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Abstract: In this article, we study the chemical graph of a cyclic octahedron structure of
dimension n and compute the eccentric connectivity polynomial, the eccentric connectivity index,
the total eccentricity, the average eccentricity, the first Zagreb index, the second Zagreb index, the third
Zagreb index, the atom bond connectivity index and the geometric arithmetic index of the cyclic
octahedron structure. Furthermore, we give the analytically closed formulas of these indices which
are helpful for studying the underlying topologies.
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1. Introduction

Graph theory has advanced greatly in the field of mathematical chemistry. Chemical graph theory
has become very popular among researchers because of its wide application in mathematical chemistry.
The molecular topological descriptors are the numerical invariants of a molecular graph and are very
useful for predicting their bioactivity. A great variety of such indices have been studied and used in
theoretical chemistry, by pharmaceutical researchers, in drugs, and in other different fields. There is
considerable usage of graph theory in chemistry. Chemical graph theory is the topology branch
of mathematical chemistry which applies graph theory to the mathematical modeling of chemical
occurrence. A lot of research has been done in this area in the last few decades. This theory has a major
role in the field of chemical sciences.

In reference [1,2], W. Gao et al. computed the electron energy of molecular structures through
the forgotten topological index. Also, they computed the generalized atom bond connectivity index
of several chemical molecular graphs. In reference [3–5], the authors studied topological indices of
networks and nanotubes. The topological index of aztec diamonds was discussed in reference [6] by
M. Imran et al. Some degree-based and eccentricity-based topological indices of oxide networks and
tetra sheets were described in reference [7–9] by A. Q. Baig et al., respectively.

Recently the eccentric atom bond connectivity index of linear polycene parallelogram benzenoid
was introduced by reference [10]. Sierpinski graphs constitute an extensively studied family of
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graphs of fractal nature and have been applied in topology, the mathematics of the Tower of Hanoi,
computer science, and elsewhere [11]. The Sierpinski graphs were introduced in reference [12] by
Klavzar and Milutinovic. The average eccentricity and standard deviation for all Sierpiński graphs
(Sn

p) was established by reference [13]. The extremal properties of the average eccentricity as well as
the conjectures and autographics were obtained by reference [14], in which the AutoGraphiX(AGX)
computer system was developed by the GERAD group from Montreal [15–17]. AGX is an interactive
software designed to help find conjectures in graph theory. The bounds on the mean eccentricity of
graph and also the change in mean eccentricity when a graph is replaced by a subgraph was established
by reference [18]. For trees with a fixed diameter, fixed matching number and fixed number of pendent
vertices, the lower and upper bounds of average eccentricity were found by reference [19].

An undirected graph is a pair (G = (V, E)), where V is the set of vertices, and E ⊆ (V
2) is a set of

edges. In molecular graph theory, the vertices represent atoms, and the edges represent bonds between
the atoms.

If u, v ∈ V, then the distance (d(u, v)) between u and v is defined as the length of any shortest path
in G connecting u and v. We denote dv as the number of edges incident to vertex v in G. The eccentricity
of u is the distance of vertex u from the farthest vertex in G. In mathematical form, this is shown as
ε(u) = max{d(u, v)|∀ v ∈ V}. Table 1 describes the eccentricity-based indices and polynomials which
have been introduced over the years.

Table 1. Eccentric-based indices.

S.No. Introduced by Index Name Notation Formula

1 V. Sharma et al. [20] Eccentric connectivity index ξ(G) ∑
v∈V

dvε(v)

2 M. Alaeiyan et al. [21,22] Eccentric connectivity polynomial ECP(G, x) ∑
v∈V

dvxε(v)

3 Farooq et al. [23] Total eccentricity index ζ(G) ∑
v∈V

ε(v)

4 F. Bukley et al. [24] Average eccentricity avec(G)
1
n ∑

v∈V
ε(v)

5

D. Vukičević et al. First Zagreb eccentric index M∗1 (G) ∑
uv∈E

[ε(u) + ε(v)]

Ghorbani et al. [25,26] Second Zagreb eccentric index M∗∗1 (G) ∑
v∈V

[ε(v)]2

third Zagreb eccentric index M∗2 (G) ∑
uv∈E

ε(u)ε(v)

6 M. Ghorbani et al. [27] Geometric-arithmetic index GA4(G) ∑
uvεE(G)

2
√

ε(u)·ε(v)
ε(u)+ε(v)

7 Farahani [28] ABC eccentric index ABC5(G) ∑
uv∈E(G)

√
ε(v)+ε(u)−2

ε(v)·ε(u)

The aim of this paper is to compute and compare the above described eccentric-based topological
indices for a cyclic octahedron structure of dimension n.

2. Main Results and Discussion

In this section, we discuss the cyclic octahedron structure and give closed formulae of certain
topological indices for this network. Here, we find the analytically closed results of the eccentric
connectivity polynomial, the eccentric connectivity index, the total eccentricity index, the average
eccentricity index, and the eccentricity-based geometric-arithmetic and atom bond connectivity indices
for the cyclic octahedron structure.

An octahedron graph, as shown in Figure 1, is a polyhedral graph corresponding to the skeleton
of the octahedron, one of the five Platonic solids. This Platonic graph consists of six vertices and 12
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edges. The analogs of this structure play vital roles in the field of reticular chemistry, which deals with
the synthesis and properties of metal-organic frameworks [11,29].

Figure 1. Structure of an octahedron.

The different types of octahedral structures arise from the ways that these octahedra can be
connected. The cyclic octahedral structure of dimension n is denoted by CYOn, and it is obtained by
arranging n octahedra in cyclic order, as shown in Figure 2. For n ≥ 3, CYOn consists of 5n vertices
and 12n edges. To compute the said indices and polynomials, we partitioned the vertices and edges of
CYOn in certain ways in Tables 2–7. To understand the tables and the partitions that they describe,
we give detailed captions of each table. We computed the exact formulas for the above mentioned
topological indices of the cyclic octahedral structure as follows.

Figure 2. Cyclic octahedral structure (CYO8).

Table 2. Vertex partition of the cyclic octahedron structure for (n-levels) where n is odd based on the
degree and eccentricity of each vertex with the existence of their frequencies.

du ε(u) Frequency Range of n

4 n+3
2 4n n ≥ 3

8 n+1
2 n n ≥ 3

Table 3. Vertex partition of the cyclic octahedron structure for (n-levels) where n is even based on the
degree and eccentricity of each vertex with the existence of their frequencies.

du ε(u) Frequency Range of n

4 n+2
2 2n n ≥ 4

4 n+4
2 2n n ≥ 4

8 n+2
2 n n ≥ 4
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Table 4. Vertex partition of the cyclic octahedron structure for (n-levels) where n is odd based on the
eccentricity of each vertex with the existence of their frequencies.

ε(u) Frequency Range of n
n+1

2 n n ≥ 3
n+3

2 4n n ≥ 3

Table 5. Vertex partition of the cyclic octahedron structure for (n-levels) where n is even based on the
eccentricity of each vertex with existence of their frequencies.

ε(u) Frequency Range of n
n+2

2 3n n ≥ 4
n+4

2 2n n ≥ 4

Table 6. Edge partition of the cyclic octahedron structure for (n-levels) where n is odd based on the
eccentricity of end vertices with the existence of their frequencies.

(ε(u), ε(v)) Frequency Range of n

( n+1
2 , n+1

2 ) n n ≥ 3
( n+1

2 , n+3
2 ) 6n n ≥ 3

( n+3
2 , n+3

2 ) 5n n ≥ 3

Table 7. Edge partition of the cyclic octahedron structure for (n-levels) where n is even, based on the
eccentricity of end vertices with the existence of their frequencies.

(ε(u), ε(v)) Frequency Range of n

( n+2
2 , n+2

2 ) 5n n ≥ 4
( n+2

2 , n+4
2 ) 6n n ≥ 4

( n+4
2 , n+4

2 ) n n ≥ 4

2.1. Eccentric Connectivity Polynomial

Then, using the following theorems, we computed the eccentric polynomial of the cyclic
octahedron structure (ECP(CYOn, x)).

Theorem 1. Let CYOn, for all n ≥ 3, where n is odd, be the cyclic octahedron structure. Then, the eccentric
polynomial of CYOn is

ECP(CYOn, x) = 8n{2x + 1}x
n+1

2 .

Proof. Let CYOn, where n is odd, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The formula of the eccentric polynomial is

ECP(G, x) = ∑
v∈V

dvxε(v).

Using the vertex partition from Table 1, we obtained the following computations:

ECP(CYOn, x) = 4 · 4n · (x)
n+3

2 + 8 · n · (x)
n+1

2 ,

ECP(CYOn, x) = 16n · (x)
n+3

2 + 8n · (x)
n+1

2 ,
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ECP(CYOn, x) = 8n{2x + 1}x
n+1

2 .

Theorem 2. Let CYOn, for all n ≥ 4 where n is even, be the cyclic octahedron structure. Then, the eccentric
polynomial of CYOn is

ECP(CYOn, x) = 8n{x + 2}x
n+2

2 .

Proof. Let CYOn, where n is even, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The formula of the eccentric polynomial is

ECP(G, x) = ∑
v∈V

dvxε(v).

Using the vertex partition from Table 2, we obtained the following computations:

ECP(CYOn, x) = 8 · n · (x)
n+2

2 + 8 · n · (x)
n+4

2 + 8 · n · (x)
n+2

2 ,

ECP(CYOn, x) = 8n · (x)
n+4

2 + 16n · (x)
n+2

2 ,

ECP(CYOn, x) = 8n{x + 2}x
n+2

2 .

2.2. Eccentric Connectivity Index

Then, using the following theorems, we computed the eccentric connectivity index of the cyclic
octahedron structure (ξ(CYOn)).

Theorem 3. Let CYOn, for all n ≥ 3, where n is odd, be the cyclic octahedron structure. Then, the eccentric
connectivity index of CYOn is

ξ(CYOn) = 4n{3n + 7}.

Proof. Let CYOn, where n is even, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The formula of the eccentric connectivity index is:

ξ(G) = ∑
v∈V

dvε(v).

Using the vertex partition from Table 1, we obtained the following computations:

ξ(CYOn) = 4 · 4n ·
(

n + 3
2

)
+ 8 · n ·

(
n + 1

2

)
,

ξ(CYOn) = 8n · (n + 3) + 4n · (n + 1),

ξ(CYOn) = 4n{3n + 7}.

Theorem 4. Let CYOn, for all n ≥ 4, where n is even, be the cyclic octahedron structure. Then, the eccentric
connectivity index of CYOn is

ξ(CYOn) = 4n{3n + 8}.
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Proof. Let CYOn, where n is even, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The formula of the eccentric connectivity index is

ξ(G) = ∑
v∈V

dvε(v).

Using the vertex partition from Table 2, we obtained the following computations:

ξ(CYOn) = 4 · (2n) ·
(

n + 2
2

)
+ 4 · (2n) ·

(
n + 4

2

)
+ 8 · n ·

(
n + 2

2

)
,

ξ(CYOn) = 4n · (n + 4) + 8n · (n + 2),

ξ(CYOn) = 4n{3n + 8}.

2.3. Total Eccentricity Index

Then, using the following theorems, we computed the total eccentricity index of the cyclic
octahedron structure (ζ(CYOn)).

Theorem 5. Let CYOn, for all n ≥ 3, where n is odd, be the cyclic octahedron structure. Then, the total
eccentricity index (ζ) of CYOn is

ζ(CYOn) =
n
2
{5n + 13}.

Proof. Let CYOn, where n is odd, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The formula of the total eccentricity index is

ζ(G) = ∑
v∈V(G)

ε(v).

Using the vertex partitioned from Table 3, we obtained the following computations:

ζ(CYOn) = n ·
(

n + 1
2

)
+ 4n ·

(
n + 3

2

)
,

ζ(CYOn) =
n
2
{n + 1 + 4n + 12},

ζ(CYOn) =
n
2
{5n + 13}.

Theorem 6. Let CYOn, for all n ≥ 4, where n is even, be the cyclic octahedron structure, then the total
eccentricity index (ζ) of CYOn is

ζ(CYOn) =
n
2
{5n + 14}.

Proof. Let CYOn, where n is even, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The formula of the total eccentricity index is

ζ(G) = ∑
v∈V(G)

ε(v).
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Using the vertex partitioned from Table 4, we obtained the following computations

ζ(CYOn) = 3n ·
(

n + 2
2

)
+ 2n ·

(
n + 4

2

)
,

ζ(CYOn) =
n
2
{3n + 6 + 2n + 8},

ζ(CYOn) =
n
2
{5n + 14}.

2.4. Average Eccentricity Index

In this section, we describe how the average eccentricity index of the cyclic octahedron structure
(avec(CYOn)) was determined.

Theorem 7. Let CYOn, for all n ≥ 3, where n is odd, be the cyclic octahedron structure. Then, the average
eccentricity index (avec(CYOn)) is

avec(CYOn) =
1

10
{5n + 13}.

Proof. Let CYOn, where n is odd, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The formula of the average eccentricity index is

avec(G) =
1
n ∑ εi.

Using the vertex partitioned from Table 3, we obtained the following computations:

avec(CYOn) =
1

5n

{
n ·
(

n + 1
2

)
+ 4n ·

(
n + 3

2

)}
,

avec(CYOn) =
n

10n
{n + 1 + 4n + 12},

avec(CYOn) =
1

10
{5n + 13}.

Theorem 8. Let CYOn, for all n ≥ 4, where n is even, be the cyclic octahedron structure. Then, the average
eccentricity index (avec(CYOn)) is

avec(CYOn) =
1

10
{5n + 14}.

Proof. Let CYOn, where n is even, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The formula of the average eccentricity index is

avec(G) =
1
n ∑ εi.

Using the vertex partitioned from Table 4, we obtained the following computations:

avec(CYOn) =
1

5n

{
3n ·

(
n + 2

2

)
+ 2n ·

(
n + 4

2

)}
,
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avec(CYOn) =
n

10n
{3n + 6 + 2n + 8},

avec(CYOn) =
1

10
{5n + 14}.

2.5. First Zagreb Eccentricity Index

In this section, we describe how we found the first Zagreb eccentricity index of the cyclic
octahedron structure (M∗1(CYOn)).

Theorem 9. Let CYOn for all n ≥ 3, where n is odd, be the cyclic octahedron structure. Then, the first Zagreb
eccentricity index M∗1(CYOn) is

M∗1(CYOn) = 4n{3n + 7}.

Proof. Let CYOn, where n is odd, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The general formula of the first Zagreb eccentricity index is

M∗1(G) = ∑
uv∈E(G)

[ε(u) + ε(v)].

By using the values from Table 5, we obtained

M∗1(CYOn) = n
(

n + 1
2

+
n + 1

2

)
+ 6n

(
n + 1

2
+

n + 3
2

)
+ 5n

(
n + 3

2
+

n + 3
2

)
,

M∗1(CYOn) = n(n + 1) + 6n(n + 2) + 5n(n + 3),

M∗1(CYOn) = 4n{3n + 7}.

Theorem 10. Let CYOn for all n ≥ 4, where n is even, be the cyclic octahedron structure. Then, the first
Zagreb eccentricity index (M∗1(CYOn)) is

M∗1(CYOn) = 4n{3n + 8}.

Proof. Let CYOn, where n is even, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The general formula of the first Zagreb eccentricity index is

M∗1(G) = ∑
uv∈E(G)

[ε(u) + ε(v)].

By using the values from Table 6, we obtained

M∗1(CYOn) = 5n
(

n + 2
2

+
n + 2

2

)
+ 6n

(
n + 2

2
+

n + 4
2

)
+ n

(
n + 4

2
+

n + 4
2

)
,

M∗1(CYOn) = 5n(n + 2) + 6n(n + 3) + n(n + 4),

M∗1(CYOn) = 4n{3n + 8}.



Mathematics 2018, 6, 141 9 of 15

2.6. Second Zagreb Eccentricity Index

In this section, we describe how we found the second Zagreb eccentricity index of the cyclic
octahedron structure (M∗∗1 (CYOn)).

Theorem 11. Let CYOn for all n ≥ 3, where n is odd, be the cyclic octahedron structure. Then, the second
Zagreb eccentricity index (M∗∗1 (CYOn)) is

M∗∗1 (CYOn) =
n
4
{5n2 + 26n + 37}.

Proof. Let CYOn, where n is odd, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The general formula of the second Zagreb eccentricity index is

M∗∗1 (G) = ∑
v∈V(G)

[ε(v)]2.

By using the values from Table 3, we obtained

M∗∗1 (CYOn) = n
(

n + 1
2

)2

+ 4n
(

n + 3
2

)2

,

M∗∗1 (CYOn) =
n
4
(n2 + 2n + 1 + 4n2 + 24n + 36),

M∗∗1 (CYOn) =
n
4
{5n2 + 26n + 37}.

Theorem 12. Let CYOn for all n ≥ 4, where n is even, be the cyclic octahedron structure. Then, the second
Zagreb eccentricity index (M∗∗1 (CYOn)) is

M∗∗1 (CYOn) =
n
4
{5n2 + 28n + 44}.

Proof. Let CYOn, where n is even, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The general formula of the second Zagreb eccentricity index is

M∗∗1 (G) = ∑
v∈V(G)

[ε(v)]2.

By using the values from Table 4, we obtained

M∗∗1 (CYOn) = 3n
(

n + 2
2

)2

+ 2n
(

n + 4
2

)2

,

M∗∗1 (CYOn) =
n
4
(3n2 + 12n + 12 + 2n2 + 16n + 32) =

n
4
{5n2 + 28n + 44}.

2.7. Third Zagreb Eccentricity Index

In this section we describe how we found the third Zagreb eccentricity index of the cyclic
octahedron structure (M∗2(CYOn)).
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Theorem 13. Let CYOn for all n ≥ 3, where n is odd, be the cyclic octahedron structure. Then, the third
Zagreb eccentricity index (M∗2(CYOn)) is

M∗2(CYOn) = n{3n2 + 14n + 16}.

Proof. Let CYOn, where n is odd, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The general formula of the third Zagreb eccentricity index is

M∗2(G) = ∑
uv∈E(G)

[ε(u) · ε(v)].

By using the values from Table 5, we obtained

M∗2(CYOn) = n
(

n + 1
2
· n + 1

2

)
+ 6n

(
n + 1

2
· n + 3

2

)
+ 5n

(
n + 3

2
· n + 3

2

)
,

M∗2(CYOn) = n
(

n + 1
2

)2

+ 6n
(

n2 + 4n + 3
4

)
+ 5n

(
n + 3

2

)2

,

M∗2(CYOn) = n{3n2 + 14n + 16}.

Theorem 14. Let CYOn for all n ≥ 4, where n is even, be the cyclic octahedron structure. Then, the third
Zagreb eccentricity index M∗2(CYOn) is

M∗2(CYOn) = n{3n2 + 16n + 21}.

Proof. Let CYOn, where n is even, be the cyclic octahedron structure contains 5n vertices and
12n edges.

The general formula of the third Zagreb eccentricity index is

M∗2(G) = ∑
uv∈E(G)

[ε(u) · ε(v)].

By using the values from Table 6, we obtained

M∗2(CYOn) = 5n
(

n + 2
2
· n + 2

2

)
+ 6n

(
n + 2

2
· n + 4

2

)
+ n

(
n + 4

2
· n + 4

2

)
,

M∗2(CYOn) = 5n
(

n + 2
2

)2

+ 6n
(

n2 + 6n + 8
4

)
+ n

(
n + 4

2

)2

,

M∗2(CYOn) = n{3n2 + 16n + 21}.

2.8. Geometric-Arithmetic Index

In this section, we describe how we found the eccentricity-based geometric-arithmetic index of
the cyclic octahedron structure GA4(CYOn).
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Theorem 15. Let CYOn for all n ≥ 3, where n is odd, be the cyclic octahedron structure. Then the
geometric-arithmetic index (GA4(CYOn)) is

GA4(CYOn) = 6n
{

1 +

√
n2 + 4n + 3

n + 2

}
.

Proof. Let CYOn, where n is odd, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The general formula of the eccentricity-based geometric-arithmetic index is

GA4(G) = ∑
uvεE(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

.

Using the edge partitioned from Table 5, we obtained the following computations:

GA4(CYOn) = n
(2
√

n+1
2 ·

n+1
2

n+1
2 + n+1

2

)
+ 6n

(2
√

n+1
2 ·

n+3
2

n+1
2 + n+3

2

)
+ 5n

(2
√

n+3
2 ·

n+3
2

n+3
2 + n+3

2

)
,

GA4(CYOn) = n
(2
√
( n+1

2 )2

n + 1

)
+ 6n

(√
n2 + 4n + 3

n + 2

)
+ 5n

(2
√
( n+3

2 )2

n + 3

)
,

GA4(CYOn) = 6n
{

1 +

√
n2 + 4n + 3

n + 2

}
.

Theorem 16. Let CYOn for all n ≥ 4, where n is even, be the cyclic octahedron structure. Then the
geometric-arithmetic index (GA4(CYOn)) is

GA4(CYOn) = 6n
{

1 +

√
n2 + 6n + 8

n + 3

}
.

Proof. Let CYOn, where n is even, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The general formula of the eccentricity-based geometric-arithmetic index is

GA4(G) = ∑
uvεE(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

.

Using the edge partitioned from Table 6, we obtained the following computations:

GA4(CYOn) = 5n
(2
√

n+2
2 ·

n+2
2

n+2
2 + n+2

2

)
+ 6n

(2
√

n+2
2 ·

n+4
2

n+2
2 + n+4

2

)
+ n

(2
√

n+4
2 ·

n+4
2

n+4
2 + n+4

2

)
,

GA4(CYOn) = 5n
(2
√
( n+2

2 )2

n + 2

)
+ 6n

(√
n2 + 6n + 8

n + 3

)
+ n

(2
√
( n+4

2 )2

n + 4

)
,

GA4(CYOn) = 6n
{

1 +

√
n2 + 6n + 8

n + 3

}
.
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2.9. Atom Bond Connectivity Index

In this section, we desscribe how we found the eccentricity-based atom bond connectivity index
of the cyclic octahedron structure (ABC5(CYOn)).

Theorem 17. Let CYOn for all n ≥ 3, where n is odd, be the cyclic octahedron structure. Then, the atom bond
connectivity index (ABC5(CYOn)) is

ABC5(CYOn) = 2n
{√

n− 1
n + 1

+
5
√

n + 1
n + 3

+ 6
√

n
n2 + 4n + 3

}
.

Proof. Let CYOn, where n is odd, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The general formula of the eccentricity-based atom bond connectivity index is

ABC5(G) = ∑
uvεE(G)

√
ε(u) + ε(v)− 2

ε(u) · ε(v) .

Using the edge partitioned from Table 5, we obtained the following computations:

ABC5(CYOn) = n

√√√√ n+1
2 + n+1

2 − 2
n+1

2 ·
n+1

2
+ 6n

√√√√ n+1
2 + n+3

2 − 2
n+1

2 ·
n+3

2
+ 5n

√
n+3

2 + n+3
2 − 2

n+3
2 ·

n+3
2

,

ABC5(CYOn) = n

√
n + 1− 2
( n+1

2 )2
+ 12n

√
n + 2− 2

n2 + 4n + 3
+ 5n

√
n + 3− 2
( n+3

2 )2
,

ABC5(CYOn) = 2n
{√

n− 1
n + 1

+
5
√

n + 1
n + 3

+ 6
√

n
n2 + 4n + 3

}
.

Theorem 18. Let CYOn for all n ≥ 4, where n is even, be the cyclic octahedron structure. Then the atom bond
connectivity index (ABC5(CYOn)) is

ABC5(CYOn) = 2n
{

5
√

n
n + 2

+

√
n + 2

n + 4
+ 6

√
n + 1

n2 + 6n + 8

}
.

Proof. Let CYOn, where n is even, be the cyclic octahedron structure containing 5n vertices and
12n edges.

The general formula of the eccentricity-based atom bond connectivity index is

ABC5(G) = ∑
uvεE(G)

√
ε(u) + ε(v)− 2

ε(u) · ε(v) .

Using the edge partitioned from Table 6, we obtained the following computations:

ABC5(CYOn) = 5n

√
n+2

2 + n+2
2 − 2

n+2
2 ·

n+2
2

+ 6n

√√√√ n+2
2 + n+4

2 − 2
n+2

2 ·
n+4

2
+ n

√√√√ n+4
2 + n+4

2 − 2
n+4

2 ·
n+4

2
,

ABC5(CYOn) = 5n

√
n + 2− 2
( n+2

2 )2
+ 12n

√
n + 3− 2

n2 + 6n + 8
+ n

√
n + 4− 2
( n+4

2 )2
,
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ABC5(CYOn) = 2n
{

5
√

n
n + 2

+

√
n + 2

n + 4
+ 6

√
n + 1

n2 + 6n + 8

}
.

3. Comparison

In this section, we present tabular and graphical comparisons of the above computed indices.
Table 8 shows a comparison of the eccentric connectivity index, total eccentricity, average eccentricity,
first Zagreb index, second Zagreb index, third Zagreb index, atom bond connectivity index, and
geometric arithmetic index for small values of n. Figure 3 shows a graphical comparison of the indices.

Table 8. Comparison of ξ(G), ζ(G), avec(G), M∗1 (G), M∗∗1 (G), M∗2 (G), GA4(G), and ABC5(G) of
G ∼= CYOn.

n ξ(G) ζ(G) avec(G) M∗
1 (G) M∗∗

1 (G) M∗
2 (G) GA4(G) ABC5(G)

3 304 66 3.3 304 221 480 47.7 31.8
4 320 68 3.4 320 236 532 45.8 31.3
5 600 129 4.3 600 559.5 1248 71.8 43.7
6 624 132 4.4 624 588 1350 70 43.1
7 992 212 5.3 992 1130 2560 95.8 53.8
8 1024 216 5.4 1024 1176 2728 92.5 53.1
9 1480 315 6.3 1480 1992.5 4560 119.8 62.7
10 1520 320 6.4 1520 2060 4810 116.2 62.1

Figure 3. Graphical behavior of the eccentric indices of the cyclic octahedron structure with different
colors: ξ(G) is green, ζ(G) is red, avec(G) is blue, M∗1 (G) = ξ(G), M∗∗1 (G) is black, M∗2 (G) is cyan,
GA4(G) is gold, and ABC5(G) is orange.

4. Conclusions

As depicted above in Figure 3 and Table 8, one can easily see the different aspects of behavior of
the cyclic octahedron structure with respect to the eccentric-based indices.
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