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Abstract: A topological index is a number related to the atomic index that allows quantitative
structure–action/property/toxicity connections. All the more vital topological indices correspond to
certain physico-concoction properties like breaking point, solidness, strain vitality, and so forth,
of synthetic mixes. The idea of the hyper Zagreb index, multiple Zagreb indices and Zagreb
polynomials was set up in the substance diagram hypothesis in light of vertex degrees. These indices
are valuable in the investigation of calming exercises of certain compound systems. In this paper,
we computed the first and second Zagreb index, the hyper Zagreb index, multiple Zagreb indices and
Zagreb polynomials of the line graph of wheel and ladder graphs by utilizing the idea of subdivision.

Keywords: hyper Zagreb index; first and second Zagreb index; multiple Zagreb indices; Zagreb
polynomials; line graph; subdivision graph; tadpole; wheel; ladder

1. Introduction

Chemical graph theory is a branch of mathematical chemistry in which we apply apparatuses
of the graph hypothesis to display the substance numerically. This hypothesis contributes noticeably
to the synthetic sciences. A sub-atomic diagram is a straightforward limited graph in which
vertices mean that the atoms and edges indicate concoction bonds in hidden compound structure.
A topological index is actually a numerical amount related to the concoction constitution indicating
the connection of the substance structure with numerous physio-synthetic properties, compound
reactivity, and organic action. A decade ago, the diagram hypothesis found extensive use in research.
The graph hypothesis has given physicists a variety of valuable apparatuses, such as topological files.
Cheminformatics is a new subject that is a mix of science, arithmetic, and data science. It ponders
quantitative structure–movement (QSAR) and structure–property (QSPR) connections that are utilized
to anticipate the natural exercises and properties of synthetic mixes.

A graph G with vertex set V and edge set E are associated if there exists a connection between
any combination of vertices in G. A network is just a connected diagram having no various edges
and no self loops. For a graph G, the level of a vertex v is the quantity of edges occurrence to v and is
indicated by ξ(v).

A topological list Top(G) of a graph G is a number with the property that for each chart H
isomorphic to G, Top(H) = Top(G). The idea of the topological file originated from the work
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done by Wiener [1], while at the same time, he was aiming to determine the breaking point of
paraffin. He named this list as the way number. Later on, the way number was renamed as the Wiener
index. The Wiener list is the first and most concentrated topological list, both from hypothetical and
applications perspectives, and is characterized as the aggregate of separations between all sets of
vertices in G (see [2] for details).

I. Gutman and N.Trinajstic [3] introduced the first and second Zagreb indices based on the degree
of vertices as:

M1(G) = ∑
r1r2∈E(G)

[ξ(r1) + ξ(r2)], (1)

M2(G) = ∑
r1r2∈E(G)

[ξ(r1)× ξ(r2)]. (2)

In 2013, Shirdel et al. [4] introduced the “hyper Zagreb index” as:

HM(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]2. (3)

M. Ghorbani and N. Azimi defined [5] multiple Zagreb indices as:

PM1(G) = ∏
r1r2∈E(G)

[ξ(r1) + ξ(r2)], (4)

PM2(G) = ∏
r1r2∈E(G)

[ξ(r1)× ξ(r2)]. (5)

The properties of PM1(G), PM2(G) indices for some chemical structures have been studied in [6].
The first Zagreb polynomial M1(G, x) ) and second Zagreb polynomial M2(G, x) are defined as:

M1(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)+ξ(r2)], (6)

M2(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)×ξ(r2)]. (7)

There is now extensive research activity on HM(G), PM1(G), PM2(G) indices and M1(G, x),
M2(G, x) polynomials. See [7–9] for details.

2. Applications of Topological Indices

A ago, graph hypothesis had found an amazing use in research. Compound graph speculation
has given researchers a variety of important gadgets (e.g., topological files). The Zagreb index is a
topological descriptor that is related to a considerable measure of fabricated attributes of the particles,
and has been discovered parallel to setting up the limit and Kovats constants of the particles [10].
The particle bond arranged hyper Zagreb index has a superior relationship with the security of direct
dendrimers, besides the expanded medication stores and for setting up the strain criticalness of
cycloalkanes [11–15]. To relate with certain physico-mix properties, different Zagreb indices have
particularly needed insightful control over the farsighted essentialness of the dendrimers [16,17].
The first and second Zagreb polynomials were found to aid in the calculation of the aggregate
π-electron imperativeness of the particles inside particular brutal verbalizations [18,19].

3. Topological Indices for Line Graph of Subdivided Graph L(S(G))

The subdivision graph [20] S(G) is the diagram acquired from G by supplanting every one of
its edges by a way of length 2, or equivalently, by embedding an extra vertex into each edge of G.
The line diagram of the chart G, composed L(G), is the basic diagram whose vertices are the edges
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of G, with e f ∈ E(L(G)) when e and f have a typical end point in G. Likewise, the line chart of the
subdivided diagram is indicated by L(S(G)).

The tadpole graph Tn,k is the diagram acquired by joining a cycle diagram Cn to a way of length k.
By beginning with a disjoint association of two charts G1 and G2 and including edges joining every
vertex of G1 to that of G2, one gets the whole G1 + G2 of G1 and G2. The total Cn + K1 of a cycle
Cn and a solitary vertex is alluded to as a wheel chart Wn+1 with arrange n. The Cartesian product
G1 × G2 of charts G1 and G2 is a diagram with vertex set V1 ×V2, and two vertices r1, s1 and r2, s2 are
nearby in G1 × G2 if and only if either r1 = r2 and s1s2 ∈ E2, or s1 = s2 and r1r2 ∈ E1. The stepping
stool diagram Ln is given by Ln = K2 × Pn, where Pn is the way of length n. It is along these lines
proportionate to the framework chart G2,n. The diagram acquired by means of this definition resembles
a stepping stool, having two rails and n rungs between them.

In 2011, Ranjini et al. figured the unequivocal articulations for the Schultz lists of the subdivision
diagrams of the tadpole, wheel, steerage, and stepping stool charts. They additionally contemplated the
Zagreb records of the line diagrams of the tadpole, haggle charts with subdivision in [21,22]. Ali et al. [23]
registered the topological lists for the line diagram of the sparkler chart, and Sardar et al. [24] computed
the topological files of the line diagrams of Banana tree and Firecracker diagrams. Ahmad et al. [25]
discuss the m-polynomials and degree-based topological indices for the line graph of the Firecracker
graph. Soleimani et al. [26] discuss the topological properties of nanostructures. In 2015, Su and Xu
figured the general aggregate availability records and co-lists of the line diagrams of the tadpole and
haggle charts with subdivision in [27]. Nadeem et al. [28,29] registered ABC4 and GA5 records of the
line charts of the tadpole, wheel, stepping stool, 2D−lattice, nanotube, and nanotorus of TUC4C8[p, q]
diagrams.

3.1. Zagreb Indices and Zagreb Polynomials of the Line Graph of the Tadpole Graph Tn,k

Theorem 1. Let R be the line graph of the tadpole graph Tn,k. Then

M1(R) = 8n + 8k + 12,

M2(R) = 8n + 8k + 23,

HM(R) = 32n + 32k + 96,

PM1(R) = 3× 4(2n+2k−6) × 53 × 63,

PM2(R) = 2× 4(2n+2k−6) × 63 × 93,

M1(R, x) = x3 + (2n + 2k− 6)x4 + 3x5 + 3x6,

M2(R, x) = x2 + (2n + 2k− 6)x4 + 3x6 + 3x9.

Proof. The subdivision diagram of Tn,k and the related line chart R appear individually in Figure 1a,b.
The subdivision chart S(Tn,k) contains 2n + 2k edges, so its line diagram contains 2n + 2k vertices,
out of which 3 vertices are of degree 3 and one vertex is of degree 1. The rest of the 2n + 2k− 4 vertices
are all of degree 2. It is easy to see that the aggregate number of edges of R is 2n + 2k + 1. The edge set
E(R) separates into our edge segments in view of degrees of end vertices:
E12

(
R
)
=

{
r1r2 ∈ E

(
R
)
| ξ(r1) = 1, ξ(r2) = 2

}
,

E22
(

R
)
=

{
r1r2 ∈ E

(
R
)
| ξ(r1) = 2, ξ(r2) = 2

}
,

E23
(

R
)
=

{
r1r2 ∈ E

(
R
)
| ξ(r1) = 2, ξ(r2) = 3

}
,

E33
(

R
)
=

{
r1r2 ∈ E

(
R
)
| ξ(r1) = 3, ξ(r2) = 3

}
.
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Figure 1. (a) Subdivision graph of the tadpole graph Tn,k; (b) Line graph of the subdivision graph
of (Tn,k).

These four partitions of the edge set correspond to their degree sum of neighbors of end vertices.
The number of edges in E12

(
R
)

is 1, in E22
(

R
)

there are 2n + 2k − 6, in E23
(

R
)

there are 3, and in
E33

(
R
)

there are 3. Now, using Equations (1)–(7), we have

M1(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]
,

M1(R) = ∑
r1r2∈E12(R)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E22(R)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E23(R)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E33(R)

[
ξ(r1) + ξ(r2)

]
= 3|E12(R)|+ 4|E22(R)|+ 5|E23(R)|+ 6|E33(R)|
= 3(1) + 4((2n + 2k− 6)) + 5(3) + 6(3) = 8n + 8k + 12,

M2(G) = ∑
r1r2∈E(G)

[
ξ(r1)× ξ(r2)

]
M2(R) = ∑

r1r2∈E12(R)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E22(R)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E23(R)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E33(R)

[
ξ(r1)× ξ(r2)

]
= 2|E12(R)|+ 4|E22(R)|+ 6|E23(R)|+ 9|E33(R)|
= 2(1) + 4((2n + 2k− 6)) + 6(3) + 9(3) = 8n + 8k + 23,

HM(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]2,

HM(R) = ∑
r1r2∈E12(R)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈E22(R)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈E23(R)

[
ξ(r1) + ξ(r2)

]2

+ ∑
r1r2∈E33(R)

[
ξ(r1) + ξ(r2)

]2

= 9|E12(R)|+ 16|E22(R)|+ 25|E23(R)|+ 36|E33(R)|
= 9(1) + 16(2n + 2k− 6) + 25(3) + 36(3) = 2n + 32k + 96,

PM1(G) = ∏
r1r2∈E(G)

[ξ(r1) + ξ(r2)],

PM1(R) = ∏
r1r2∈E12(R)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E22(R)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E23(R)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E33(R)

[
ξ(r1) + ξ(r2)

]
= 3|E12(R)| × 4|E22(R)| × 5|E23(R)| × 6|E33(R)| = 3× 4(2n+2k−6) × 53 × 63,
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PM2(G) = ∏
r1r2∈E(G)

[ξ(r1)× ξ(r2)],

PM2(R) = ∏
r1r2∈E12(R)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E22(R)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E23(R)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E33(R)

[
ξ(r1)× ξ(r2)

]
= 2|E12(R)| × 4|E22(R)| × 6|E23(R)| × 9|E33(R)| = 2× 4(2n+2k−6) × 63 × 93,

M1(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)+ξ(r2)],

M1(R, x) = ∑
r1r2∈E1(R)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈E2(R)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈E3(R)

x[ξ(r1)+ξ(r2)]

+ ∑
r1r2∈E4(R)

x[ξ(r1)+ξ(r2)]

= ∑
r1r2∈E1(R)

x3 + ∑
r1r2∈E2(R)

x4 + ∑
r1r2∈E3(R)

x5 + ∑
r1r2∈E4(R)

x6

= |E12(R)|x3 + |E22(R)|x4 + |E23(R)|x5 + |E33(R)|x6 = x3 + (2n + 2k− 6)x4 + 3x5 + 3x6,

M2(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)×ξ(r2)],

M2(R, x) = ∑
r1r2∈E1(R)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈E2(R)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈E3(R)

x[ξ(r1)×ξ(r2)]

+ ∑
r1r2∈E4(R)

x[ξ(r1)×ξ(r2)]

= ∑
r1r2∈E1(R)

x2 + ∑
r1r2∈E2(R)

x4 + ∑
r1r2∈E3(R)

x6 + ∑
r1r2∈E4(R)

x9

= |E12(R)|x2 + |E22(R)|x4 + |E23(R)|x6 + |E33(R)|x9 = x2 + (2n + 2k− 6)x4 + 3x6 + 3x9.

Theorem 2. Let H be the line graph of the wheel graph Wn+1. Then

M1(H) = n3 + 27n,

M2(H) =
n4 − n3 + 6n2 + 72n

2
,

HM(H) = 2n4 − n3 + 6n2 + 45n,

PM1(H) = 64n × (3 + n)n × (2n)
(

n2−n
2

)
,

PM2(H) = 94n × (3n)n × nn2−n,

M1(H, x) = 4nx4 + nx3+n +
(n2 − n

2

)
x2n,

M2(H, x) = 4nx9 + nx3n +
(n2 − n

2

)
xn2

.

Proof. The subdivision chart of wheel Wn+1 and the relating line diagram H appear separately in
Figure 2a,b. The line chart H contains 4n vertices, of which 3n vertices are of degree 3 and the others
are of degree n. It is simple to determine that the aggregate number of edges in the line diagram H are
n2 + 9n

2
. To demonstrate the above proclamation, the edge set E(H) isolates into three edge segments

in light of the degrees of end vertices:
E33

(
H
)
=

{
r1r2 ∈ E

(
H
)
| ξ(r1) = 3, ξ(r2) = 3

}
,

E3n
(

H
)
=

{
r1r2 ∈ E

(
H
)
| ξ(r1) = 3, ξ(r2) = n

}
,
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Enn
(

H
)
=

{
r1r2 ∈ E

(
H
)
| ξ(r1) = n, ξ(r2) = n

}
.

Figure 2. (a) Subdivision graph of wheel graph Wn+1; (b) Line graph of the subdivision graph of the
wheel graph Wn+1.

These three partitions of the edge set correspond to their degree sum of neighbors of end vertices.

The number of edges in E33
(

H
)

are 4n, in E3n
(

HG
)

there are n, and in Enn
(

H
)

there are
n2 − n

2
. Now,

using Equations (1)–(7), we have:

M1(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]
,

M1(H) = ∑
r1r2∈E33(H)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E3n(H)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈Enn(H)

[
ξ(r1) + ξ(r2)

]
= 6|E33(H)|+ (3 + n)|E3n(H)|+ 2n|Enn(H)|

= 6(4n) + (3 + n)(n) + 2n
(n2 − n

2
)
= n3 + 27n,

M2(G) = ∑
r1r2∈E(G)

[
ξ(r1)× ξ(r2)

]
,

M2(H) = ∑
r1r2∈E33(H)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E3n(H)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈Enn(H)

[
ξ(r1)× ξ(r2)

]
= 9|E33(H)|+ 3n|E3n(H)|+ n2|Enn(H)|

= 9(4n) + 3n(n) + n2(n2 − n
2

)
=

n4 − n3 + 6n2 + 72n
2

,

HM(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]2,

HM(H) = ∑
r1r2∈E33(H)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈E3n(H)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈Enn(H)

[
ξ(r1) + ξ(r2)

]2

= 9|E33(H)|+ (3 + n)2|E3n(H)|+ 4n2|Enn(H)|

= 9(4n) + n(3 + n)2 + 4n2
(n2 − n

2

)
= 2n4 − n3 + 6n2 + 45n,

PM1(G) = ∏
r1r2∈E(G)

[ξ(r1) + ξ(r2)],

PM1(H) = ∏
r1r2∈E33(H)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E3n(H)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈Enn(H)

[
ξ(r1) + ξ(r2)

]
= 6|E33(H)| × (3 + n)|E3n(H)| × 2n|E3(H)|

= 64n × (3 + n)n × (2n)
(

n2−n
2

)
,
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PM2(G) = ∏
r1r2∈E(G)

[ξ(r1)× ξ(r2)],

PM2(H) = ∏
r1r2∈E33(H)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E3n(H)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈Enn(H)

[
ξ(r1)× ξ(r2)

]
= 9|E33(H)| × (3n)|E3n(H)| × (n2)|Enn(H)|

= 94n × (3n)n × nn2−n,

M1(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)+ξ(r2)],

M1(H, x) = ∑
r1r2∈E1(H)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈E3n(H)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈Enn(H)

x[ξ(r1)+ξ(r2)]

= ∑
r1r2∈E1(H)

x6 + ∑
r1r2∈E2(H)

x3+n + ∑
r1r2∈E3(H)

x2n

= |E33(H)|x6 + |E3n(H)|x3+n + |Enn(H)|x2n

= 4nx4 + nx3+n +
(n2 − n

2

)
x2n,

M2(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)×ξ(r2)],

M2(H, x) = ∑
r1r2∈E1(H)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈E3n(H)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈Enn(H)

x[ξ(r1)×ξ(r2)]

= ∑
r1r2∈E1(H)

x9 + ∑
r1r2∈E2(H)

x3n + ∑
r1r2∈E3(H)

xn2

= |E33(H)|x9 + |E3n(H)|x3n ++|Enn(H)|xn2

= 4nx9 + nx3n +
(n2 − n

2

)
xn2

.

Theorem 3. Let Pn be the line graph of the ladder graph Ln of order n. Then,

M1(Pn) = 154n− 76,

M2(Pn) = 81n− 132,

HM(Pn) = 324n− 524,

PM1(Pn) = 46 × 54 × 6(9n−20),

PM2(Pn) = 46 × 64 × 9(9n−20),

M1(Pn, x) = 6x4 + 4x5 + (9n− 20)x6,

M2(Pn, x) = 6x4 + 4x6 + (9n− 20)x9.

Proof. The subdivision diagram of the stepping stool chart Ln and the comparing line chart Pn appear
in Figure 3a,b, respectively. The quantity of vertices in the line chart Pn are 6n− 4, among which 8
vertices are of degree 2 and the rest of the 6n − 12 vertices are of degree 3. It is simple to process
that the aggregate number of edges in the line chart Pn is 9n − 10. To demonstrate the above
proclamation, the edge set E(Pn) isolates into three edge parcels in light of the degrees of end vertices:
E22

(
Pn

)
=

{
r1r2 ∈ E

(
Pn

)
| ξ(r1) = 2, ξ(r2) = 2

}
,

E23
(

Pn
)
=

{
r1r2 ∈ E

(
Pn

)
| ξ(r1) = 2, ξ(r2) = 3

}
,

E33
(

Pn
)
=

{
r1r2 ∈ E

(
Pn

)
| ξ(r1) = 3, ξ(r2) = 3

}
.
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Figure 3. (a) Subdivision graph of the ladder graph Ln; (b) Line graph of the subdivision graph of the
ladder graph Ln.

These three partitions of the edge set correspond to their degree sum of neighbors of end vertices.
The number of edges in E22

(
Pn

)
are 6, in E23

(
Pn

)
there are 4, and in E33

(
Pn

)
there are 9n− 20. Now,

using Equations (1)–(7), we have:

M1(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]
,

M1(Pn) = ∑
r1r2∈E22(Pn)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E23(Pn)

[
ξ(r1) + ξ(r2)

]
+ ∑

r1r2∈E33(Pn)

[
ξ(r1) + ξ(r2)

]
= 4|E22(Pn)|+ 5|E23(Pn)|+ 6|E33(Pn)|
= 4(6) + 5(4) + 6(9n− 20) = 154n− 76,

M2(G) = ∑
r1r2∈E(G)

[
ξ(r1)× ξ(r2)

]
,

M2(Pn) = ∑
r1r2∈E22(Pn)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E23(Pn)

[
ξ(r1)× ξ(r2)

]
+ ∑

r1r2∈E33(Pn)

[
ξ(r1)× ξ(r2)

]
= 4|E22(Pn)|+ 6|E23(Pn)|+ 9|E33(Pn)|
= 4(6) + 6(4) + 9(9n− 20) = 81n− 132,

HM(G) = ∑
r1r2∈E(G)

[
ξ(r1) + ξ(r2)

]2,

HM(Pn) = ∑
r1r2∈E22(Pn)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈E23(Pn)

[
ξ(r1) + ξ(r2)

]2
+ ∑

r1r2∈E33(Pn)

[
ξ(r1) + ξ(r2)

]2

= 16|E22(Pn)|+ 25|E23(Pn)|+ 36|E33(Pn)|
= 16(6) + 25(4) + 36(9n− 20) = 324n− 524,

PM1(G) = ∏
r1r2∈E(G)

[ξ(r1) + ξ(r2)],

PM1(Pn) = ∏
r1r2∈E22(Pn)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E23(Pn)

[
ξ(r1) + ξ(r2)

]
× ∏

r1r2∈E33(Pn)

[
ξ(r1) + ξ(r2)

]
= 4|E22(Pn)| × 5|E23(Pn)| × 6|E33(Pn)| = 46 × 54 × 6(9n−20),

PM2(G) = ∏
r1r2∈E(G)

[ξ(r1)× ξ(r2)],

PM2(Pn) = ∏
r1r2∈E22(Pn)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E23(Pn)

[
ξ(r1)× ξ(r2)

]
× ∏

r1r2∈E33(Pn)

[
ξ(r1)× ξ(r2)

]
= 4|E22(Pn)| × 6|E23(Pn)| × 9|E33(Pn)| = 46 × 64 × 9(9n−20),
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M1(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)+ξ(r2)],

M1(Pn, x) = ∑
r1r2∈E1(Pn)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈E2(Pn)

x[ξ(r1)+ξ(r2)] + ∑
r1r2∈E3(Pn)

x[ξ(r1)+ξ(r2)]

= ∑
r1r2∈E1(Pn)

x4 + ∑
r1r2∈E2(Pn)

x5 + ∑
r1r2∈E3(Pn)

x6

= |E22(Pn)|x4 + |E23(Pn)|x5 ++|E33(Pn)|x6 = 6x4 + 4x5 + (9n− 20)x6,

M2(G, x) = ∑
r1r2∈E(G)

x[ξ(r1)×ξ(r2)],

M2(Pn, x) = ∑
r1r2∈E1(Pn)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈E2(Pn)

x[ξ(r1)×ξ(r2)] + ∑
r1r2∈E3(Pn)

x[ξ(r1)×ξ(r2)]

= ∑
r1r2∈E1(Pn)

x4 + ∑
r1r2∈E2(Pn)

x6 + ∑
r1r2∈E3(Pn)

x9

= |E22(Pn)|x4 + |E23(Pn)|x6 ++|E33(Pn)|x9 = 6x4 + 4x6 + (9n− 20)x9.

4. Conclusions

In this paper we determined first and second Zagreb record, Hyper Zagreb index, first numerous
Zagreb index, second different Zagreb index, and Zagreb polynomials of the line chart of tadpole and
haggle diagrams by utilizing the idea of subdivision.

In the past couple of decades, investigations of the topological indices in view of end-vertex
degrees of edges have seen a significant increase. The issue of determining the estimations of some
outstanding degree-based topological indices is completely addressed for the line diagram of the
subdivision graphs. This provides a path forward in this field of research. Also, in future we are
intrigued to register these records for the line diagrams of some outstanding graphs.
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