
mathematics

Article

A Within-Host Stochastic Model for
Nematode Infection

Antonio Gómez-Corral 1,* ID and Martín López-García 2 ID

1 Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Calle Nicolás Cabrera 13-15,
28049 Madrid, Spain

2 Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK;
m.lopezgarcia@leeds.ac.uk

* Correspondence: antonio.gomez@icmat.es

Received: 25 June 2018; Accepted: 11 August 2018; Published: 21 August 2018
����������
�������

Abstract: We propose a stochastic model for the development of gastrointestinal nematode infection in
growing lambs under the assumption that nonhomogeneous Poisson processes govern the acquisition
of parasites, the parasite-induced host mortality, the natural (no parasite-induced) host mortality
and the death of parasites within the host. By means of considering a number of age-dependent
birth and death processes with killing, we analyse the impact of grazing strategies that are defined
in terms of an intervention instant t0, which might imply a move of the host to safe pasture and/or
anthelmintic treatment. The efficacy and cost of each grazing strategy are defined in terms of the
transient probabilities of the underlying stochastic processes, which are computed by means of
Strang–Marchuk splitting techniques. Our model, calibrated with empirical data from Uriarte et al
and Nasreen et al., regarding the seasonal presence of nematodes on pasture in temperate zones
and anthelmintic efficacy, supports the use of dose-and-move strategies in temperate zones during
summer and provides stochastic criteria for selecting the exact optimum time instant t0 when these
strategies should be applied.

Keywords: host-parasite interaction; nematode infection; nonhomogeneous Poisson process; seasonal
environment; Strang–Marchuk splitting approach

1. Introduction

Gastrointestinal (GI) nematodes are arguably (see [1,2]) the major cause of ill health and poor
productivity in grazing sheep worldwide, especially in young stock. Productivity losses result from
both parasite challenge and parasitism, while regular treatment of the infections is costly in terms
of chemicals and labour. The relative cost of GI parasitism has become greater in recent decades
as the availability of effective broad-spectrum anthelmintics (see Chapter 5 of [1]) has enabled the
intensification of pastoral agriculture. To an extent, it appears the success of the various anthelmintic
products developed since the 1960s has created a rod for our own backs, particularly as resistance has
arisen to each active family in turn (see, for example, [3,4]). Options for the control of GI nematode
infections (which do not rely uniquely on the use of anthelmintics) include management procedures
(involving intervention with anthelmintics, grazing management, level of nutrition and bioactive
forages), biological control (with nematophagous fungi), selection for genetic resistance in sheep
(within breed/use of selected breeds) and vaccination. The article by Stear et al. [5] gives an overview
of alternatives to anthelmintics for the control of nematodes in livestock, and it complements and
extends other review articles by Hein et al. [6], Knox [7], Sayers and Sweeney [8] and Waller and
Thamsborg [9]. Moreover, we refer the reader to the article by Smith et al. [10] for stochastic and
deterministic models of anthelmintic resistance emergence and spread.
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The aim of this paper is to present a stochastic model for quantitatively comparing among various
grazing strategies involving isolation, movement or treatment of the host, but without incorporating the
risk of selecting for resistance. This amounts to the assumption that the nematodes in our model have
not been previously exposed to the anthelmintic treatments under consideration; see, for example, [11].
We point out that the effect of the resistance in the dynamics is usually limited by the rotation of
different anthelmintic classes on an annual basis (see [12,13]).

A wide range of mathematical models can be found in the literature for modelling the infection
dynamics of nematodes in ruminants. Originally, simple deterministic models were proposed in terms
of systems of ordinary differential equations describing the population dynamics of infected ruminants
and nematodes on pasture. By describing these dynamics in a deterministic way, the resulting
models were tractable from a mathematical and analytical point of view [14]. However, efforts
were soon redirected towards stochastic approaches given the importance of stochastic effects in
these systems [15]. These stochastic effects are related to, among others, spatial dynamics, clumped
infection events or individual heterogeneities related to the host’s immune response to infection [16].
Without any aim of an exhaustive enumeration, we refer the reader to [15,17,18] for deterministic
and stochastic models of nematode infection in ruminants for a population of hosts maintaining a
fixed density.

In this paper, we develop a mathematical model for the within-host GI nematode infection
dynamics, to compare the effectiveness and cost of various worm control strategies, which are related
to pasture management practices and/or strategic treatments based on the use of a single anthelmintic
drug. Control criteria are applied to the development of GI nematode parasitism in growing lambs.
Specifically, the interest is in the parasite Nematodirus spp. with Nematodirus battus, Nematodirus
filicollis and Nematodirus spathiger as the main species. The resulting grazing management strategies
are specified in terms of an intervention instant t0 that, under certain specifications, implies moving
animals to safe pastures and/or anthelmintic treatment. For a suitable selection of t0, we present two
control criteria that provide a suitable balance between the efficacy and cost of intervention. Our
methodology is based on simple stochastic principles and time-dependent continuous-time Markov
chains; see the book by Allen [19] for a review of the main results for deterministic and stochastic
models of interacting biological populations.

Our work in this paper is directly related to that in [20], where we examine stochastic models
for the parasite load of a single host and where the interest is in analysing the efficacy of various
grazing management strategies. In [20], we defined control strategies based on isolation and treatment
of the host at a certain age t0. This means that the host is free living in a seasonal environment,
and it is transferred to an uninfected area at age t0. In the uninfected area, the host does not acquire
new parasites, undergoes an anthelmintic treatment to decrease the parasite load and varies in its
susceptibility to parasite-induced mortality and natural (no parasite-induced) mortality. From a
mathematical point of view, an important feature of the analysis in [20] is that the underlying processes,
recording the number of parasites infesting the host at an arbitrary time t, can be thought of as
age-dependent versions of a pure birth process with killing and a pure death process with killing,
which are both defined on a finite state space.

Here, we complement the treatment of control strategies applied to GI nematode burden that
we started in [20] by focusing on strategies that are not based on isolation of the host; to be concrete,
our interest is in three grazing strategies that reflect the use of a paddock with safe pasture and/or
the efficacy of an anthelmintic drug. Seasonal fluctuations in the acquisition of parasites, the death of
parasites within the host and the natural and parasite-induced host mortality are incorporated into our
model by using nonhomogeneous Poisson processes. Contrary to [20], grazing management strategies
considered in this work lead to, instead of pure birth/death processes with killing, the analysis
of several age-dependent birth and death processes with killing. The efficacy and cost of each
grazing strategy are defined in terms of the transient probabilities of each of the underlying stochastic
processes; that is, the probability that the parasite load of the infected host is at any given level at each
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time instant, given that a particular control strategy has been applied at the intervention instant t0.
In order to compute these probabilities, we apply Strang–Marchuk splitting techniques for solving the
corresponding systems of differential equations.

The paper is organized as follows. In Section 2, we define the mathematical model used in various
grazing management strategies, derive the analytical solution of the underlying time-dependent
systems of linear differential equations and present two criteria allowing us to find the instant t0 that
appropriately balances effectiveness and cost of intervention in these grazing strategies. In Section 3,
we examine seasonal changes of GI nematode burden in growing lambs. Finally, concluding remarks
are given in Section 4.

2. Stochastic Within-Host Model and Control Criteria

In this section, we first propose a mathematical stochastic model for the within-host infection
dynamics by GI nematodes in growing lambs, define grazing management strategies and set down a
set of equations governing the dynamics of the underlying processes. We then present control criteria
based on stochastic principles. For the sake of brevity, we refer the reader to Appendix A where we
comment on the equivalence used in Table 1 of [20] in the identification of the degree of infestation,
level of infection, eggs per gram (EPG) value, number of L3 infective larvae in the small intestine
and the points system. Further details on the taxonomy and morphology of the parasite Nematodirus
spp. and the treatment and control of parasite gastroenteritis in sheep can be found in [1,2,21].

2.1. Grazing Management Strategies: A Stochastic Within-Host Model

We define the mathematical model in terms of levels of infection and let the random variable
M(t) record the infection level of the host at time t. From Table 1 of [20], this means that the degree
of infestation is null if M(t) = 0, light if M(t) = m with m ∈ {1, 2, 3}, moderate if M(t) = m with
m ∈ {4, 5, 6, 7}, high if M(t) = m with m ∈ {8, 9, 10, 11} and heavy if M(t) = −1. In the setting of GI
nematode parasitism, the value M0 = 11 amounts to a critical level that does not permit the host to
develop immunity to the nematode infection, in such a way that an eventual intervention is assumed
to be ineffective as the degree of infestation is heavy. Therefore, we let M(t) = −1 be equivalent to
the degree heavy of infestation (i.e., the number of L3 infective larvae in the small intestine is greater
than 12,000 worms) or the death of the host. Let S denote the set {0, 1, . . . , M0} of infection levels,
with M0 = 11.

We consider individual-based grazing strategies, which are related to a single lamb (host) that
is born, parasite-free, at time t = 0 and, over its lifetime, is exposed to parasites at times that form a
nonhomogeneous Poisson process of rate λ(t). At every exposure instant, the host acquires parasites,
independently of one exposure to another. It is assumed that the number of acquired parasites does
not allow the level M(t) of infection to increase more than one unit at any acquisition instant, which
is a plausible assumption in our examples where increments in the number of L3 infective larvae in
the small intestine are registered at daily intervals. Let δ(t) be the death rate of the host at age t in
the absence of any parasite burden, and assume that this rate is increased by an amount γm(t), which
is related to the parasite-induced host mortality as the infection level equals m at age t. For later
use, we define the functions λm(t) = (1− 1−1,m)λ(t) and δm(t) = (1− 1−1,m)(δ(t) + γm(t)) for levels
m ∈ {−1} ∪ S , where 1k,m denotes Kronecker’s delta.

At age τ, the interest is in the level M(τ) of infection as, under certain grazing assumptions,
intervention is prescribed at a certain age t0 < τ. Note that the host at age t0 can be dead or its degree
of infestation can be heavy (M(t0) = −1), and it can be alive and parasite-free (M(t0) = 0), or it can be
alive and infected (M(t0) = m with m ∈ {1, 2, . . . , M0}).

In analysing the process Z = {M(t) : 0 ≤ t ≤ τ}, we distinguish between the free-living interval
[0, t0) and the post-intervention interval [t0, τ]; for ease of presentation, we first digress to briefly
recall the analytic solution for ages t ∈ [0, t0) given in [20]. For a host that has survived at age t
with t < t0, the infection dynamics within the host are analysed in terms of transient probabilities
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πm(t) = P (M(t) = m|M(0) = 0), for levels m ∈ {−1} ∪ S . That is, πm(t) represents the probability
of the host being at infection level m at time t. These dynamics lead us to a pure birth process with
killing on the state space {−1} ∪ S (see Figure 1 in [20]), the age-dependent birth and killing rates of
which are given by λm(t) = λ(t) and δm(t) = δ(t) + γm(t), respectively, for m ∈ S , and where −1 is
an absorbing state. Expressions for πm(t) can be then evaluated following our arguments in Section 2.2
of [20].

Next, we focus on three grazing strategies that are defined in terms of the intervention instant t0.
This implies that, at post-intervention ages t ∈ (t0, τ], the rates λ(t), δ(t) and γm(t) are replaced by
functions λ′(t), δ′(t) and γ′m(t), respectively, allowing us to show concrete effects of an intervention
on the lamb and its environmental conditions. To be concrete, the functions λ′(t), δ′(t) and γ′m(t)
appropriately reflect the use of a paddock with safe pasture and/or the efficacy of an anthelmintic
treatment, in accordance with the following grazing strategies:

Strategy UM: The host is left untreated, but moved to a paddock with safe pasture at age t0.
The resulting process Z can be thought of as an age-dependent pure birth process with
killing, the birth rates of which are given by λm(t) = λ(t) if t ∈ [0, t0), and λ′(t)
if t ∈ [t0, τ], and killing rates are defined by δm(t) = δ(t) + γm(t) if t ∈ [0, t0)

and δ′(t) + γ′m(t) if t ∈ [t0, τ], for m ∈ S .
Strategy TS: The host is treated with anthelmintics and set-stocked at age t0. Let η′m(t) be the death

rate of parasites when the infection level of the host is m ∈ S at time t with t > t0.
In this case, Z can be seen as an age-dependent birth and death process with killing.
The birth and death rates are defined by λm(t) = λ(t) if t ∈ [0, τ], ηm(t) = 0 if t ∈ [0, t0)

and η′m(t) if t ∈ [t0, τ], for m ∈ S , respectively. Killing rates are defined identically to
the rates δm(t) in strategy UM.

Strategy TM: The host is treated with anthelmintics and moved to safe pasture at age t0. In a similar
manner to strategy TS, the process Z may be formulated as an age-dependent birth
and death process with killing. Birth, death and killing rates are identical to those in
strategy TS with the exception of λm(t) for time instants t ∈ [t0, τ], which has the form
λm(t) = λ′(t).

In strategies TS and TM, a single anthelmintic drug is used. In accordance with the empirical
data in [22], resistance is not incorporated into modelling aspects since τ = 1 year is assumed in
Section 3. The resulting models are thus related to the rotation of different anthelmintic classes on an
annual basis, which has been widely promoted and adopted as a strategy to delay the development of
anthelmintic resistance in nematode parasites; see, e.g., [12,13].

For the sake of completeness, we introduce the term scenario US to reflect no intervention, that is
the host is left untreated and set-stocked. Note that, in such a case, the process Z is an age-dependent
pure birth process with killing, and its birth and killing rates are specified by λm(t) = λ(t) and
δm(t) = δ(t) + γm(t) if t ∈ [0, τ], for m ∈ S . It follows then that the transient distribution of Z is
readily derived from [20] for time instants t ∈ (0, τ].

A slight modification of our arguments in solving Equations (1) and (2) of [20] allows us to derive
explicit expressions for the transient solution at post-intervention instants t ∈ (t0, τ] in grazing strategy
UM. For time instants t ∈ [t0, τ], we introduce the probability πUM

m (t0; t) = P(M(t) = m) of the
process being at infection level m at time t, given that strategy UM is implemented at the intervention
instant t0, and initial conditions πUM

m (t0; t0) = πm(t0), for m ∈ {−1} ∪ S . Then, the transient solution
at time instants t ∈ (t0, τ] can be readily expressed as:

πUM
m (t0; t) = e−Λ(t0;t)−∆m(t0;t)

(
πUM

m (t0; t0) + (1− 10,m)
m−1

∑
j=0

πUM
j (t0; t0)K

UM,j
m−1 (t0; t)

)
, (1)

where Λ(t0; t) =
∫ t

t0
λ′(u)du and ∆m(t0; t) =

∫ t
t0
(δ′(u) + γ′m(u))du. Starting from:
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KUM,m−1
m−1 (t0; t) =

∫ t

t0

λ′(u)e∆̃m−1(t0;u)du,

the functions KUM,j
m−1 (t0; t), for values 0 ≤ j ≤ m− 2, are iteratively computed as:

KUM,j
m−1 (t0; t) =

∫ t

t0

λ′(u)e∆̃m−1(t0;u)KUM,j
m−2 (t0; u)du,

with ∆̃m−1(t0; t) = ∆m(t0; t)− ∆m−1(t0; t).

2.2. Splitting Techniques

For grazing strategies TS and TM, the transient solution at time instants t ∈ (t0, τ] can be
numerically derived by using splitting techniques; see [23]. In a unifying manner, we may observe
that, for a host that has survived at age t with t0 < t < τ and M(t) = m ∈ S , the possible transitions
(in both strategies TS and TM) are as follows (Figure 1):

(i) m→ m + 1 at rate λm(t), for levels m ∈ {0, 1, . . . , M0 − 1};
(ii) m→ m− 1 at rate ηm(t), for levels m ∈ {1, 2, . . . , M0};
(iii) m→ −1 at rate δm(t), for levels m ∈ {0, 1, . . . , M0 − 1};
(iv) M0 → −1 at rate δM0(t) + λM0(t).

−1✖✕
✗✔

✻

0✖✕
✗✔

✁✁☛ δ0(t)

❘

λ0(t)

■
η1(t)

1✖✕
✗✔

✁✁☛ δ1(t)

✲
λ1(t)

■
η2(t)

❘

✙

· · · m − 1✖✕
✗✔

✁✁☛ δm−1(t)

❘

λm−1(t)

■
ηm(t)

m✖✕
✗✔

✁✁☛δm(t)

❘

λm(t)

■
ηm+1(t)

m + 1✖✕
✗✔

✁✁☛ δm+1(t)

✲
λm+1(t)

■
ηm+2(t)

❘

✙

· · · M0 − 1✖✕
✗✔

✁✁☛δM0−1(t)

❘

λM0−1(t)

■
ηM0(t)

M0✖✕
✗✔

❄δM0(t) + λM0(t)

Figure 1. State space and transitions at post-intervention instants t ∈ [t0, τ]. Grazing strategies TS
and TM.

Then, if we select a certain grazing strategy s with s ∈ {TS, TM}, the resulting probabilities
πs

m(t0; t) = P(M(t) = m), for m ∈ {−1} ∪ S and time instants t ∈ [t0, τ], satisfy the equality:

πs
−1(t0; t) = 1−

M0

∑
m=0

πs
m(t0; t),

and the time-dependent linear system of differential equations:

d
dt

Πs(t0; t) = B(t)Πs(t0; t), (2)

where Πs(t0; t) = (πs
0(t0; t), πs

1(t0; t), . . . , πs
M0

(t0; t))T , and B(t) is a tridiagonal matrix with entries:

(B(t))i,j =


−(λi(t) + δi(t) + (1− 10,i)ηi(t)), if 0 ≤ i ≤ M0, j = i,
ηi+1(t), if 0 ≤ i ≤ M0 − 1, j = i + 1,
λi−1(t), if 1 ≤ i ≤ M0, j = i− 1,
0, otherwise.
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Needless to say, initial conditions in Equation (2) are given by Πs(t0; t0) =

(π0(t0), π1(t0), . . . , πM0(t0))
T where the values for πm(t0) with m ∈ S do not depend on the

grazing strategy under consideration.
In principle, the system (2) of differential equations could be solved in many ways,

but Strang–Marchuk splitting techniques are concretely used in Section 3 to derive its solution.
Following the approach in [23], the original problem given by Equation (2) is first split into several
subsystems that are then solved cyclically one after the other. This procedure is particularly advisable
when tailor-made numerical methods can be applied for each split subsystem or when, as occurs in
our case, explicit solutions for the subsystems can be derived.

The approach in Section 1.3 of [23] is of particular interest when, for a certain splitting B(t) =
U(t) + V(t), the time-dependent linear systems of differential equations:

d
dt

Πs(t0; t) = U(t)Πs(t0; t), t0 ≤ t ≤ τ,

d
dt

Πs(t0; t) = V(t)Πs(t0; t), t0 ≤ t ≤ τ,

can be accurately and efficiently solved, which is our case here. In our examples in Section 3,
we consider the splitting B(t) = U(t) + V(t) with:

U(t) =


−(λ0(t) + δ0(t))

λ0(t) −(λ1(t) + δ1(t))
. . . . . .

λM0−1(t) −(λM0(t) + δM0(t))

 ,

V(t) =


0 η1(t)
−η1(t) η2(t)

. . . . . .
−ηM0−1(t) ηM0(t)

−ηM0(t)

 ,

and we evaluate numerically the transient solution πs
m(t0; t) at time instants t ∈ {t0, t0 + 1, . . . , τ} by

solving a sequence of four time-dependent linear subsystems of differential equations.
In order to determine the probabilities πs

m(t0; t0 + 1) for levels m ∈ S and a certain grazing
strategy s with s ∈ {TS, TM}, we first select the splitting time-step as ∆t = N−1 with N = 103,
and introduce the notation:

an = t0 + (n− 1)∆t, n ∈ {1, 2, . . . , N + 1}, (3)

bn = t0 + (n− 0.5)∆t, n ∈ {1, 2, . . . , N}. (4)

At step n with n ∈ {1, 2, . . . , N}, we solve the subsystems (S1)n, (S2)n, (S3)n and (S4)n cyclically
on successive intervals of length ∆t, using the solution of one subsystem as the initial condition of the
other one as follows:

Subsystem (S1)n ≡


d
dt Πs

1(an; t) = U(t)Πs
1(an; t), an ≤ t ≤ bn,

Πs
1(an; an) =

{
Πs(t0; t0), if n = 1,
Πs

4(bn−1; an), if 2 ≤ n ≤ N.
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Subsystem (S2)n ≡


d
dt Πs

2(an; t) = V(t)Πs
2(an; t), an ≤ t ≤ bn,

Πs
2(an; an) = Πs

1(an; bn).

Subsystem (S3)n ≡


d
dt Πs

3(bn; t) = V(t)Πs
3(bn; t), bn ≤ t ≤ an+1,

Πs
3(bn; bn) = Πs

2(an; bn).

Subsystem (S4)n ≡


d
dt Πs

4(bn; t) = U(t)Πs
4(bn; t), bn ≤ t ≤ an+1,

Πs
4(bn; bn) = Πs

3(bn; an+1).

This procedure results in the solution at t = t0 + 1, which is given by Πs(t0; t) = Πs
4(bN ; aN+1)

since aN+1 = t0 + 1. Then, we may proceed similarly in the numerical evaluation of the transient
solution at subsequent time instants t = t0 + k with k ≥ 2 and t0 + k ≤ τ, by replacing t0 by t0 + k in
(3) and (4), so that the solution of the previous subsystems at time instant t = t0 + k− 1 is now used as
the initial condition in the subsystem (S1)n at step n = 1. We refer the reader to [23] for qualitative
properties of the operator splitting approach and convergence order.

For grazing strategy s ∈ {TS, TM}, the entries πs
m(an; t), for levels m ∈ S , of the vector Πs

1(an; t)
are given by Equation (1) for time instants t ∈ [an, bn], with t0 replaced by an, and the function λ′(t)
replaced by λ(t) in the case TS.

The solution Πs
2(an; t) at time instants t ∈ [an, bn] has entries:

πs
m(an; t) = e−Hm(an ;t)

(
πs

m(an; an) + (1− 1m,M0)
M0

∑
j=m+1

πs
j (an; an)K

s,M0−j
m+1 (an; t)

)
, (5)

where Hm(an; t) = (1− 10,m)
∫ t

an
η′m(u)du and, starting from:

Ks,M0−(m+1)
m+1 (an; t) =

∫ t

an
η′m+1(u)e

H̃m+1(an ;u)du,

the functions Ks,M0−j
m+1 (an; t), for values m + 2 ≤ j ≤ M0, can be iteratively evaluated as:

Ks,M0−j
m+1 (an; t) =

∫ t

an
η′m+1(u)e

H̃m+1(an ;u)Ks,M0−j
m+2 (an; u)du,

with H̃m(an; t) = Hm−1(an; t)− Hm(an; t).
In a similar manner, the solution Πs

3(bn; t) at time instants t ∈ [bn, an+1] has the form (5), with an

replaced by bn. The entries πs
m(bn; t), for levels m ∈ S , of the solution Πs

4(bn; t) are given by Equation (1)
for time instants t ∈ [bn, an+1], with t0 replaced by bn and λ′(t) replaced by λ(t) in the case TS.

2.3. Control Criteria Based on Stochastic Principles

For grazing strategies UM, TS and TM, we define a control strategy by means of an age t0

and an intervention rule, which is related to a concrete infection level m′ ∈ {1, 2, . . . , M0} and the
resulting probability:

P≥m′(t) =
M0

∑
m=m′

πm(t).

This age-dependent probability allows us to determine a set I≥m′ of potential intervention instants
t ∈ (0, τ) satisfying the inequality P≥m′(t) ≥ p for a predetermined index p ∈ (0, 1); note that
I≥m′ = (0, τ) in the case p = 0 regardless of the threshold m′.
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It should be pointed out that, in grazing strategies UM and TM, maintaining safe-pasture
conditions in a paddock for the whole year does not seem feasible in practice. Moreover, treating the
host with anthelmintic drugs (cases TS and TM) within early days of the year will not yield optimal
results, since profits of treatment cannot be obtained before host exposure to infection; see Figure A1
in Appendix A. Thus, we focus on values p > 0 in such a way that, for a fixed pair (m′, p) with
p > 0, those instants t /∈ I≥m′ can be seen as either low-risk (states m ∈ {0, 1, . . . , m′ − 1}) or
extreme-risk (m = −1) intervention instants, and consequently, they are not taken into account in our
next arguments.

In carrying out our examples, we select the threshold m′ = 4 yielding a moderate degree
of infestation (according to Table 1 of [20]) and the index p ∈ {0.1, 0.2, . . . , 0.7}. Then, for each
resulting set I≥m′ of potential intervention instants, the problem is to find a single instant t0 ∈ I≥m′

that appropriately balances the effectiveness and cost of intervention in the grazing strategy under
consideration. In our approach, the effectiveness and cost functions can be seen as alternative measures
of the efficacy of an intervention, with a negative significance in the case of the cost function. To be
concrete, in an attempt to reflect the effect of the parasite burden on the lamb weight at age τ,
effectiveness is measured in terms of:

e f f s(t0; τ) =
3

∑
m=0

πs
m(t0; τ),

which corresponds to the probability that the degree of infestation at age τ is null or light as the
intervention is prescribed at age t0 in accordance with the grazing strategy s with s ∈ {UM, TS, TM}.
In contrast, we make the cost of intervention depend on the probability:

costs(t0; τ) =
11

∑
m=8

πs
m(t0; τ) + πs

−1(t0; τ)

that either the host does not survive or its degree of infestation is high at age τ. It is worth noting that
operational (financial) costs are not considered within the modelling framework, which will allow us
to derive a single intervention instant t0 regardless of concrete specifications for the cost of maintaining
safe-pasture conditions, or the cost of purchasing the anthelmintic drugs. Then, the proposed cost
function costs(t0; τ), which can be seen as a negative measure of efficacy, is related to productivity
losses corresponding to high levels of infection, and it may be advisable when the financial fluctuations
(in comparing various drugs, how prices of anthelmintics change) over time are not known in advance.

For a suitable choice of t0, the following control criteria are suggested:

Criterion 1: We select the intervention instant t0 verifying costs(t0; τ) = inf
{

costs(t; τ) : t ∈ J1
≥m′

}
,

where the subset J1
≥m′ consists of those potential intervention instants t ∈ I≥m′ satisfying

the inequality e f f s(t; τ) ≥ p1, for a certain probability p1 ∈ (0, 1).
Criterion 2: We select the intervention instant t0 such that e f f s(t0; τ) = sup

{
e f f s(t; τ) : t ∈ J2

≥m′

}
,

where the subset J2
≥m′ is defined by those time instants t ∈ I≥m′ verifying costs(t; τ) ≤ p2,

for a certain probability p2 ∈ (0, 1).

Our objective in Criterion 1 is thus to minimize the cost of intervention and to maintain a minimum
level of effectiveness, which is translated into the probability p1 ∈ (0, 1). In Criterion 2, the objective
is to maximize the effectiveness and to set an upper bound p2 ∈ (0, 1) to the cost of intervention.
An alternative manner to measure the effectiveness and cost of intervention at a certain age t0 < τ is
given by the respective values:
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τ−1Es(t0; τ) = τ−1
∫ τ

0

3

∑
m=0

π̃s
m(t0; u)du,

τ−1Cs(t0; τ) = τ−1
∫ τ

0

(
11

∑
m=8

π̃s
m(t0; u) + π̃s

−1(t0; u)

)
du,

where π̃s
m(t0; u) = πUS

m (u) if u ∈ (0, τ) in scenario US and π̃s
m(t0; u) = πs

m(u) if u ∈ (0, t0),
and πs

m(t0; u) if u ∈ [t0, τ) in grazing strategy s with s ∈ {UM, TS, TM}; then, values for τ−1Es(t0; τ)

and τ−1Cs(t0; τ) are related to the expected proportions of time that the degree of infestation is either
null or light, and either high or heavy, respectively.

3. Empirical Data, Age-Dependent Rates and Results

Age-dependent patterns are from now on specified to reflect that the parasite-induced death of
the host is negligible, and death rates in the absence of any parasite burden at free-living instants and
post-intervention instants are identical, that is δm(t) = δ(t) = δ′(t) for levels m ∈ S . Nevertheless,
we point out that, in a general setting, the analytical solution in Equations (1) and (2) allows δ′(t)
and γ′m(t) to be potentially different from δ(t) and γm(t), respectively, and it can be therefore applied
when, among other circumstances, maintaining identical environmental conditions at free-living
and post-intervention instants is not possible (i.e., different rates δ(t) and δ′(t)) and/or anthelmintic
resistance must be considered within the modelling framework (i.e., different functions γm(t) and
γ′m(t)). In our examples, we select δ(t) = δ′(t)=e−10.0t, from which it follows that the probability that,
in absence of any parasite burden, the host dies in the interval [0, τ] with τ = 1 year equals 9.5162%,
and the conditional probability that the host death occurs within the first 24 hours, given that it dies in
the interval [0, τ], equals 99.9995%.

In Section 3.1, the age-dependent rates λ(t) and ηm(t) defining grazing strategies UM, TS and
TM are inherently connected to the empirical data in [24] and Figure 2 of [22]. To be concrete, we first
use the results in Section 3.2 of [20] to specify the function λ(t) for time instants t ∈ [0, τ] in scenario
US and for time instants t ∈ [0, t0] in grazing strategies UM, TS and TM. Concrete specifications
for age-dependent patterns at time instants t ∈ (t0, τ] are then derived by suitably modifying these
functions under the distributional assumptions in the cases UM, TS and TM. Results yielding scenario
US are related to the study conducted by Uriate et al. [22], which was designed to describe monthly
fluctuations of nematode burden in sheep (Rasa Aragonesa female lambs) raised under irrigated
conditions in Ebro Valley, Spain, by using worm-free tracer lambs and monitoring the faecal excretion
of eggs by ewes. Specifically, the age-dependent rate λ(t) for ages t ∈ [0, τ] in scenario US and grazing
strategy TS and ages t ∈ [0, t0] in the cases UM and TM is obtained by following our arguments in
Section 3.2 of [20]. Therefore, the function λ(t) is related to increments in the number of L3 infective
larvae in the small intestine of the lamb (Figures 2–4, shaded area), and it is computed as a function
of the infection levels in Table 1 of [20]. To reflect the use of safe pasture in grazing strategies UM
and TM, it is assumed that λ′(t) = 0.25λ(t) for ages t ∈ (t0, τ], where λ(t) denotes the previously
specified function, which is linked to the original paddock. In grazing strategies TS and TM, the
empirical data in [22] are appropriately combined with those data in [24] on the clinical efficacy
assessment of ivermectin, fenbendazole and albendazole in lambs parasited with nematode infective
larvae; similarly to Section 3.2 in [20], the death rates of parasites in the cases TS and TM are then given
by η′m(t) = mη(t), for levels m ∈ S , where η(t) reflects the chemotherapeutic efficacy of a concrete
anthelmintic over time. More details on the specific form of λ(t) and η(t) can be found in Appendix A.

3.1. Preliminary Analysis

Because of seasonal conditions, a preliminary analysis of the probabilities e f f s(t0; τ) and
costs(t0; τ) in the cases UM, TS and TM is usually required to determine values p1 and p2 in such a
way that Criteria 1 and 2 lead us to non-empty subsets J1

≥m′ and J2
≥m′ of potential intervention instants
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t0 ∈ I≥m′ , for a predetermined threshold m′. A graphical representation of e f f s(t0; τ) and costs(t0; τ)

can help in measuring allowable values for the minimum value of effectiveness and the maximum
cost of intervention in terms of concrete values for p1 and p2, respectively. Figures 2 and 3 show how
e f f s(t0; τ) and costs(t0; τ) behave in terms of t0 for grazing strategies UM, TS and TM. We remark
here that, in scenario US, the effectiveness (respectively, cost of intervention) is given by ∑3

m=0 πUS
m (τ)

(respectively, ∑11
m=8 πUS

m (τ) + πUS
−1 (τ)), which is a constant as a function of t0. It is worth noting that

the value ∑3
m=0 πUS

m (τ) (respectively, ∑11
m=8 πUS

m (τ) + πUS
−1 (τ)) results in a lower bound (respectively,

upper bound) to the corresponding values of effectiveness (respectively, cost of intervention) in grazing
strategies UM, TS and TM.

Figure 2. Effectiveness e f f s(t0; τ) as a function of the intervention age t0 for τ = 1 year and increments
in the number of L3 infective larvae in the small intestine (shaded area, right vertical axis). Scenario
US, and grazing strategies UM, TS and TM with the anthelmintics ivermectin, fenbendazole and
albendazole (from top to bottom).
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The effectiveness and cost functions for strategies UM and TM are monotonic in one direction,
while the corresponding curves for strategy TS are largely in the opposite direction. This corroborates
that an early movement of the host to safe pasture results in a more effective (Figure 2) and less
expensive (Figure 3) solution regardless of other actions on the use of anthelmintic drugs, which is
related to the safe-pasture conditions having 75% less free-living L3 than the original paddock. On the
contrary, set-stocking conditions made an early intervention seem inadvisable and, due to the effect of
the therapeutic period (28 days), intervention should be prescribed by the end of November in the
case TS.

Figure 3. Cost costs(t0; τ) of intervention as a function of the intervention age t0 for τ = 1 year
and increments in the number of L3 infective larvae in the small intestine (shaded area, right vertical
axis). Scenario US, and grazing strategies UM, TS and TM with the anthelmintics ivermectin,
fenbendazole and albendazole (from top to bottom).
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Figure 4. Expected proportions τ−1Es(t0; τ) (top) and τ−1Cs(t0; τ) (bottom) versus the intervention
age t0 for τ = 1 year and increments in the number of L3 infective larvae in the small intestine
(shaded area, right vertical axis). Scenario US, and grazing strategies UM, TS and TM with the
anthelmintic fenbendazole.

As intuition tells us, grazing strategy TM results in the most effective procedure for every
time instant t0, regardless of the anthelmintic treatment. In Figures 2 and 3, it is also seen that
grazing strategy UM is preferred to grazing strategy TS when intervention is prescribed at ages
t0 < 293 (21 October), 285 (13 October) and 286 (14 October) as the respective anthelmintics ivermectin,
fenbendazole and albendazole are used in the case TS; on the contrary, the latter is preferred to the
former at intervention instants t0 > 293, 285 and 286. This behaviour is also noted in Figure 4, where we
make the effectiveness and cost of intervention amount to τ−1Es(t0; τ) and τ−1Cs(t0; τ), respectively;
in such a case, grazing strategy UM is preferred to grazing strategy TS for intervention instants
t0 < 278 (6 October) as the host is treated with fenbendazole, and the latter is preferred to the former
in the case of intervention instants t0 > 281 (9 October). For grazing strategy TS, it is seen in Figure 2
(respectively, Figure 3) that the effectiveness function e f f TS(t0; τ) (respectively, the cost function
costTS(t0; τ)) appears to behave as an increasing (respectively, decreasing) function of the intervention
instant t0 as t0 < 346 (13 December) and 338 (5 December) if the anthelmintic ivermectin and the
anthelmintics fenbendazole and albendazole are administered to the host (respectively, t0 < 309
(6 November), 308 (5 November) and 339 (6 December) if anthelmintics ivermectin, fenbendazole and
albendazole are used); moreover, its variation over time seems to be more apparent, in agreement
with three periods of maximum pasture contamination, with 42.0 L3 kg−1 DM (by mid-February), 68.0
L3 kg−1 DM (by 2 June) and 80.0 L3 kg−1 DM (between October and November) as maximum values
of infective larvae on herbage. Figure 2 (respectively, Figure 3) allows us to remark that, in comparison
with the case TS, these periods of maximum pasture contamination influence in an opposite manner
the effectiveness (respectively, cost of intervention) in grazing strategies UM and TM.
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3.2. Intervention Instants t0

In Table 1, we list the value of the effectiveness e f f s(t0; τ) and the cost costs(t0; τ) of intervention
for certain intervention instants t0 derived by applying Criteria 1 and 2 in grazing strategies UM,
TS and TM, for probabilities p1 ∈ {0.50, 0.60, 0.70} and p2 ∈ {0.15, 0.20, 0.25} and a variety of values
of the index p; in scenario US, effectiveness and cost are replaced by the probabilities ∑3

m=0 πUS
m (τ)

and ∑11
m=8 πUS

m (τ) + πUS
−1 (τ), respectively. A detailed discussion on the instants t0 in Table 1 and some

related consequences can be found in Appendix A.2. It can be noticed that the selection t0 = 273
(1 October), which is related to the index p = 0.1 in the case TM with the anthelmintic fenbendazole,
results in the minimum cost of intervention (0.09589, instead of 0.49951 in scenario US) and the
maximum effectiveness (0.79086, instead of 0.06072 in scenario US), and it can be thus taken as optimal
for our purposes. Moreover, the anthelmintic fenbendazole is found the most effective drug since the
highest values of e f f s(t0; τ) and the smallest values of costs(t0; τ) are observed in Table 1 for every
grazing strategy s ∈ {TS, TM} and fixed intervention instant t0.

Table 1. Effectiveness and cost of intervention. Scenario US and grazing strategies UM, TS and TM
with the anthelmintics ivermectin, fenbendazole and albendazole.

Strategy (s) Anthelmintic t0 Criteria e f f s(t0; τ) costs(t0; τ) τ−1Es(t0; τ) τ−1Cs(t0; τ)

US — — — 0.06072 0.49951 0.68645 0.14746
UM 170 1 & 2 0.54431 0.11049 0.79996 0.09726

274 2 0.45540 0.12524 0.76629 0.09983
281 2 0.38981 0.14216 0.74973 0.10267
286 2 0.32115 0.16811 0.73306 0.10715
290 2 0.26634 0.19763 0.72023 0.11233
298 2 0.20886 0.24130 0.70769 0.11984

TS ivermectin 358 2 0.41766 0.16608 0.69160 0.14217
fenbendazole 308 1 0.50340 0.12350 0.75871 0.10433

336 1 0.60161 0.13144 0.71941 0.12421
338 2 0.60604 0.13209 0.71613 0.12578

albendazole 313 1 0.50240 0.12842 0.74908 0.10793
338 2 0.57385 0.13407 0.71312 0.12626

TM ivermectin 170 1 & 2 0.73224 0.09721 0.86987 0.09525
274 1 & 2 0.71025 0.09797 0.82480 0.09580
281 1 & 2 0.69119 0.09877 0.81634 0.09602
286 1 & 2 0.66653 0.10011 0.80686 0.09644
290 1 & 2 0.64110 0.10197 0.79743 0.09713
298 1 & 2 0.61142 0.10528 0.78209 0.09911
308 1 & 2 0.56977 0.11374 0.76202 0.10372

fenbendazole 273 1 & 2 0.79086 0.09589 0.83891 0.09557
274 1 & 2 0.79080 0.09589 0.83820 0.09558
281 1 & 2 0.78559 0.09601 0.83107 0.09573
286 1 & 2 0.77604 0.09636 0.82304 0.09605
290 1 & 2 0.76467 0.09707 0.81476 0.09662
298 1 & 2 0.75182 0.09895 0.79922 0.09852
308 1 & 2 0.72721 0.10573 0.77734 0.10310

albendazole 272 1 & 2 0.78128 0.09605 0.83749 0.09558
274 1 & 2 0.78102 0.09606 0.83605 0.09560
281 1 & 2 0.77361 0.09623 0.82838 0.09576
286 1 & 2 0.76132 0.09666 0.81971 0.09610
290 1 & 2 0.74737 0.09747 0.81089 0.09671
298 1 & 2 0.73134 0.09945 0.79492 0.09867
308 1 & 2 0.70211 0.10641 0.77271 0.10336

Values for τ−1Es(t0; τ) and τ−1Cs(t0; τ) in Table 1 correspond to the expected proportions of time
that the host infection level M(t) remains in the subsets of levels {0, 1, 2, 3} and {8, 9, 10, 11} ∪ {−1},
respectively. It is remarkable to note that the maximum effectiveness τ−1Es(t0; τ) = 0.86987 (instead
of 0.68645 in scenario US) and the minimum cost of intervention τ−1Cs(t0; τ) = 0.09525 (instead of
0.14746 in scenario US) are both related to the selection t0 = 170 (19 June) in grazing strategy TM with
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the anthelmintic ivermectin. It should be noted that t0 = 170 results in the longest post-intervention
interval [t0, τ] in our examples; similarly to the case of control strategies based on isolation and
anthelmintic treatment of the host (see Section 3.3 in [20]), the maintenance of stable safe-pasture
conditions for a long period of time may often be difficult and highly expensive, so that the choice
t0 = 170 might be unsustainable for practical use.

An interesting question concerns the comparative analysis between the mass functions {πs
m(t0; τ) :

m ∈ {−1} ∪ S} of the parasite burden at age τ = 1 year in grazing strategies UM, TS and TM and the
corresponding mass function {πUS

m (τ) : m ∈ {−1} ∪ S} in the case of no intervention. In Figure 5,
we first focus on this question as intervention is prescribed at age t0 = 170 in grazing strategies
UM, TS and TM, with the anthelmintic drug ivermectin in the cases TS and TM. The movement of
the host to safe pasture (strategies UM and TM) at day t0 = 170 yields a significant decrease in the
probability that the host does not survive at age τ = 1 year (0.09528 and 0.09516 in the cases UM and
TM, respectively, instead of 0.15708 in scenario US), as well as an important decrease in the expected
degree of infestation in the case of survival; more particularly, the degree of infestation is expected
to be light as either anthelmintic drugs are used (ETM,t0 [M(τ)|M(τ) 6= −1] = 2.25085) or the host is
transferred to a paddock with safe pasture (EUM,t0 [M(τ)|M(τ) 6= −1] = 3.20312), instead of moderate
and nearly high in the case US (EUS[M(τ)|M(τ) 6= −1] = 6.88878). Set-stocking conditions are not as
effective as the movement of the host to safe pasture since the expected degree of infestation amounts
to a moderate degree in the case of survival (ETS,t0 [M(τ)|M(τ) 6= −1] = 6.13509); moreover, for
grazing strategy TS, the decrease in the probability of no-survival is apparent, but it is not as notable as
for strategies UM and TM. In Figure 6, we plot the mass function of the parasite burden M(τ) at age
τ = 1 year in scenario US versus its counterpart in grazing strategy TM, when animals are treated with
ivermectin, fenbendazole and albendazole at ages t0 = 170, 273 and 272, respectively. By Tables A2
and A3 in Appendix A, ages t0 = 170, 273 and 272 are all feasible intervention instants, which leads
us to mass functions that are essentially comparable in magnitude. On the contrary, the shape and
magnitudes of the mass function in grazing strategy TM are dramatically different from the shape
and magnitudes in scenario US, where no intervention is prescribed, irrespective of the anthelmintic
product.

Figure 5. The mass function of the parasite burden M(τ) at age τ = 1 year. Scenario US and grazing
strategies UM, TS and TM (from left to right) with the anthelmintic ivermectin as the intervention
prescribed at age t0 = 170.
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Figure 6. The mass function of the parasite burden M(τ) at age τ = 1 year. Scenario US and grazing
strategy TM with the anthelmintics ivermectin, fenbendazole and albendazole (from left to right) as the
intervention prescribed at ages t0 = 170, 273 and 272, respectively.

4. Conclusions

It is of fundamental importance in the development of GI nematode infection in sheep to
understand the role of grazing management in reducing anthelmintic use and improving helminth
control. With empirical data of [22,24], we present a valuable modelling framework for better
understanding the host-parasite interaction under fluctuations in time, which arguably represents the
most realistic setting for assessing the impact of seasonal changes in the parasite burden of a growing
lamb. Grazing strategies UM, TS and TM in Section 2.1 are defined in terms of an eventual movement
to safe pasture and/or chemotherapeutic treatment of the host at a certain age t0 ∈ (0, τ). For a suitable
choice of t0, we suggest to use two control criteria that adequately balance the effectiveness and cost of
intervention at age t0 by using simple stochastic principles. Specifically, each intervention instant t0

in Table 1 yields an individual-based grazing strategy for a lamb that is born, parasite-free, at time
t = 0 (1 January, in our examples). The individual-based grazing strategies UM, TS and TM can be
also thought of as group-based grazing strategies in the case of a flock consisting of young lambs,
essentially homogeneous in age. In such a case, intervention at age t0 is prescribed (in accordance with
a predetermined grazing strategy) by applying our methodology to a typical lamb that is assumed to
be born, parasite-free, at a certain average day t′. Then, results may be routinely derived by handling
the set of empirical data in Figure 2 in [22] starting from day t′, instead of Day 0, since intervention at
time instant t′ + t0 amounts to age t0 of the typical lamb in the paddock. From an applied perspective,
the descriptive model in Section 2 becomes a prescriptive model as the set of empirical data in Figure 2
in [22] is appropriately replaced by a set of data derived by taking the average of annual empirical
data from historical records.

For practical use, the profits of applying Criteria 1 and 2 in grazing strategies UM, TS and TM
should be appropriately compared with experimental results. To that end, we first comment on general
guidelines (see Part II of [25]) for control of GI nematode infection. From an experimental perspective,
the dose-and-move strategy (termed TM) is usually recommended in mid-July, this recommendation
being applicable in temperate zones where the maximum numbers of L3 infective larvae do not occur
before midsummer, which is our case (Figures 2–4, shaded area). As stated in [25], midsummer
movement to safe pasture without deworming (strategy UM) is thought of as a low cost control
measure; it can even be effective at moderate levels of pasture infectivity, and it has the advantage
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of creating no anthelmintic resistance by drug selection. We may translate these specifications into
an intervention at day t0 = 195 (15 July) in strategies TM and UM. Guidelines for the application
of an anthelmintic drug without movement (strategy TS) are not so clearly available, and various
alternatives (based mainly on the several-dose approach) are applied in a variety of circumstances that
strongly depend on the geographical region, climate and farming system. For comparative purposes
in strategy TS, we compare our results (derived by applying Criteria 1 and 2) with an intervention at
day t0 = 287 (15 October), when the maximum number of infective larvae L3 on herbage is observed
(Figures 2–4, shaded area).

We present in Table 2 a sample of our results when the anthelmintic fenbendazole is used in
grazing strategies TS and TM. Table 2 lists values of the reduction in the mean infection level (RMIL)
at age τ = 1 year, under the taboo that the host survives at age τ = 1 year, and the reduction in the
total lost probability (RTLP) when, instead of scenario US, intervention is prescribed at day t0 < τ by a
certain grazing strategy s with s ∈ {UM, TS, TM}. The indexes RMIL and RTLP for grazing strategy s,
with s ∈ {UM, TS, TM}, are defined by:

RMILs,t0 = 100×
(

1− Es,t0 [M(τ)|M(τ) 6= −1]
EUS[M(τ)|M(τ) 6= −1]

)
%,

RTLPs,t0 = 100×
(

1− Ps,t0(M(τ) = −1)
PUS(M(τ) = −1)

)
%,

where Es,t0 [M(τ)|M(τ) 6= −1] denotes the conditional expected infection level of the host at age
τ = 1 year, given that it survives at age τ = 1 year, and Ps,t0(M(τ) = −1) is the probability that
the host does not survive at age τ = 1 year, when intervention is prescribed at day t0 according to
grazing strategy s. The values EUS[M(τ)|M(τ) 6= −1] and PUS(M(τ) = −1) are related to scenario
US, and they reflect no intervention.

Table 2. Indexes reduction in the mean infection level (RMIL) and reduction in the total lost probability
(RTLP) for strategies UM, TS and TM with the anthelmintic fenbendazole.

Strategy (s) Criteria t0 RMILs,t0 RTLPs,t0

UM 1 & 2 170 53.50% 39.34%
2 274 46.98% 39.17%
2 281 41.85% 38.88%
2 286 36.00% 38.21%
2 290 30.78% 37.12%
2 298 24.54% 34.86%

Midsummer 195 50.28% 39.28%
TS 1 308 51.01% 33.27%

1 336 59.19% 19.77%
2 338 59.56% 19.10%

Maximum pasture contamination 287 37.78% 38.17%
TM 1 & 2 273 72.36% 39.41%

1 & 2 274 72.36% 39.41%
1 & 2 281 71.88% 39.39%
1 & 2 286 71.03% 39.26%
1 & 2 290 70.07% 38.92%
1 & 2 298 69.09% 37.82%
1 & 2 308 67.47% 33.63%

Midsummer 195 70.47% 39.42%

In grazing strategies UM and TM, the experimental selection t0 = 195 (midsummer) is found
to be near an optimal solution, and Table 2 permits us to analyse the effects of the stochastic control
criteria in a more detailed manner. Based on the decreasing monotonic behaviour of RMIL and RTLP
with respect to the intervention instant t0, it is noticed that the later we apply grazing strategies UM



Mathematics 2018, 6, 143 17 of 24

and TM, the worse the results we obtain. This is closely related to the important role played in the
cases UM and TM by the use of safe pasture, which is reflected in the 75% contamination reduction
with respect to the original paddock. Therefore, the movement of the host to safe pasture appears to be
dominant in the use of anthelmintics, so that the sooner the host is moved, the safer it is for the host.
The maintenance of stable safe-pasture conditions for a long period of time may be difficult and/or
highly expensive, whence additional considerations should be taken into account when selecting
the time instant t0 for moving the host. In grazing strategy UM, the intervention instant t0 = 170
should be considered as optimal for our purposes, and it yields a reduction of 53.50% in the mean
infection level at the end of the year, as well as a reduction of 39.34% in the probability of no-survival.
However, an intervention at day t0 = 274 (i.e., moving the host to safe pasture more than one hundred
days later) would result in significantly lower operational costs, but predicted reductions are still
around high levels (RMILUM,274 = 46.98%, RTLPUM,274 = 39.17%). It is clear that a balance between
operational costs and the magnitudes of the indexes RMIL and RTLP should be made. It is seen
that the experimental selection t0 = 195 seems to implicitly incorporate this balance, delaying the
movement of the host almost a month with respect to t0 = 170, at the expense of losing 3.22% and
0.06% of efficiency in the indexes RMIL and RTLP, respectively. Although the selection of t0 may
depend on external factors, the movement of the host to safe pasture before day t0 = 287 (maximum
pasture contamination) is highly recommendable, and intervention instants t0 = 290 and 298 should
be discarded in the light of these results.

Similar comments can be made for grazing strategy TM. In this case, the experimental selection
t0 = 195 allows us to achieve a good index RMIL in comparison with those time instants t0 obtained
by applying Criteria 1 and 2, while obtaining the highest index RTLP. The intervention at day t0 = 195
is more than two months advanced with respect to the day t0 = 273, which is derived by applying
Criteria 1 and 2. The experimental selection t0 = 195 results in higher operational costs due to an early
movement, and it amounts to a minor improvement of 0.01% in the index RTLP; it is also seen that the
option t0 = 273 yields the value RMILTM,273 = 72.36%, which is higher than the corresponding value
for the experimental choice. Thus, when comparing grazing strategy TM with strategy UM, the use
of an anthelmintic drug seems to permit delaying the movement of the host to safe pasture, while
maintaining good indexes RMIL and RTLP; note that it is still possible to have values of RMIL and
RTPL above 70% and 39%, respectively, if the intervention is delayed at day t0 = 286.

Under set-stocking conditions, the use of an anthelmintic drug at day t0 = 287 (15 October) may
be seen as optimal in terms of the index RTLP, but at the expense of an unacceptable value 37.78% of
RMIL. Note that an application of Criteria 1 and 2 leads us to intervention instants t0 = 308, 336 and
338, with values RMILTS,t0 varying between 50% and 60%. In particular, the time instant t0 = 308
permits us to achieve a significant improvement of the index RMIL (51.01% instead of 37.78%) and
maintain the index RTLP above 33%, which is comparable with the value 38.17% resulting from an
intervention when maximum values of L3 on herbage are observed.

One of the simplifying assumptions in Section 3 (see also Appendix A) is related to the effect
that the infestation degree of the lambs might have on the pasture infection level itself. We deal
with a non-infectious assumption, and specifically, the empirical data in Figure 2 in [22] allow us
to partially incorporate this effect into the age-dependent patterns in terms of the infection level of
a standard paddock during the year. The analytical solution in Section 2.1 can be however used to
examine the infectious nature of the parasite in a more explicit manner. Although it is an additional
topic for further study, we stress that the infectious nature of the parasite appears to be a relevant
feature in grazing strategy UM, where the force-of-infection in a field seeded with untreated lambs
would likely increase back up to a similar level to the original paddock. In an attempt to address this
question, various variants of the age-dependent rate λ′(t) can be conjectured, such as the function
λ′(t) = (0.25 + 0.75h−1(t− t0))λ(t) at post-intervention instants, with h > 0. Then, under proper data
availability, the selection λ′(t) reflects the use of a paddock with safe pasture at initial post-intervention
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instants (λ′(t0) = 0.25λ(t0)) and how the pasture infection level reaches the pre-intervention level,
represented by λ′(t0 + h) = λ(t0 + h), after a period consisting of h days.
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Appendix A. GI Nematode Infection in Growing Lambs

In its complete life cycle, the parasitic phase of Nematodirus spp. commences when worms in
the larval stage L3 encounter the host, which is a largely passive process with the grazing animal
inadvertently ingesting larvae with herbage as it feeds. As a result, infection occurs by ingestion of
the free-living L3, with an establishment proportion (i.e., the proportion of ingested free-living L3 that
become established in the small intestine of the host) ranging between 45% and 60%; see, e.g., [26–28].
Various external factors (moisture levels, temperature and the availability of oxygen) are key drivers
that affect how quickly eggs hatch and larvae develop and how long larvae and eggs survive on pasture.
Therefore, the occurrence of nematode infections in sheep is inherently linked to seasonal conditions,
and it is therefore connected to a diversity of physiographic and climatic conditions; see [22,29,30],
among others. The adverse effects of GI nematode parasites on productivity are diverse, and reductions
of live weight gain in growing stock have been recorded as being as high as 60–100%. Anthelmintics,
such as ivermectin, fenbendazole and albendazole, are drugs that are effective in removing existing
burdens or that prevent establishment of ingested L3.

Faecal examination for the presence of worm eggs or larvae is the most common routine aid to
diagnosis employed. In the faecal egg count (FEC) reduction test, animals are allocated to groups of
ten based on pre-treatment FEC, with one group of ten for each anthelmintic treatment tested and a
further untreated control group. For instance, this requires the use of forty animals in [24], where the
efficacy of three anthelmintics (ivermectin, fenbendazole and albendazole) against GI nematodes is
investigated. A full FEC reduction test is understandably expensive and takes a significant length
of time before farmers are presented with the results; in addition, accurate larval differentiation also
demands a high degree of skill. As an alternative test, a points system (see [21]) may serve as a crude
guide to interpreting worm counts, which is based on the fact that one point is equivalent to the
presence of 4000 worms, a total of two points in a young sheep is likely to be causing measurable
losses of productivity and clinical signs and deaths are unlikely unless the total exceeds three points.

Based on the above comments, Table 1 in [20] presents an equivalence in the identification of
the degree of infestation, level of infection, eggs per gram (EPG) value, number of L3 infective larvae
in the small intestine and the points system, which can be used to study the parasite load of a lamb
in a unified manner. We refer the reader to [1,2,21] for further details on nematode taxonomy and
morphology and the treatment and control of parasite gastroenteritis in sheep.

Appendix A.1. Empirical Data and Age-Dependent Rates

In this section, we first use the results in Section 3.2 of [20] to specify the functions λ(t) and ηm(t)
for time instants t ∈ [0, τ] in scenario US and for time instants t ∈ [0, t0] in grazing strategies UM,
TS and TM. Concrete specifications for age-dependent patterns at time instants t ∈ (t0, τ] are then
derived by suitably modifying these functions under the distributional assumptions in the cases UM,
TS and TM. Results yielding scenario US are related to the study conducted by Uriate et al. [22], which
is designed to describe monthly fluctuations of nematode burden in sheep (Rasa Aragonesa female
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lambs) raised under irrigated conditions in Ebro Valley, Spain, by using worm-free tracer lambs and
monitoring the faecal excretion of eggs by ewes. Specifically, we use the set of empirical data in Figure 2
of [22] recording the number of L3 infective larvae on herbage samples at weekly intervals from a fixed
paddock of the farm. In grazing strategies TS and TM, the empirical data in [22] are appropriately
combined with those data in [24] on the clinical efficacy assessment of ivermectin, fenbendazole and
albendazole in lambs parasited with nematode infective larvae.

In Figure 2 of [22], results are expressed as infective larvae per kilogram of dry matter (L3 kg−1

DM) after drying the herbage overnight at 60◦ C, and the numbers of L3 infective larvae on herbage
samples correspond to Chabertia ovina and Haemonchus spp. (9.6%), Nematodirus spp. (4.0%), Ostertagia
spp. (71.4%) and Trichostrongylus spp. (15.0%). In our work, the increments in the number of L3

infective larvae in the small intestine (Figure 1, shaded area) are estimated by fixing the value 55% as
the establishment proportion and incorporating concrete specifications for the lamb growth pre- and
post-weaning. To be concrete, it is assumed that, for a host that is born on 1 January (Day 0), the lamb
birth weight equals 5 kg, the pre-weaning period consists of four weeks and the lamb growth rate
from birth to weaning is given by 0.3 kg per day. The lamb growth rate on pasture post-weaning is
assumed to be equal to 0.15 kg per day, and the daily DM intake is given by the 6% of body weight
(BW); see [31] for details on lamb growth rates on pasture.

These specifications determine the age-dependent rate λm(t) = λ(t) for ages t ∈ [0, τ] in scenario
US and grazing strategy TS, and for ages t ∈ [0, t0] in grazing strategies UM and TM, with τ = 1 year.
More concretely, the function λ(t) is defined to be the piecewise linear function formed by connecting
the points (n, λ(n)) in order by segments, where the value λ(n) at the n-th day is determined in [20]
as a function of the number of L3 infective larvae of Nematodirus spp. on pasture, from Figure 2
of [22], the DM intake at the n-th day, the establishment proportion and the interval length l = 103

used in Table 1 of [20] to define infection levels m ∈ S in terms of numbers of infective larvae in the
small intestine. To reflect the use of safe pasture in grazing strategies UM and TM, it is assumed that
λ′(t) = 0.25λ(t) for ages t ∈ (t0, τ] where λ(t) denotes the previously specified function, which is
related to the original paddock.

Similarly to Section 3.2 in [20], the death rates of parasites in grazing strategies TS and TM
are given by η′m(t) = mη(t) for levels m ∈ S , where η(t) reflects the chemotherapeutic efficacy of
a concrete anthelmintic over time. We use the empirical data of [24], where the efficacy of three
anthelmintic products against GI nematodes is investigated. In the FEC reduction test of [24], animals
were allocated to four groups termed A, B, C and D. Animals of Group A served as the control, whereas
animals of Groups B, C and D were orally administered ivermectin (0.2 mg·kg−1·BW), fenbendazole
(5.0 mg·kg−1·BW) and albendazole (7.5 mg·kg−1·BW), respectively. Animals were sampled for FEC at
Day 0 immediately before administering the drug and thereafter on Days 3, 7, 14, 21 and 28. Then,
the function η(t) associated with each anthelmintic is defined as the polyline connecting the points
(tn, η(tn)), where the instants tn are given by t0, t1 = t0 + 3, t2 = t0 + 7, t3 = t0 + 14, t4 = t0 + 21 and
t5 = t0 + 28. The length of the therapeutic period is assumed to be equal to 28 days, so that η(t) = 0
for instants t > t5. Values η(tn) are determined in Table 1 of [20] from the EPG value and the infection
level at time tn, as well as the length l′ = 50 used to define levels of infection in terms of EPG values.

Appendix A.2. Intervention Instants t0

Values of t0 are listed in Table A1 for grazing strategy UM and denoted by t1
0 and t2

0 as they are
derived by applying Criteria 1 and 2, respectively. In Tables A2 and A3, values of t0 are listed for
grazing strategies TS and TM and the anthelmintics ivermectin (Group B), fenbendazole (Group C)
and albendazole (Group D), which are denoted by tB

0 , tC
0 and tD

0 , respectively. The selection m′ = 4
in Tables A1–A3 amounts to a degree of infestation that is moderate (Figure A1), and consequently,
a measurable presence of worms is observed.
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Table A1. Intervention instants t0 versus the index p and the lower bound p1 for effectiveness
(Criterion 1) and the upper bound p2 for the cost of intervention (Criterion 2) for m′ = 4. Grazing
strategy UM.

p I≥4 p1 J1
≥4 t1

0 p2 J2
≥4 t2

0

0.1 [170, 365) 0.70 —– —– 0.25 [170, 299] 170
0.60 —– —– 0.20 [170, 290] 170
0.50 [170, 194] 170 0.15 [170, 282] 170

0.2 [274, 365) 0.70 —– —– 0.25 [274, 299] 274
0.60 —– —– 0.20 [274, 290] 274
0.50 —– —– 0.15 [274, 282] 274

0.3 [281, 365) 0.70 —– —– 0.25 [281, 299] 281
0.60 —– —– 0.20 [281, 290] 281
0.50 —– —– 0.15 [281, 282] 281

0.4 [286, 365) 0.70 —– —– 0.25 [286, 299] 286
0.60 —– —– 0.20 [286, 290] 286
0.50 —– —– 0.15 —– —–

0.5 [290, 365) 0.70 —– —– 0.25 [290, 299] 290
0.60 —– —– 0.20 [290, 290] 290
0.50 —– —– 0.15 —– —–

0.6 [298, 365) 0.70 —– —– 0.25 [298, 299] 298
0.60 —– —– 0.20 —– —–
0.50 —– —– 0.15 —– —–

0.7 [308, 365) 0.70 —– —– 0.25 —– —–
0.60 —– —– 0.20 —– —–
0.50 —– —– 0.15 —– —–

Figure A1. The age-dependent probability P≥m′ (t) as a function of the age t ∈ (0, τ) with τ = 1 year,
for m′ = 1 (broken line), 4 (dotted line) and 8 (solid line), and increments in the number of L3 infective
larvae on the small intestine (shaded area, right vertical axis).
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Table A2. Intervention instants t0 versus the index p and the lower bound p1 for effectiveness
(Criterion 1) for m′ = 4. Grazing strategies TS and TM with the anthelmintics ivermectin (B), fenbendazole
(C) and albendazole (D).

p I≥4 p1 J1,B
≥4 tB

0 J1,C
≥4 tC

0 J1,D
≥4 tD

0

0.1 [170, 365) 0.70 TS —– —– —– —– —– —–
TM [170, 278] 170 [170, 319] 273 [170, 308] 272

0.60 TS —– —– [336, 339] 336 —– —–
TM [170 ,301] 170 [170, 344] 273 [170, 342] 272

0.50 TS —– —– [308, 344] 308 [313, 343] 313
TM [170, 343] 170 [170, 348] 273 [170, 346] 272

0.2 [274, 365) 0.70 TS —– —– —– —– —– —–
TM [274, 278] 274 [274, 319] 274 [274, 308] 274

0.60 TS —– —– [336, 339] 336 —– —–
TM [274, 301] 274 [274, 344] 274 [274, 342] 274

0.50 TS —– —– [308, 344] 308 [313, 343] 313
TM [274, 343] 274 [274, 348] 274 [274, 346] 274

0.3 [281, 365) 0.70 TS —– —– —– —– —– —–
TM —– —– [281, 319] 281 [281, 308] 281

0.60 TS —– —– [336, 339] 336 —– —–
TM [281, 301] 281 [281, 344] 281 [281, 342] 281

0.50 TS —– —– [308, 344] 308 [313, 343] 313
TM [281, 343] 281 [281, 348] 281 [281, 346] 281

0.4 [286, 365) 0.70 TS —– —– —– —– —– —–
TM —– —– [286, 319] 286 [286, 308] 286

0.60 TS —– —– [336, 339] 336 —– —–
TM [286, 301] 286 [286, 344] 286 [286, 342] 286

0.50 TS —– —– [308, 344] 308 [313, 343] 313
TM [286, 343] 286 [286, 348] 286 [286, 346] 286

0.5 [290, 365) 0.70 TS —– —– —– —– —– —–
TM —– —– [290, 319] 290 [290, 308] 290

0.60 TS —– —– [336, 339] 336 —– —–
TM [290, 301] 290 [290, 344] 290 [290, 342] 290

0.50 TS —– —– [308, 344] 308 [313, 343] 313
TM [290, 343] 290 [290, 348] 290 [290, 346] 290

0.6 [298, 365) 0.70 TS —– —– —– —– —– —–
TM —– —– [298, 319] 298 [298, 308] 298

0.60 TS —– —– [336, 339] 336 —– —–
TM [298, 301] 298 [298, 344] 298 [298, 342] 298

0.50 TS —– —– [308, 344] 308 [313, 343] 313
TM [298, 343] 298 [298, 348] 298 [298, 346] 298

0.7 [308, 365) 0.70 TS —– —– —– —– —– —–
TM —– —– [308, 319] 308 [308, 308] 308

0.60 TS —– —– [336, 339] 336 —– —–
TM —– —– [308, 344] 308 [308, 342] 308

0.50 TS —– —– [308, 344] 308 [313, 343] 313
TM [308, 343] 308 [308, 348] 308 [308, 346] 308
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Table A3. Intervention instants t0 versus the index p and the upper bound p2 for the cost of intervention
(Criterion 2) for m′ = 4. Grazing strategies TS and TM with the anthelmintics ivermectin (B), fenbendazole
(C) and albendazole (D).

p I≥4 p2 J2,B
≥4 tB

0 J2,C
≥4 tC

0 J2,D
≥4 tD

0

0.1 [170, 365) 0.25 TS [286, 363] 358 [268, 363] 338 [270, 363] 338
TM [170, 363] 170 [170, 363] 273 [170, 363] 272

0.20 TS [299, 362] 358 [279, 362] 338 [281, 361] 338
TM [170, 362] 170 [170, 362] 273 [170, 362] 272

0.15 TS —– —– [290, 346] 338 [292, 344] 338
TM [170, 350] 170 [170, 350] 273 [170, 348] 272

0.2 [274, 365) 0.25 TS [286, 363] 358 [274, 363] 338 [274, 363] 338
TM [274, 363] 274 [274, 363] 274 [274, 363] 274

0.20 TS [299, 362] 358 [279, 362] 338 [281, 361] 338
TM [274, 362] 274 [274, 362] 274 [274, 362] 274

0.15 TS —– —– [290, 346] 338 [292, 344] 338
TM [274, 350] 274 [274, 350] 274 [274, 348] 274

0.3 [281, 365) 0.25 TS [286, 363] 358 [281, 363] 338 [281, 363] 338
TM [281, 363] 281 [281, 363] 281 [281, 363] 281

0.20 TS [299, 362] 358 [281, 362] 338 [281, 361] 338
TM [281, 362] 281 [281, 362] 281 [281, 362] 281

0.15 TS —– —– [290, 346] 338 [292, 344] 338
TM [281, 350] 281 [281, 350] 281 [281, 348] 281

0.4 [286, 365) 0.25 TS [286, 363] 358 [286, 363] 338 [286, 363] 338
TM [286, 363] 286 [286, 363] 286 [286, 363] 286

0.20 TS [299, 362] 358 [286, 362] 338 [286, 361] 338
TM [286, 362] 286 [286, 362] 286 [286, 362] 286

0.15 TS —– —– [290, 346] 338 [292, 344] 338
TM [286, 350] 286 [286, 350] 286 [286, 348] 286

0.5 [290, 365) 0.25 TS [290, 363] 358 [290, 363] 338 [290, 363] 338
TM [290, 363] 290 [290, 363] 290 [290, 363] 290

0.20 TS [299, 362] 358 [290, 362] 338 [290, 361] 338
TM [290, 362] 290 [290, 362] 290 [290, 362] 290

0.15 TS —– —– [290, 346] 338 [292, 344] 338
TM [290, 350] 290 [290, 350] 290 [290, 348] 290

0.6 [298, 365) 0.25 TS [298, 363] 358 [298, 363] 338 [298, 363] 338
TM [298, 363] 298 [298, 363] 298 [298, 363] 298

0.20 TS [299, 362] 358 [298, 362] 338 [298, 361] 338
TM [298, 362] 298 [298, 362] 298 [298, 362] 298

0.15 TS —– —– [298, 346] 338 [298, 344] 338
TM [298, 350] 298 [298, 350] 298 [298, 348] 298

0.7 [308, 365) 0.25 TS [308, 363] 358 [308, 363] 338 [308, 363] 338
TM [308, 363] 308 [308, 363] 308 [308, 363] 308

0.20 TS [308, 362] 358 [308, 362] 338 [308, 361] 338
TM [308, 362] 308 [308, 362] 308 [308, 362] 308

0.15 TS —– —– [308, 346] 338 [308, 344] 338
TM [308, 350] 308 [308, 350] 308 [308, 348] 308

An examination of the resulting instants t0 in Tables A1–A3 reveals the following
important consequences:

(i) In applying Criterion 1 (respectively, Criterion 2) to grazing strategy TM, values of the lower
bound p1 ∈ {0.5, 0.6, 0.7} for effectiveness (respectively, the upper bound p2 ∈ {0.15, 0.2, 0.25}
for the cost of intervention) result in identical intervention instants t0, irrespective of the
anthelmintic drug, with the exception of the case p = 0.1. More concretely, we observe that,
in the case p = 0.1, identical intervention instants t0 are derived for each fixed anthelmintic
drug, but a replacement of the predetermined drug by another anthelmintic results in different
intervention instants.
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(ii) For every anthelmintic drug and fixed index p, Criteria 1 and 2 applied to grazing strategy
TM yield identical intervention instants t0, with the exception of those pairs (p, p1) for the
anthelmintic ivermectin leading us to empty subsets J1,B

≥4 . In order to maintain high values of
the minimum level of effectiveness (Criterion 1), we have therefore to handle smaller values
of the index p (0.1 and 0.2 in Table A2) for grazing strategy TM, which means that low-risk
intervention instants should become potential intervention instants.

(iii) For every anthelmintic, the intervention instant t0 derived in grazing strategy TM behaves as an
increasing function of the index p, regardless of the control criterion.

(iv) For every anthelmintic and fixed value p1, the intervention instant t0 in grazing strategy TS
appears to be constant as a function of the index p. This is in agreement with the fact that the
maximum levels of effectiveness (Figure 2) and the minimum costs of intervention (Figure 3) are
observed at the end of the year (November–December), in such a way that this period of time
always consists of potential intervention instants (Figure A1) for the index p ranging between
0.1 and 0.7.

(v) In contrast to grazing strategies TS and TM, the values p1 ∈ {0.5, 0.6, 0.7} for grazing strategy
UM lead us to empty subsets J1

≥4 of potential intervention instants, with the exception of the
pair (p, p1) = (0.1, 0.5). This observation is closely related to the monotonic behaviour of the
effectiveness (Figure 2) and cost (Figure 3) functions, which links the first months of the year to
the highest effectiveness and the minimum cost of intervention.

(vi) The upper limit of the set I≥4 in Tables A1–A3 is always at Day 365, which can be readily
explained from the monotone behaviour (Figure A1) of the age-dependent probability P≥m′(t)
in the case m′ = 4. It is clear that other thresholds m′ will not necessarily yield Day 365;
for example, I≥m′ = (280, 360) in the case m′ = 1 with p = 0.85.

(vii) For strategies UM (Table A1) and TM (Tables A2 and A3), the lower limits of the resulting sets
J1
≥4 and J2

≥4 always coincide with the lower limit of the set I≥4 of potential intervention instants
t0, but this is not the case for strategy TS. This means that an early movement of the host to safe
pasture should lead to feasible intervention instants.

The values of the effectiveness e f f s(t0; τ) and the cost costs(t0; τ) of intervention for instants t0 in
Tables A1–A3 are listed in Table 1 and analysed in more detail in Section 3.2.
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