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Abstract: The paper is devoted to inverse Stackelberg games with many players. We consider both
static and differential games. The main assumption of the paper is the compactness of the strategy
sets. We obtain the characterization of inverse Stackelberg solutions and under additional concavity
conditions, establish the existence theorem.
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1. Introduction

The paper is concerned with the inverse Stackelberg game, also known as the incentive problem.
In ordinary Stackelberg games, one player (called a leader) announces his strategy while the other
players (called followers) maximize their payoffs using this information. In the inverse Stackelberg
games the leader announces the incentive strategy, i.e., the reaction to the followers’ strategies ([1–5]
and reference therein). For dynamic cases, the reaction should be nonanticipative.

The inverse Stackelberg games appear in several models (see, for example, [6–8]). In games with
many followers, it is often assumed that followers play a Nash game ([6,9,10]). If the strategy sets are
normed space, then the incentive strategy can be constructed in the affine form (Ref. [11] for static
games and Ref. [12] for differential games).

In this paper, we consider a case where the control spaces of the players are metric compacts.
We consider both static and dynamic cases. Moreover, for the dynamic case, we apply punishment
strategies. The concept of punishment strategies was first used for the analysis of Stackelberg games
in the class of feedback strategies in Ref. [13]. The inverse Stackelberg solutions of two-person
differential games were studied via punishment strategies in the paper by Kleimonov [14]. In that
paper, the authors described the set of inverse Stackelberg solutions and derived the existence
result. In particular, the set of inverse Stackelberg payoffs is equal to the set of feedback Stackelberg
payoffs. Note that the incentive strategies considered in the paper by Kleimonov [14] use full memory,
i.e., the leader plays with the nonanticipating strategies proposed in the papers by Elliot and Kalton
[15] and Varaiya and Lin [16] for zero-sum differential games. The usage of the strategies depends
only on the current follower’s control which decreases the payoffs.

In this paper, punishment strategies are applied to static inverse Stackelberg games and to
differential inverse Stackelberg games with many followers. We obtain the characterization of the
inverse Stackelberg solution and under additional concavity conditions, establish the existence theorem.

The paper is organized as follows. Section 2 is concerned with the static inverse Stackelberg game
for a case with n followers. The differential game case is considered in Section 3. In Section 4, we prove
the existence theorem for the inverse Stackelberg solution of a differential game.
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2. Static Games

We denote the leader by 0. Further, we designate the followers by 1, . . . n. Player i has a set
of strategies (Pi) and a payoff function( Ji : P0 × P1 . . .× Pn → R). We assume that the sets (Pi) are
compact and the functions (Ji) are continuous.

The incentive strategy of the leader is a mapping:

α : ×n
i=1Pi → P0.

To define the inverse Stackelberg game, we specify the solution concept used by followers. We
suppose that the followers play the Nash game. Let

P = ×n
i=1Pi.

An element (u = (u1, . . . , un)) of P is a profile of the followers’ strategies. If u′i ∈ Pi then (u′i, u−i)

is the profile of strategies (u1, . . . , ui−1, u′i, ui+1, . . . , un). For simplification, we write Ji(u0, u) to denote
Ji(u0, u1, . . . , un). Furthermore, Ji(u0, u′i, u−i) , Ji(u0, (u′i, u−i)) is put. If α is an incentive strategy
of the leader, u is a profile of strategies of the followers. Then, Ji[α, u] , Ji(α[u], u), Ji[α, u′i, u−i] ,
Ji[α, (u′i, u−i)] are denoted. Further, let E(α) be a set of the followers’ Nash equilibria for a case where
the leader uses the incentive strategy α:

E(α) , {u : Ji[α, u] ≥ Ji[α, u′i, u−i] for any i = 1, n and any u′i ∈ Pi}.

Definition 1. The pair (α∗, u∗) is an inverse Stackelberg solution in the game with one leader and n followers
playing the Nash equilibrium if

(1) u∗ ∈ E(α).
(2) J0[α

∗, u∗] = maxα maxu∈E(α) J0[α, u].

The structure of the inverse Stackelberg solution is given in the following statements. Denote

B ,
{
(u\

0, u\) : for any i = 1, n, Ji(u
\
0, u\) ≥ max

ui
min

u0
Ji(u0, ui, u\

−i)

}
.

Lemma 1. The following properties hold true:

(1) If u\ ∈ E(α), then (α[u\], u\) ∈ B;
(2) If the strategy of the leader (u\

0), and the profile of the followers’ strategies (u\) are (u\, u\) ∈ B, then an
incentive strategy of the leader α exists such that u\ ∈ E(α).

Proof. To use the first statement of the lemma, ûi is picked to maximize

max
ui∈Pi

min
u0∈P0

Ji(u0, ui, u\
−i).

Using the definition of the set E(α), for u\
0 , α[u\] and each i = 1, . . . , n, we have

Ji(u
\
0, u\) = Ji[α, u\] ≥ Ji[α, ûi, u\

−i] = Ji(α(ûi, u\
−i), ûi, u\

−i)

≥ min
u0∈P0

Ji(u0, ûi, u\
−i) = max

ui∈Pi
min
u0∈P0

Ji(u0, ui, u\
−i).

Thus, (α[u\], u\) ∈ B.
Now, let us prove the second statement of the lemma.
For ui ∈ Pi let βi[ui] ∈ Argmin{Ji(u0, ui, u\

−i) : u0 ∈ P0}. Further, an arbitrary ū ∈ P is picked.
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Put

α[u1, . . . , un] ,


u\

0, ui = u\
i , i = 1, . . . n,

βi[ui], ui 6= u\
i , uj = u\

i , j 6= i,
ū, otherwise.

First, notice that α[u\] = u\
0. Further, if u ∈ P is such that ui 6= u\

i for some i and, for all other j,
uj = u\

j , then

Ji(α[u], u) = Ji(βi(ui), ui, u\
−i) ≤ max

ui∈Pi
min
u0∈P0

Ji(u0, ui, u\
−i) ≤ Ji(u

\
0, u\) = Ji[α, u\].

This proves the second statement of the lemma.

Theorem 1. (1) If (α∗, u∗) is an inverse Stackelberg solution, then the profile of strategies (u∗0 , u∗1) with
u∗0 = α∗(u∗1) maximizes the value J0(u∗0 , u∗1) over the set B. (2) If the profile of strategies (u∗0 , u∗1) maximizes
the value J0(u∗0 , u∗1) over the set B, then an incentive strategy (α∗) exists such that α∗[u∗1 ] = u∗0 , and (α∗, u∗1)
is an inverse Stackelberg solution. (3) If the function u′i 7→ Ji(u0, u′i, u−i) is quasi-concave for all u0, u−i, and
i = 1, . . . , n, then at least one inverse Stackelberg solution exists.

Proof. The proof of the first two statements directly follows from Lemma 1.
Let us prove the third statement of the theorem. Put

Ki(u1, . . . , un) , min
u0∈P0

Ji(u0, u1, . . . , ui).

The functions u′i 7→ Ki(u′i, u−i) are quasi-concave for all u−i. Therefore, a profile of followers’ strategies
(u\) exists such that all ui ∈ Pi Ki(u\) ≥ Ki(ui, u\

−i). Hence, we any pair (u0, u\) belongs to B.
Consequently, B is nonempty. Moreover, the set B is compact. This proves the existence of the pair
(u∗0 , u∗) maximizing J0 over the set B. The existence of inverse Stackelberg solution directly follows on
from the second statement of the theorem.

Example 1. Consider a game with two followers. Let the set of strategies of the players be equal to {0, 1}.
In addition, let the followers’ rewards for u0 = 0 be

a,b 0, 0
0, 0 b, a

where a > b > 0. Further, let the followers’ rewards for u0 = 1 be given by

0, 0 a, b
b, a 0, 0

Finally, we assume that the leader’s reward is equal to 1 when the followers outcome is (0, 0) and 0 in the
opposite case. One can consider this game as a variant of the battle of sexes with the leader who can shift the roles
of the players and win when there is no arrangement between the players.

It is easy to check that the set B is equal to the set of all strategies {0, 1}3. By maximizing the leader’s
payoff over this set we get that the outcome of the players is (1, 0, 0).

It is instructive to compare the result with the case where the leader declares his strategy first. Clearly,
in this case, whatever the leader’s strategy is, the leader’s outcome is 0, whereas the flowers’ Nash equilibrium
payoffs are (a, b) and (b, a).
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3. Inverse Stackelberg Solution for Differential Games

As above we assume that player 0 is a leader when players 1, . . . , n are followers. The dynamics
of the system is given by the equation

ẋ = f (t, x, u0, u1, . . . , un), t ∈ [0, T], x ∈ Rd, x(0) = x0, ui ∈ Pi. (1)

Player i wishes to maximize the payoff

σi(x(T)) +
∫ T

0
gi(t, x, u0, u1, . . . , un)dt.

The set
Ui = {ui : [0, T]→ Pi measurable}

is the set of open-loop strategies of player i. As above, the n-tuple of open-loop strategies of followers
(u = (u1, . . . , un)) is called the profile of strategies. To simplify notations, denote

f (t, x, u0, u) , f (t, x, u0, u1, . . . , un), g(t, x, u0, u) , g(t, x, u0, u1, . . . , un).

Further, put
U = ×n

i=1Ui.

If u0 ∈ U0, u = (u1, . . . , un) ∈ U , (t∗, x∗) ∈ [0, T] × Rd, then denote by x(·, t∗, x∗, u0, u) the
solution of initial value problem

ẋ(t) = f (t, x(t), u0(t), u1(t), . . . , un(t)), x(t∗) = x∗.

Put

zi(t, t∗, x∗, u0, u) =
∫ t

t∗
gi(t, x(t), u0(t), u1(t), . . . , un(t))dt.

If t∗ = 0, x∗ = x0 we omit the arguments t∗ and x∗. Let z(·, t∗, x∗, u0, u) =

(z0(·, t∗, x∗, u0, u), z1(·, t∗, x∗, u0, u), . . . , zn(·, t∗, x∗, u0, u)). We assume that the set of motions is closed,
i.e., for all (t∗, x∗) ∈ [0, T]×Rd,

cl{(x(·, t∗, x∗, u0, u), z(·, t∗, x∗, u0, u)) : u0 ∈ U0, u ∈ U}
= {(x(·, t∗, x∗, u0, u), z(·, t∗, x∗, u0, u)) : u0 ∈ U0, u ∈ U}.

Here, cl stands for the closure in the space of continuous functions from [0, T] to Rd.
We assume that the followers use open-loop strategies (ui ∈ Ui) when the leader’s strategy is a

nonanticipative strategy (α : U → U0). The nonanticipation property means that α[u](τ) = α[u′](τ) for
any u and u′ coinciding on [0, τ].

For u0 ∈ U0, u ∈ U , (t∗, x∗) define

Ji(t∗, x∗, u0, u) , σi(x(T, t∗, x∗, u0, u)) + zi(T, t∗, x∗, u0, u).

Further, put
Ji[t∗, x∗, α, u] , Ji(t∗, x∗, α(u), u).

We omit the arguments t∗ and x∗ if t∗ = 0, x∗ = x0.
We assume that the followers’ solution concept is Nash equilibrium. Let Ed(α) denote the set of

Nash equilibria in the case when the leader plays with the nonanticipating strategy α:

Ed(α) , {u ∈ U : Ji[α, u] ≥ Ji[α, u′i, u−i] for all u′i ∈ Ui and any i = 1, n}.
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Denote the set of nonanticpating strategies by Γ∗.

Definition 2. The pair consisting of a nonanticipative strategy of the leader (α∗) and u∗ ∈ U is an inverse
Stackelberg solution of the differential game if

(1) u∗ ∈ Ed(α
∗)

(2) J0[α
∗, u∗] = maxα maxu∈Ed(α)

J0[α, u].

The proposed definition is analogous to the definition of the inverse Stackelberg solution for static
games. The characterization in the differential game case is close to the characterization in the static
game case.

For a fixed profile of strategies of all players but the i-th u−i, one can consider the zero-sum
differential game of player 0 and player i. In this case, we assume that player 0 uses the nonaticipating
strategies on [t∗, T] which are mappings (βi : Ui → U0) that satisfy the feasibility condition: if u′i = u′′i
on [t∗, τ], then βi[u′i] = βi[u′′i ] on [t∗, τ]. Denote the set of feasible mappings βi : Ui → U0 by Γi[t∗].
The lower value of this game is

V−i (t∗, x∗, u−i) , min
βi∈Γi [t∗ ]

max
u′i∈Ui

Ji(t∗, x∗, βi[u′i], u′i, u−i).

Let

C = {(u0, u) ∈ U0 ×U : for any i = 1, n, t ∈ [0, T], and x(·) = x(·, u0, u)

Ji(t, x(t), u0, u) ≥ V−i (t, x(t), u−i)}.

Lemma 2. Let α be an incentive strategy of the leader. If u\ ∈ Ed(α), then (α[u\], u\) ∈ C.

Proof. Denote
u\

0 , α[u\].

We claim that
Ji[t, x\(t), u\

0, u\] ≥ Ji[t, x\(t), α[u′i, u\
−i], u′i, u\

−i] (2)

for any u′i ∈ Ui, u\
0 = α(u∗), x\ = x(·, α[u∗], u\). Assume the converse. This means that, for some u′i

and τ,
Ji[τ, x\(τ), u\

0, u\] < Ji[τ, x\(τ), α[u′i, u\
−i], u′i, u\

−i]. (3)

Let us introduce the control (u[
i ) by the following rule:

u[
i ,

{
u\

i (t), t ∈ [0, τ]

u′i(t), t ∈ [τ, T].

Further, denote
u[

0 , α[u[
i , u\
−i],

x[(·) = x(·, u[
0, (u[

i , u\
−i)).

We have

Ji[α, u[
i , u\
−i] = σ(x[(T)) +

∫ T

0
g(t, x[(t), u[

0, (u[
i , u\
−i))dt.

Since, for t ∈ [0, τ],

u[
i (t) = u\

i (t), u[
0 = u\

0(t) = α[u\](t), x[(t) = x\(t),
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and, for t ∈ [τ, T],
x[(t) = x(t, τ, x\(τ), u[

0, (u′i, u\
−i)),

Equation (3) implies the following inequality:

Ji[α, u[
i , u\
−i] >

∫ τ

0
gi(t, x\(t), u\

0, u\)dt + J[τ, x\(τ), α, u\] = J[α, u\].

This contradicts the assumption that u\ ∈ Ed(α).
The inequality (2) yields the inequality Ji[t, x\(t), u\

0, u\] ≥ V−i (t, x\(t), u\
−i).

Lemma 3. For any (u\
0, u\) ∈ C, a nonanticipative strategy of the leader (α) exists so that α(u\) = u\

0 and
u\ ∈ Ed(α).

Proof. Denote x\(·) = x(·, u\
0, u\).

Pick u ∈ U . Let i1, i2, . . . , in ∈ 1, n, and let τi1 , . . . , τin ∈ [0, T] satisfy the following properties

(1) i1, . . . , in is a permutation of 1, . . . , n;
(2) τi1 ≤ τi2 , . . . , τin ;
(3) for each k, tik is the greatest time such that uik = u\

ik
on [0, τik ].

Let yi1 = x\(τi1). The mapping βi1 ∈ Γi1 [τi1 ] exists such that

Vi(τi1 , yi1 , u\
−ii

) = max
ui1
∈Ui1

J(τi1 , yi1 , βi1 [ui1 ], ui1 , u\
−i1

].

Further, pick ū0 ∈ U arbitrarily.
Put

α[u] ,


u\

0, t ∈ [0, τi1 ];
βi1 [ui1 ], t ∈ (τi1 , τi2 ];
ū0, t ∈ (τi2 , T].


Notice that α[u\] = u\

0. Now let u = (u′i, \−i)Denote by τ the greatest time such that ui = u\
i on

[0, τ]. In this case, i1 = i, τi1 = τ, τik = T for k = 2, . . . , n. By construction, we have

Ji[α, ui, u\
−i] =

∫ τ

0
gi(t, x\(t), u\

0(t), u\(t))dt + Ji[τ, x\(t), α, ui, u\
−i]

=
∫ τ

0
gi(t, x\(t), u\

0(t), u\(t))dt + Vi(τ, x\(τ), u\
−i)

≤
∫ τ

0
gi(t, x\(t), u\

0(t), u\(t))dt + Ji(τ, x\(τ), u\
0, u\) = Ji[α, u\].

Theorem 2. (1) If the pair (α∗, u∗) is an inverse Stackelberg solution then (u∗0 , u∗) ∈ C, and (u∗0 , u∗1)
maximizes the value J0 over the set C for u∗0 = α∗[u∗]. (2) Conversely, if the pair (u∗0 , u∗1) maximizes the value
J0 over the set C, then an incentive strategy of the leader α∗ exists such that α∗[u∗1 ] = u∗0 and (α∗, u∗1) is an
incentive Stackelberg solution.

The theorem directly follows from the Lemmas 2 and 3.
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4. Existence of the Inverse Stackelberg Solution for Differential Game

In this section, we consider the differential game in the mixed strategies. This means that we
replace the system (1) with the control system described by the following equation:

ẋ(t) =
∫

P0

∫
P1

. . .
∫

Pn
f (t, x(t), u0, u1, . . . , un)µn(t, dun) . . . µ1(t, du1)µ0(t, du0). (4)

Here, µi(t, ·) are probabilistic measures on Pi.
The relaxation means that we replace the control spaces Pi with the control spaces rpm(Pi).

Therefore, the open-loop strategy of the i-th player is a weakly measurable function: µi : [0, T] →
rpm(Pi). This means that the mapping

t 7→
∫

Pi

φ(ui)µi(t, dui)

is measurable for any continuous function (ϕ ∈ C(Pi)). The set of open-loop strategies of the i-th
player is denoted byM.

Further, we use the following designations. Put

P , ×n
j=1Pj, P−i , ×j 6=iPj.

If mj ∈ rpm(Pj), j = 1, . . . , n, then denote m(du) = m1(du1) . . . mn(dun) with a slight abuse of
notation. Further, for ϕ ∈ C(P),∫

P
ϕ(u)m(du) =

∫
P1

. . .
∫

Pn
ϕ(u1, . . . , un)m1(du1) . . . mn(dun).

Analogously, we assume that m−i(du−i) , ×j 6=imj(duj). Thus,

∫
P−i

ϕ(u−i)m−i(du−i) =
∫

P1

. . .
∫

Pi−1

∫
Pi+1

. . .
∫

Pn
ϕ(u1, . . . , ui−1, ui+1, . . . , un)

m1(du1) . . . mi−1(dui−1)mi+1(dui+1) . . . mn(dun).

If (t∗, x∗) ∈ [0, T]×Rd, µ0 ∈ M0, µ1 ∈ M1,. . . , µn ∈ Mn, then we denote the solution of the
initial value problem for equation (4) and the position (t∗, x∗) by x(·, t∗, x∗, µ0, µ1, . . . , µn).

As above, we call the n-tuple µ = (µ1, . . . , µn) the profile of followers’ mixed strategies.
Denote the set of followers’ strategies by M. Put x(·, t∗, x∗, µ0, µ) = x(·, t∗, x∗, µ0, µ1, . . . , µn),
x(·, t∗, x∗, µ0, µ′i, µ−i) = x(·, t∗, x∗, µ0, (µ′i, µ−i)).

For the given position (t∗, x∗) ∈ [0, T]×Rd and measures µ0 ∈ M0, µ ∈ M, the corresponding
payoff of player i is equal to

Ji(t∗, x∗, µ0, µ) = σi(x(T, t∗, x∗, µ0, µ)) +
∫ T

t∗

∫
P0

∫
P

gi(t, x(t, t∗, x∗, µ0, µ), u0, u)µ0(t, du0)µ(t, du)dt.

As above, the mapping α :M→M0 satisfying the condition of feasibility (the equality µ′ and µ′′

on [0, τ] yields the equality α[µ′](t, ·) = α[µ′′](t, ·) on [0, τ]) is called the nonanticipative strategy. We
denote the set of nonanticipating strategies by Γ∗. Analogously, the set of mappings βi :Mi →M0

satisfying the feasibility property on [t∗, T] is denoted by Γi[t∗].
Further, we use the nonanticipating strategies of player i. This is a mapping γi : M0 → Mi

satisfying the feasibility property on [t∗, T]: if µ′0 = µ′′0 on [t∗, τ], then γi[µ
′
0] = γi[µ

′′
0 ] on [t∗, τ]. Let Ni

stand for the set of nonanticipating strategies of player i on [t∗, T]. By using these strategies, one can
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introduce the upper value function by the rule: if (t∗, x∗) ∈ [0, T]×Rd, µ1 ∈ M1,. . . , µi−1 ∈ Mi−1,
µi+1 ∈ Mi+1,. . . ,µn ∈ Mn, then

V+(t∗, x∗, µ−i) , max
βi∈Ni

min
µ0∈M0

Ji(t∗, x∗, µ0, γi[µ0], µ−i).

Generally,
V+(t∗, x∗, µ−i) ≥ V−(t∗, x∗, µ−i). (5)

Theorem 3. Assume that the following conditions hold true for each i = 1, n:

(1) x 7→ σi(x) is concave;
(2) gi(t, x, u0, u) = g0

i (t, x, u−i) + g1
i (t, u0, u−i) + g2

i (t, u) and the function x 7→ g0
i (t, x, u−i) is concave.

Then, an inverse Stackelberg solution exists in mixed strategies (α∗, µ∗).

Proof. Let us prove that the set C is nonempty.
Define the multivalued map G :M0 ×M(M0 ×M by the rule (µ′0, µ′) ∈ G(µ0, µ) if, for each

i = 1, n,
Ji(t, xi(t), µ′0, µ′i, µ−i) ≥ V−i (t, xi(t), µ−i).

Here, xi(·) = x(·, µ0, µi, µ−i).
The assumption of the theorem implies that the set G(µ0, µ) is convex for all µ0 ∈ M0, µ ∈ M.

Moreover, G has a closed graph. Let us prove the nonemptiness of G(µ0, µ).
Put µ′0 = µ0. From the Bellman principle, it follows that

V+
i (t∗, x∗, µ−i) = max

γi∈Ni
min

ν0∈M0

[
V(t+, x(t+, t∗, x∗, ν0, γi[ν0], µ−i))

+
∫ t+

t∗

∫
P0

∫
Pi

∫
P−i

gi(t, x(t+, t∗, x∗, ν0, γi(ν0), µ−i)), u0, u−i, u−i)

µ−i(t, du−i)γi[ν0](t, dui)ν0(t, du0)dt
]
. (6)

Let N be a natural number. Put tk
N = Tk/N. Let γk

i,N maximize the right-hand side at (6) for
t∗ = tk

N , t+ = tk+1
N , x∗ = yk−1

i,N . Here yk
i,N is defined inductively by the rule

y0
i,N = x0, yk

i,N = x(tk
i,N , tk−1

i,N , yk−1
i,N , µ0, γk−1

i,N [µ0], µ−i).

Put µ̃i,N(t, ·) = γk
i,N [µ0](t, ·) for t ∈ [tk−1

N , tk
N). Denote xi,N(·) = x(·, t0, x0, µ0, µ̃i,N , µ−i).

Notice that yk
i,N = xi,N(tk

N). We have, for k < l, the inequality

V+
i (tk

N , xi,N(tk
N), µ−i) ≤ V+

i (tl
N , xi,N(tl

N), µ−i)

+
∫ tl

N

tk
N

∫
P0

∫
Pi

∫
P−i

gi(t, xi,N(t), u0, ui, u−i)µ−i(t, du−i)µ̃i,N(t, dui)µ0(t, du0)dt.

Note that V+
i (tN

N , yN
i,N , µ−i) = σi(ξ

N
i,N).

Using the continuity of function V+
i , we get

V+
i (t∗, xi,N(t∗), µ−i) ≤ V+

i (T, xi,N(T), µ−i)

+
∫ T

t∗

∫
P0

∫
Pi

∫
P−i

gi(t, xi,N(t), u0, ui, u−i)µ−i(t, du−i)µ̃i,N(t, dui)µ0(t, du0)dt + δN . (7)

Here, δN → 0, as N → ∞.
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The sequence {µ̃i,Nr} converges to some µ′i ∈ Mi, as r → ∞. Therefore, xi,Nr (·) =

x(·, t0, x0, µ0, µ̃i,Nr , µ−i) tends to xi(·) = x(·, t0, x0, µ0, µ′i, µ−i). This and inequalities (5), (7) yield
the inequality for any t∗ ∈ [t0, T]:

V−i (t∗, xi(t∗), µ−i) ≤ V+
i (t∗, xi(t∗), µ−i) ≤ V+

i (T, xi(T), µ−i)

+
∫ T

t∗

∫
P0

∫
Pi

∫
P−i

gi(t, xi(t), u0, ui, u−i)µ−i(t, du−i)µ
′
i(t, dui)µ0(t, du0)dt.

Put µ′ , (µ′1, . . . , µ′n). We have (µ0, µ′) ∈ G(µ0, µ).
SinceM0 ×M is compact, and G is an upper semicontinuous multivalued map with nonempty

convex compact values, G admits the fixed point (µ∗0 , µ∗). Obviously, it belongs to C. The consequence
of the theorem follows from this and theorem 2.
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11. Zheng, Y.; Başar, T. Existence and derivation of optimal affine incentive schemes for Stackelberg games with

partial information: a geometric approach. Int. J. Control 1982, 35, 997–1011. [CrossRef]
12. Ehtamo, H.; Hämäläinen, R. Incentive strategies and equilibria for dynamic games with delayed information.

J. Optim. Theory Appl. 1989, 63, 355–369. [CrossRef]
13. Kleimonov, A. Nonantagonistic Positional Differential Games; Nauka, Ural’skoe Otdelenie: Ekaterinburg,

Russian, 1993.
14. Averboukh, Y.; Baklanov, A. Stackelberg Solutions of Differential Games in the Class of Nonanticipative

Strategies. Dyn. Games Appl. 2014, 4, 1–9. [CrossRef]
15. Elliot, R.; Kalton, N. The Existence of Value for Differential Games. J. Differ. Equ. 1972, 12, 504–523. [CrossRef]
16. Varaiya, P.; Lin, J. Existence of Saddle Points in differential game. SIAM J. Control Optim. 1967, 7, 141–157.

[CrossRef]

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0005-1098(82)90106-6
http://dx.doi.org/10.1016/0167-6911(83)90001-4
http://dx.doi.org/10.1007/s10957-009-9573-9
http://dx.doi.org/10.1007/s10957-009-9572-x
http://dx.doi.org/10.1155/2017/8656174
http://dx.doi.org/10.1016/j.automatica.2005.01.004
http://dx.doi.org/10.1080/00207178208922667
http://dx.doi.org/10.1007/BF00939802
http://dx.doi.org/10.1007/s13235-013-0077-8
http://dx.doi.org/10.1016/0022-0396(72)90022-8
http://dx.doi.org/10.1137/0307011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Static Games
	Inverse Stackelberg Solution for Differential Games
	Existence of the Inverse Stackelberg Solution for Differential Game
	References

