley decomposition of U is defined by the set

B = {h1 = x0, h2 = x1, h3 = x2, h4 = x3, h5 = x4, h6 = x0x1x3, h7 = x0x2x3,

h8 = x0x2x4, h9 = x1x2x4, h10 = x1x3x4, h11 = x0x1x2x3x4}

with multiplicative variables

XB(h1) = {x0, x1, x2}, XB(h2) = {x1, x2, x3}
XB(h3) = {x2, x3, x4}, XB(h4) = {x0, x3, x4}
XB(h5) = {x0, x1, x4}, XB(h6) = {x0, x1, x2, x3}
XB(h7) = {x0, x2, x3, x4}, XB(h8) = {x0, x1, x2, x4}
XB(h9) = {x1, x2, x3, x4}, XB(h10) = {x0, x1, x3, x4}

XB(h11) = {x0, x1, x2, x3, x4} .

The B-graph corresponding to this basis is
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h4

��   

h6 // h10

��
h1

  

??

h2

��

oo h3oo
		

h11 h9

��
h5

ii

>>

h7

OO

h8oo

and obviously contains several cycles. Therefore, it is not possible to find a term order ≺B , which makes this
Stanley decomposition into a resolving one.

This phenomenon is typical for Stanley decompositions considered in the context of the Stanley conjecture,
i. e., for decompositions where one tries to maximise the Stanley depth which is given by the minimal number of
multiplicative variables of a generator (see [17] and references therein for more details on the Stanley conjecture).

3. The Syzygy Resolutions Induced by a Resolving Decomposition

Let now U = 〈B(0)〉 with B(0) = {h1, . . . , hs1} be a finitely generated graded submodule of Pm
d0

,

the graded free polynomial module with canonical basis {e(0)1 , . . . , e(0)m } and grading defined by the

vector d0 = (d(0)1 , . . . d(0)m ). We assume that we have somehow obtained a resolving decomposition
(B(0), hm (B(0)), XB(0) ,≺B(0)) of U. Our first step consists of showing that it induces in a natural way
a resolving decomposition (B(1), hm (B(1)), XB(1) ,≺B(1)) of the first syzygy module Syz(B(0)) ⊆ P s1 .
This result represents an extension or refinement of the classical Schreyer theorem providing a Gröbner
basis G(1) for the syzygy module Syz(G(0)) of a Gröbner basis G(0) (see e.g., ([13], Chapt. 5, Thm. 3.3)).

By the definition of a resolving decomposition, we have for every non-multiplicative variable xk

of each generator hα ∈ B(0) a unique standard representation xkhα = ∑s1
β=1 P(α;k)

β hβ corresponding to
the syzygy

Sα;k = xke(1)α −
s1

∑
β=1

P(α;k)
β e(1)β (4)

where {e(1)1 , . . . , e(1)s1 } denotes the canonical basis of the graded free polynomial module P s1
d1

with
grading defined by the degree vector d1 = (deg(h1), . . . , deg(hs)).

Lemma 4. Let S = ∑s1
α=1 Sαe(1)α be an arbitrary syzygy of B(0) with coefficients Sα ∈ P . Then we have

Sα ∈ k[XB(0)(hα)] for all 1 ≤ α ≤ s1, if and only if S = 0.

Proof. If S ∈ Syz(B(0)), then ∑s1
α=1 Sαhα = 0. By definition of a resolving decomposition, each f ∈ U

can be uniquely written in the form f = ∑s1
α=1 Pαhα with hα ∈ B(0) and Pα ∈ k[XB(0)(hα)]. In particular,

this holds for 0 ∈ U. Thus 0 = Sα ∈ k[XB(0)(hl)] for all α and hence S = 0.

We denote the non-multiplicative variables of the generator hα ∈ B(0) by {xiα1
, . . . , xiαrα

} where we

assume that iα
1 < · · · < iα

rα
. Then we take as B(1) the set

{
Sα;iαk

| 1 ≤ α ≤ s1, 1 ≤ k ≤ iα
rα

}
consisting of

all syzygies constructed as above from the products of generators by non-multiplicative variables.

Theorem 1. For each syzygy Sα;iαk
∈ B(1), we choose as head term

hm(Sα;iαk
) = xiαk

e(1)α

and as multiplicative variables

XB(1)(Sα;iαk
) = {x0, . . . xn} \ {xiα1

, . . . , xiαk−1
} .
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Furthermore, we take for ≺B(1) the Schreyer order associated to B(0) and ≺B(0) . Then the quadruple (B(1),
hm (B(1)), XB(1) ,≺B(1)) defines a resolving decomposition of the syzygy module Syz(B(0)).

Proof. We first show that (B(1), hm (B(1)), XB(1) ,≺B(1)) is a resolving decomposition of 〈B(1)〉. In a
second step, we prove that furthermore 〈B(1)〉 = Syz(B(0)).

The first condition of Definition 1 is trivially satisfied. By construction, it is obvious that

hm(〈B(1)〉) =
s1⊕

α=1

〈XB(0)(hα)〉e(1)α . (5)

It follows from (4) that any non head term xµe(1)l ∈ supp(Sα;k − xke(1)α ) must satisfy xµ ∈
k[XB(0)(hl)] and hence we find xµe(1)l /∈ hm(〈B(1)〉) implying Condition (ii). Furthermore, it is
obvious that

〈XB(0)(hα)〉e(1)α =
rα⊕

k=1

k[XB(1)(Sα,iαk
)]xiαk

e(1)α .

If we combine this equation with (5), then the first part of Condition (iii) follows immediately.
The second part of this condition is a bit harder to prove. We take an arbitrary module element

f ∈ 〈B(1)〉 and construct its standard representation using hm(〈B(1)〉). Assume first that the support of
f contains no multiple of a head term, i. e., supp(f) ∩ hm(〈B(1)〉) = ∅. Then all terms xεe(1)α ∈ supp(f)
in the support must satisfy xε ∈ XB(0)(hα). Therefore, we get that f = 0 due to Lemma 4.

We may thus assume that supp(f) ∩ hm(〈B(1)〉) 6= ∅ and we take the biggest term xµe(1)α in this
set with respect to the order ≺B(0) . By the already proven first part of Condition (iii), there must be
a syzygy Sα;i such that xi | xµ and xµ/xi ∈ k[XB(1)(Sα;i)]. We reduce f by this syzygy and obtain the
new module element

f′ = f− c
xµ

xi
Sα;i

for a suitable constant c ∈ k such that the term xµe(1)α is no longer in support of f′. Every term
xλe(1)β ∈ supp (f′) that is newly introduced by the subtraction of c xµ

xi
Sα;i and that also lies in hm(〈B(1)〉)

must be strictly less than the removed term xµe(1)α by Condition (v) of Definition 1 and by Equation (4)
defining the syzygy Sα;i.

We repeat this reduction procedure until we eventually obtain a module element f′′ such that
supp(f′′) ∩ hm (〈B(1)〉) = ∅. This will happen after a finite number of steps, since the reduced terms
forms a decreasing sequence with respect to the well-order ≺B(0) . By the same argument as above,
this implies that we must have f′′ = 0, which concludes the proof of this condition.

The above procedure provides us with an algorithm to compute arbitrary normal forms and
hence Condition (iv) follows immediately. For the last condition in Definition 1, we observe that the
head term xie

(1)
α is the leading term of the syzygy Sα;i for the module term order ≺B(0) . Thus the used

Schreyer order indeed satisfies Condition (v).

As is the case for the classical Schreyer theorem, this construction can now be iterated to obtain
resolving decompositions of the second and higher syzygy modules. This iteration thus leads
to a (generally non-minimal) free resolution of the submodule U where the constructed syzygies
define the columns of the matrices of the differentials. Note that for actually writing down all
these syzygies, we must compute many standard representations of products of generators by
non-multiplicative variables. This fact does not change compared to the classical situation (where one
considers S-polynomials instead of products by variables). However, since a resolving decomposition
contains much more information than a Gröbner basis, it is now possible to make at least precise
statements about the shape of the resolution. More precisely, it turns out that, without any further
computations, it is now possible to predict solely on the basis of the resolving decomposition (B(0),
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hm (B(0)), XB(0) ,≺B(0)) the head terms of all higher syzygies and thus in particular their numbers
corresponding to the ranks of the free modules appearing in the resolution. Furthermore, the length of
the resolution can also be easily read off from (B(0), hm (B(0)), XB(0) ,≺B(0)).

Theorem 2. Let (B(0), hm (B(0)), XB(0) ,≺B(0)) define a resolving decomposition of the graded submodule

U ⊂ Pm
d0

. Denote by β
(k)
0,j the number of generators h ∈ B(0) which are of degree j and have k multiplicative

variables. Furthermore, we write d = min {k | ∃j : β
(k)
0,j > 0} for the minimal number of multiplicative

variables of a generator. Then the submodule U possesses a graded free resolution of length n− d + 1 of the form

0→
⊕

j
P(−j)rn+1−d,j → · · · →

⊕
j
P(−j)r1,j →

⊕
j
P(−j)r0,j → U → 0 (6)

where the graded ranks of the appearing free modules are given by

ri,j =
n+1−i

∑
k=1

(
n + 1− k

i

)
β
(k)
0,j−i .

Proof. Iterating Theorem 1, we can construct a resolving decomposition (B(i), hm (B(i)), XB(i) ,≺B(i))
of the ith syzygy module Syzi(U) for any i. Given an index 1 ≤ l ≤ m and a non-multiplicative
variable xk ∈ XB(0)(hα(l)), we find |XB(1)(Sl;k)| < |XB(0)(hα(l))|.

If di denotes the minimal number of multiplicative variables assigned to a head module term
in hm (B(i)), then it is easy to see that the minimal number of multiplicative variables assigned to a
head term in hm (B(1)) is d + 1. This fact immediately entails the claimed length of the resolution (6).
Furthermore, it follows from our construction of the basic syzygies via products of generators by
non-multiplicative variables that deg(Sk;i) = deg(hk) + 1.

The assertion about the graded ranks of the modules is obtained by a combinatorial calculation.
We denote by β

(k)
i,j the number of generators in B(i) of degree j with k multiplicative variables. It follows

from our construction, that we have

β
(k)
i,j =

k−1

∑
t=1

β
(t)
i−1,j−1 ,

as each generator in B(i−1) of degree j− 1 with less than k multiplicative variables contributes one
generator in B(i) with k multiplicative variables. We will now show by induction how β

(k)
i,j can be

expressed in terms of β
(k)
0,j , namely that

β
(k)
i,j =

k−i

∑
t=1

(
k− t− 1

i− 1

)
β
(t)
0,j−i.

The base case i = 1 is trivial. For the inductive step, we first note that obviously β
(`)
i,j = 0 if

` < i + 1. Using this observation and the inductive hypothesis, we get

β
(k)
i+1,j =

k−1

∑
`=i+2

β
(`)
i,j−1 =

k−1

∑
`=i+2

`−i

∑
t=1

(
`− t− 1

i− 1

)
β
(t)
0,j−i =

k−i−1

∑
t=1

[
k−1

∑
`=i+t

(
`− t− 1

i− 1

)]
βt

0,j−i .

A shift of the index in the inner sum by t + 1 proves our claim via the following identity obtained
by summing over one column in the Pascal triangle:

k−t−2

∑
m=i−1

(
m

i− 1

)
=

(
k− t− 2

i

)
.
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For the ranks of the free modules, we compute

ri,j =
n+1

∑
k=1

β
(k)
i,j =

n+1

∑
k=1

k−i

∑
t=1

(
k− t− 1

i− 1

)
β
(t)
0,j−i =

n+1−i

∑
k=1

(
n + 1− k

i

)
β
(k)
0,j−i

where we used again the above identity for binomial coefficients for obtaining the last equality.

We now take a closer look at this iterative construction of the resolving decompositions (B(j),
hm (B(j)), XB(j) ,≺B(j)) for the syzygy modules Syzj(U). To define an element of B(j), we consider for

each generator hα ∈ B(0) all ordered integer sequences k = (k1, . . . , k j) with 0 ≤ k1 < · · · < k j ≤ n
of length |k| = j such that xki

∈ XB(0)(hα) for all 1 ≤ i ≤ j. We denote for any 1 ≤ i ≤ j by ki
the sequence obtained by eliminating ki from k. Then the generator Sα;k arises recursively from
the standard representation of xkj

Sα;kj according to the resolving decomposition (B(j−1), hm (B(j−1)),
XB(j−1) ,≺B(j−1)):

xkj
Sα;kj =

s1

∑
β=1

∑
l

P(α;k)
β;l Sβ;l. (7)

The second sum is over all ordered integer sequences l of length j− 1 such that for each entry `i
the variable x`i

is non-multiplicative for the generator hβ ∈ B(0). Denoting the free generators of the

free module which contains the jth syzygy module by e(j)
α,l , such that α ∈ {1, . . . , s1} and l is an ordered

subset of XB(0)(hα) of length j− 1 we get the following representation for Sα,k:

Sα;k = xkj
e(j)

α;kj
−

s1

∑
β=1

∑
l

P(α;k)
β;l e(j)

β;l.

An important consequence of our construction is that it allows us to bound certain homological
invariants of the submodule U in terms of data easily read off from the resolving decomposition (B(0),
hm (B(0)), XB(0) ,≺B(0)). Note, however, that in contrast to the situation in [14] where the resolution
induced by a Pommaret basis was considered, we obtain indeed only bounds, whereas a Pommaret
basis gives directly the exact values of the invariants.

Corollary 1. In the situation of Theorem 2, define

d = min
{

k | ∃j : β
(k)
0,j > 0

}
, q = deg (B(0)) = max

{
deg (h) | h ∈ B(0)

}
.

Then we obtain the following bounds for the projective dimension, the Castelnuovo-Mumford regularity and the
depth, respectively, of the submodule U:

pd(U) ≤ n + 1− d , reg(U) ≤ q , depth(U) ≥ d .

Proof. The first estimate follows immediately from the resolution (6) induced by the resolving
decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) of U. The last estimate is a simple consequence of the first
one and the graded form of the Auslander-Buchsbaum formula ([18], Ex. 19.8). By construction, the
module Syzi(B(0)) is generated by syzygies of degree less than or equal to q + i. Hence U is q-regular
which implies by definition the second estimate.

Remark 2. If one takes a closer look at the construction of the resolving decomposition (B(1), hm (B(1)), XB(1) ,
≺B(1)) of Syz(B(0)) provided in Theorem 1, then one notices that B(1) is always a Janet basis of Syz(B(0))
for the order ≺B(0) . This follows simply from the fact that the way in which we choose in Theorem 1 the
multiplicative variables for (B(1), hm (B(1)), XB(1) ,≺B(1)) is inspired by the definition of the Janet division.
Thus, if the resolving decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) stems from a Pommaret or a Janet basis,
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then all the resolving decompositions (B(i), hm (B(i)), XB(i) ,≺B(i)) are actually also induced by Pommaret or
Janet bases for a Schreyer order.

Gerdt [19] introduced a new involutive division called alex, since it is based on the anti degree lexicographic
order (a local term order for which terms of higher degree are always smaller than those of lower degree). It is
easy to see that a Janet basis which only consists of variables defines also an involutive basis for the alex division.
Hence, the same assertions are true for resolving decompositions induced by alex bases.

Such observations already demonstrate some advantages of the introduction of such a general framework,
like resolving decomposition. In our previous works on the free resolutions induced by an involutive basis,
we always needed the assumption that the used involutive division L is of Schreyer type to ensure that our
construction yields at each step again an L-involutive basis for the syzygy module for a suitable Schreyer order.
The construction in Theorem 1 always yields a Janet basis for Syz(B(0)), as in a resolving decomposition we can
choose the head terms and the multiplicative variables as we like. This allows us to extend the results of [14]
to involutive bases for arbitrary involutive divisions (not necessarily of Schreyer type), provided the L-graph
of the L-involutive basis is acyclic (which is guaranteed for continuous division). Note that, in contrast to the
old approach, the here presented construction will not necessarily lead to an L-involutive basis for each syzygy
module, but for most applications this fact is irrelevant.

4. Explicitly Determining the Differentials

As in the previous section, let Pm
d0

be a graded free module with free generators e(0)1 , . . . e(0)m and

a grading defined by the vector d0 = (d(0)1 , . . . d(0)m ). We will always work with a finitely generated
graded submodule U ⊂ Pm

d0
with a resolving decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) where

B(0) = {h1, . . . , hs1}.
While Theorem 2 provides us with the shape of the induced resolution 6, we cannot obtain explicit

expressions for the differentials in the resolution. As discussed above, we only now the head term
of each higher syzygy. Our goal in this section is to derive such explicit fomulae. We first describe
the complex underlying the resolution (6) in a different manner. For this purpose, we introduce two
free P-modules,W =

⊕s1
α=1 Pwα and V =

⊕n
i=0 Pvi, the ranks of which are determined by the size

of the resolving decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) and by the number of variables in the
polynomial ring P , respectively. Then we set Ci =W ⊗P ΛiV where Λ• denotes the exterior product.
A P-linear basis of Ci is provided by the elements wα ⊗ vk where vk = vk1 ∧ · · · ∧ vki

for an ordered
sequence k = (k1, . . . , ki) with 0 ≤ k1 < · · · < ki ≤ n. Then the free subcomplex S• ⊂ C• generated
by all elements wα ⊗ vk with k ⊆ XB(0)(hα) corresponds to (6), if we identify e(i+1)

α;k ↔ wα ⊗ vk.
Let ki+1 ∈ XB0(hα) \ k, then the differential comes from (7),

dS (wα ⊗ vk,ki+1
) = xki+1

wα ⊗ vk −∑
β,l

P(α;k,ki+1)
β;l wβ ⊗ vl ,

and thus requires the explicit determination of all the higher syzygies (7).
We will now present a method to directly compute the differential without computing higher

syzygies. It extends a construction of Sköldberg [10] using algebraic discrete Morse theory [3,4] and
generalises our results in [1,6] for the resolution induced by a Pommaret or a Janet basis.

Definition 2. The graded submodule U possesses head linear syzygies, if it has a finite presentation

0 −→ ker η −→ W =
s⊕

α=1

Pwα
η−→ U −→ 0 (8)

such that ker η can be generated by a finite set H = {h1, . . . , ht} where one can choose for each generator
hα ∈ H a head module term hm(hα) of the form xiwα.
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Sköldberg’s construction begins with the following two-sided Koszul complex (F , dF ) defining a
free resolution of U. Let V be a k-linear space with basis {v0, . . . , vn} and introduce the free P-module
Fj = P ⊗k ΛjV ⊗k U. Any k-linear basis {ma | a ∈ A} of U induces a P-linear basis of Fj consisting
of all elements of the form 1⊗ vk ⊗ma with ordered sequences k of length j. The differential dF of the
two-sided Koszul complex F is now defined as

dF (1⊗ vk ⊗ma) =
j

∑
i=1

(−1)i+1(xki
⊗ vki ⊗ma − 1⊗ vki ⊗ xki

ma
)
. (9)

Note that the second term on the right hand side is not yet expressed in the chosen k-linear basis
of U and that this resolution is generally of infinite size, as the index set A is almost always infinite.
For notational simplicity, we will drop in the sequel the tensor sign ⊗ and leading factors 1 when
writing elements of F•.

Sköldberg uses a specialisation of head linear terms. He requires that for a given term order
≺ the leading module of ker η in the presentation (8) must be generated by terms of the form xiwα.
In this case, he says that U has initially linear syzygies. Our definition is term order free. Furthermore,
Sköldberg considered exclusively the case that the presentation (8) is minimal. However, this represents
a severe restriction, as the existence of such presentations cannot be guaranteed. As his construction
needs this restriction only to ensure that the final resolution is minimal, we have dropped it.

For a module U with head linear syzygies via a presentation (8), we now construct a finite
resolution (G, dG) via a Morse matching. We call the variables

crit (wα) = {xj | xjwα ∈ hm (H)} ,

where H is chosen as in Definition 2, critical for the generator wα; the remaining non-critical ones
are contained in the set ncrit (wα). Then a k-linear basis of U is given by all elements xµhα with
hα = η(wα) and xµ ∈ k[ncrit (wα)]. Following [4], we define Gj ⊆ Fj as the free submodule generated
by those vertices vkhα where the ordered sequences k are of length j and such that every entry ki is
critical for wα. In particularW ∼= G0 with an isomorphism induced by wα 7→ v∅hα.

The description of the differential dG is based on reduction paths in the associated Morse graph
(for a detailed treatment of these notions, see [1,3,4]) and expresses the differential as a triple sum. If we
assume that, after expanding the right hand side of (9) in the chosen k-linear basis of U, the differential
of the complex F• can be expressed as

dF (vkhα) = ∑
m,µ,γ

Qk,α
m,µ,γvm(xµhγ) ,

then dG is defined by
dG(vkhα) = ∑

l,β
∑

m,µ,γ
∑
p

ρp
(
Qk,α

m,µ,γvm(xµhγ)
)

(10)

where the first sum ranges over all ordered sequences l which consists entirely of critical indices for
wβ. Moreover, the second sum may be restricted to all values such that a polynomial multiple of
vm(xµhγ) effectively appears in dF (vkhα) and the third sum ranges over all reduction paths p going
from vm(xµhγ) to vlhβ. Finally ρp is the reduction associated with the reduction path p satisfying

ρp
(
vm(xµhγ)

)
= qpvlhβ

for some polynomial qp ∈ P .

Remark 3. The explicit formula (10) with its complicated summation ranges obviously looks rather cumbersome
and does not appear to be very useful for practical purposes. However, this first impression is misleading.
In fact, (10) can be well exploited both theoretically and computationally. As shown by the COCOALIB
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implementations described in [1,6], it is for a computer rather straightforward to evaluate (10) for any concrete
submodule U. Moreover, the most valuable feature of (10) is that it provides an explicit expression for each entry
in the differential which is independent of all other entries of the differential. This observation will be the key for
the efficient determination of Betti numbers (even individual ones).

In the sequel, we will show that for a finitely generated graded module U with resolving
decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) the resolution constructed by Sköldberg’s method is
isomorphic to the resolution which is induced by the resolving decomposition, if we choose the head
linear syzygies properly. Firstly, we obtain the following trivial assertion.

Lemma 5. If the graded submodule U ⊆ P s1
d0

possesses a resolving decomposition (B(0), hm (B(0)), XB(0) ,
≺B(0)), then it has head linear syzygies. More precisely, we can set crit(wα) = XB(0)(hα), i. e., the critical
variables of the vector wα are simply the non-multiplicative variables of the generator hα = η(wα).

We will subsequently apply some lemmata from [1]. In this reference, they are formulated only
for the special case that the resolution is induced by a Pommaret basis. Nevertheless, if not explicitly
stated otherwise, we can still use them in our more general setting, as their proofs remain correct
also for arbitrary resolving decompositions. This is due to the fact that the proofs only require the
existence of unique standard representations and a separation of the variables into multiplicative
and non-multiplicative ones. In some proofs, the notion of the class of a generator in B(0) appears.
As already mentioned above, it is used to assign multiplicative variables for the Pommaret division.
When working with an arbitrary resolving decomposition, one must simply substitute it by the
maximal index of a multiplicative variable of the considered generator.

We could see above that the explicit description of the differential dG is based on reduction paths
in the associated Morse graph. We now take a closer look at them and their properties. Any reduction
path can be decomposed into so-called elementary ones which are always of length two. One can
distinguish three different types of elementary reductions paths ([1], Section 4). Those of type 0 are
irrelevant ([1], Lemma 4.5); the other ones have the form

vk(xµhα) −→ vk∪i(
xµ

xi
hα) −→ vl(xνhβ) .

Here k∪ i denotes the ordered sequence arising when i is inserted into the sequence k; likewise
k \ i stands for the sequence obtained by removing an index i ∈ k. Now we distinguish two further
types of elementary reduction paths depending on the form of the associated reduction.

Type 1: This is the case where l = (k ∪ i)\j, xν = xµ

xi
and β = α. Note that it is allowed that i = j.

We define ε(i; k) = (−1)|{j∈k|j>i}|. Then the corresponding reduction is

ρ(vkxµhα) = ε(i; k∪ i)ε(j; k∪ i)xjv(k∪i)\j
( xµ

xi
hα

)
.

Type 2: In this case l = (k∪ i) \ j and the term xνhβ appears in the involutive standard representation

of the product
xµxj

xi
hα with the coefficient λj,i,α,µ,ν,β ∈ k. By the construction of the Morse

matching, we now always find i 6= j. The corresponding reduction is

ρ(vkxµhα) = −ε(i; k∪ i)ε(j; k∪ i)λj,i,α,µ,ν,βv(k∪i)\j(xνhβ) .

This case distinction comes from the differential (9). Summands appearing in it possess one of
the following two possible forms: xki

vki ma or vki (xki
ma). Each of these summands corresponds to a

directed edge in the Morse graph ΓA
F• . Consider now an elementary reduction path
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vk(xµhα) −→ vk∪i
( xµ

xi
hα

)
−→ vl(xνhβ) .

If the second edge starts at a summand of the first resp. second form, then the elementary
reduction path is of type 1 resp. type 2.

For the proof of the existence of an isomorphism relating the resolution induced by a resolving
decomposition to the resolution constructed via the above outlined method of Sköldberg, we recall a
well-known result about the uniqueness of free resolutions.

Theorem 3. ([20], Theorem 1.6) Let U be a finitely generated graded P-module. If F is the graded minimal
free resolution of U and G an arbitrary graded free resolution of U, then G is isomorphic to the direct sum of F
and a trivial complex.

Theorem 4. Let U ⊂ Pm
d be a graded submodule. The graded free resolution F induced by a resolving

decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) of U and the graded free resolution G obtained by the method of
Sköldberg in the case that the head linear syzygies have been chosen in such a way that crit(hα) = XB(0)(hα)

for every generator hα ∈ B(0) are isomorphic.

Proof. It is not difficult to see that bases for the free modules in the resolution G constructed by
Sköldberg’s method consists of those generators vkhα with xk ∈ XB(0)(hα) for all indices k contained
in k. In the discussion following the proof of Theorem 2, we showed that bases for the modules in the
resolution F coming from the resolving decomposition are induced by the syzygies Sα,k and are thus
of the same cardinality. Hence, the two resolutions considered possess the same shape, meaning that
the homogeneous components of the contained free modules satisfy dimk (Fi)j = dimk (Gi)j. The
made assertion is now a trivial consequence of Theorem 3.

This proof already indicates that the two considered resolutions actually possess very similar
differentials. To deepen the comparison of the resolutions a bit more, we now recall a few further
simple observations made in [1]. It turns out that in the resolution G we may always choose as head
module terms for the higher syzygies exactly the same terms that appear as head module terms in
the resolving decompositions (B(i), hm (B(i)), XB(i) ,≺B(i)). In the case that we start with a resolving
decomposition induced by an involutive bases and then obtain involutive bases for all syzygy modules
(recall Remark 2), this entails that Sköldberg’s method also actually constructs involutive bases.

Lemma 6. ([1], Lemma 4.3) Given an index i such that xi ∈ crit (hα), let xihα = ∑s1
β=1 P(α;i)

β hβ be the

standard representation. Then we have dG(vihα) = xiv∅hα −∑s1
β=1 P(α;i)

β v∅hβ.

Our next statement may be interpreted in the following way. Assume that we choose in the Morse
graph a vertex vi(xµhα) having certain properties and then follow all possible reduction paths starting
at it. Then we will never reach a point where it becomes necessary to calculate a standard representation.
Assume furthermore that the chosen vertex possesses no critical (i.e., non-multiplicative) variables.
Then no such variables will arise while we follow a reduction path. If we want to generalise this
statement to higher homological degrees, then we must only replace the index conditions xi ∈ ncrit (hα)

and xj ∈ ncrit (hβ) by the conditions xk ∈ ncrit (hα) and x` ∈ ncrit (hβ) for all indices k and ` contained
in the ordered sequences k and l, respectively.

Lemma 7. ([1], Lemma 4.4) Assume that {xi} ∪ supp(xµ) ⊆ ncrit (hα). Then for any reduction path
p = vi(xµhα) → · · · → vj(xνhβ) we have xj ∈ ncrit (hβ). In particular, in this situation there is no
reduction path p = vi(xµhα)→ · · · → vkhβ with xk ∈ crit (hβ).
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Our final corollary now asserts that we can indeed choose in the resolution G head module terms
in such a way that there is a one-to-one correspondence to the head module terms in the resolution F .
It is a direct consequence of Lemma 7 and provides us with an alternative explicit proof of Theorem 4.

Corollary 2. Let k = (k1, . . . , k j) with xki
∈ crit hα for all i, then

xkl
vk\kl

hα ∈ supp(dG(vkhα)).

5. Conclusions

In this article, we introduced a framework that provides many different types of bases of graded
polynomial submodules with an effective syzygy theory. The key is less the properties of the bases
themselves and more the combinatorial decompositions induced by them via the choice of head terms
and multiplicative variables. Effectivity is guaranteed through the required term order.

Given any basis that induces a resolving decomposition in the sense of Definition 1, we obtain
with Theorem 1 a generalised version of the classical Schreyer theorem and iteration leads to a free
resolution. One should, however, note the following crucial difference. The classical Schreyer theorem
yields only “in principle” a resolution; without actually performing the computations required for
every iteration step, no information about the final resolution can be obtained. By contrast, Theorem 2
describes already the full shape of the final resolution based only on the resolving decomposition of
the given submodule. Thus we could give (usually quite sharp) bounds for important homological
invariants in Corollary 1. In fact, the numbers ri,j given in Theorem 2 can also be interpreted as upper
bounds for the Betti numbers.

In [1], we showed that with the help of Pommaret bases Sköldberg’s method for the construction
of an explicit resolution can be made fully effective and then yields essentially the same resolution, as
the one induced by the Pommaret basis. In Section 4, we extended these results to arbitrary resolving
decompositions and thus provided an approach for the explicit computation of free resolutions based
on such a decomposition.

In [1,6], we presented a method to effectively compute graded Betti numbers via the induced
free resolutions of Janet and Pommaret bases and the method of Sköldberg. It is well-known that one
needs only the constant part of an arbitrary free resolution to determine the Betti numbers via linear
algebra over the field k. We showed that the method of Sköldberg allows us to compute directly only
this constant part instead of the whole resolution which drastically improves the complexity of such
a computation. With this approach, it is even possible to determine a single Betti number without
computing the complete constant part of the free resolution. The reason for this is that Sköldberg’s
formula allows us to compute any entry of a differential in the free resolution independently of the rest
of the free resolution. Furthermore, the theorem about the induced free resolution gives us a formula
to compute the ranks of any homogeneous component appearing in the resolution. These methods are
also applicable for an arbitrary resolving decomposition due to the fact that we proved Theorem 2 and
the form of the differential (10).
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