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Abstract: Graph theory has much great advances in the field of mathematical chemistry.
Chemical graph theory has become very popular among researchers because of its wide applications
in mathematical chemistry. The molecular topological descriptors are the numerical invariants of a
molecular graph and are very useful for predicting their bioactivity. A great variety of such indices
are studied and used in theoretical chemistry, pharmaceutical researchers, in drugs and in different
other fields. In this article, we study the chemical graph of an oxide network and compute the total
eccentricity, average eccentricity, eccentricity based Zagreb indices, atom-bond connectivity (ABC)
index and geometric arithmetic index of an oxide network. Furthermore, we give analytically closed
formulas of these indices which are helpful in studying the underlying topologies.

Keywords: molecular graph; total eccentricity; average eccentricity; eccentricity based Zagreb indices;
atom bond connectivity index; geometric arithmetic index and oxide network
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1. Introduction

Graph theory is a branch of mathematics that has a lot of applications in computer science,
electrical systems (network), interconnected systems (network), biological networks, and in chemistry.
Chemical graph theory is the rapidly developing zone among chemists and mathematicians. Chemical
graph theory helps us to predict the certain physico-chemical properties of chemical compounds by
just considering their pictorial representations [1,2].

Cheminformatics is a comparatively new subject, which is a combination of chemistry,
mathematics and information science. There is a considerable usage of graph theory in theoretical and
computational chemistry. Chemical graph theory is the topology branch of mathematical chemistry
which implements graph theory to mathematically model chemical occurrences. There has been a
lot of research in this area in the last few decades. A few references are given that demonstrate the
significance of graph theory in Mathematical Chemistry [3,4].

Let G = (V, E) be a graph, where V is a non-empty set of vertices and E is a set of edges. Chemical
graph theory applies graph theory to the mathematical modeling of molecular phenomena, which is
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helpful for the study of molecular structures. The manipulation and examination of chemical structural
information is made conceivable by using molecular descriptors. A great variety of topological indices
are studied and used in theoretical chemistry by pharmaceutical researchers. In chemical graph theory,
there are many topological indices for a connected graph, which are helpful in the study of chemical
molecules. This theory has had a great effect in the development of chemical science.

If p, q ∈ V(G), then the distance d(p, q) between p and q is defined as the length of any shortest
path in G connecting p and q. Eccentricity is the distance of vertex u from the farthest vertex in G.
In mathematical form,

ε(u) = max{d(u, v)|∀ u ∈ V(G)}. (1)

The total eccentricity index is introduced by Farooq et al. [5], which is defined as,

ζ(G) = ∑
v∈V(G)

ε(v). (2)

where ε(v) represents eccentricity of vertex v.
The average eccentricity avec(G) of a graph G is the mean value of eccentricities of all vertices of

a graph, that is,

avec(G) =
1
n ∑

v∈V(G)

ε(v). (3)

The average eccentricity and standard deviation for all Sierpiński graphs Sn
p is established by [6].

The extremal properties of the average eccentricity, conjectures and Auto graphicx, about the average
eccentricity are obtained by [7]. The bounds on the mean eccentricity of a graph, and also the change
in mean eccentricity when a graph is replaced by a subgraph, is established by [8]. For trees with fixed
diameter, fixed matching number and fixed number of pendent vertices, the lower and upper bounds
of average eccentricity are found by [9].

The “eccentricity based geometric-arithmetic (GA)” index of a graph G is defined as [10],

GA4(G) = ∑
uvεE(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

. (4)

Further results regarding the average eccentricity index and eccentricity-based geometric-arithmetic
index can be found in [11]. A new version of the ABC index is introduced by Farahani [12] which is
defined as,

ABC5(G) = ∑
uv∈E(G)

√
ε(v) + ε(u)− 2

ε(v) · ε(u) . (5)

Imran et al. computed the eccentricity based ABC index and eccentricity based geometric-arithmetic
index for copper oxide in [13]. Gao et al. calculated the result about the eccentric ABC index of linear
polycene parallelogram benzenoid in [14].

In 2010, D. Vukičević et al. and in 2012, Ghorbani et al. proposed some new modified versions of
Zagreb indices of a molecular graph G [15,16]. The first Zagreb eccentricity index is defined as:

M∗1(G) = ∑
uv∈E(G)

[ε(u) + ε(v)]. (6)

The second Zagreb eccentricity index is defined as:

M∗∗1 (G) = ∑
v∈V(G)

[ε(v)]2. (7)
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The third Zagreb eccentricity index is defined as:

M∗2(G) = ∑
uv∈E(G)

ε(u)ε(v). (8)

So, in this article, we extend the study of chemical graph theory to compute the total eccentricity,
average eccentricity, eccentricity-based Zagreb indices, ABC index and geometric arithmetic index of
oxide network. Furthermore, we give the exact result of these indices which are helpful in studying
the underlying topological properties of oxide networks.

2. Applications of Topological Indices and Motivation

The ABC index provides a very good correlation for the stability of linear alkanes as well as the
branched alkanes and for computing the strain energy of cyclo alkanes [17–20]. To correlate with
certain physico-chemical properties, the GA index has much better predictive power than the predictive
power of the Randic connectivity index [21–23]. The first and second Zagreb index were found to
occur for computation of the total π-electron energy of the molecules within specific approximate
expressions [24].

Since degree based topological indices are useful to analyzed the chemical properties of
different molecular structures. So motivated by this idea, we focus on eccentricity based topological
indices. As eccentricity based topological indices are used as an important tool to the prediction
of physico-chemical, pharmacological and toxicological properties of a compound directly from
its molecular structure. This analysis is known as the study of the quantitative structure–activity
relationship (QSAR) [25].

3. Methods

To compute our results, we use the method of combinatorial computing, vertex partition method,
edge partition method, graph theoretical tools, analytic techniques, degree counting method and sum
of degrees of neighbours method [26,27]. Moreover, we use Matlab (MathWorks, Natick, MA, USA)
for mathematical calculations and verifications (see https://en.wikipedia.org/wiki/MATLAB). We
also use the maple software (Maplesoft, McKinney, TX, USA) for plotting these mathematical results
(see https://en.wikipedia.org/wiki/Maple_(software)).

4. Oxide Network

Oxide networks play a vital role in the study of silicate networks. If we delete silicon vertices
from a silicate network, we get an oxide network OXn (see Figure 1). An n-dimensional oxide network
is denoted as OXn. The number of vertices in Oxide network are 9n2 + 3n and number of edges are
18n2. An Oxide network OXn with n = 5 is depicted in Figure 1.

4.1. Construction of Oxide Network OXn Formulas

• To prove our main results, we make a partition of vertices of the oxide network OXn for (n-levels)
based on eccentricity of each vertex in two sets. The set V1 contains those vertices which have the
eccentricity ε(u) = 2k + 1, and the number of vertices in set V1 are 6(2m− 1), 1 ≤ m ≤ n. The set
V2 contain those vertices which have the eccentricity ε(u) = 2k + 2, and the number of vertices in
set V2 are 6m, 1 ≤ m ≤ n. Also, the variable k represents the distance between two vertices, which
helps us to make this vertex partition. Also, k represents the range of the total number of vertices
with that eccentricity. More preciously, Table 1 represents the vertex partition of Oxide network
for (n-levels) based on eccentricity of each vertex.

https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/Maple_(software)
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• Now we make a partition of edges of an oxide network for (n-levels) based on eccentricity
of end vertices in three sets. The set E1 contain those edges which have the eccentricities
(ε(u), ε(v)) = (2k + 1, 2k + 1), n ≤ k ≤ 2n − 1 and the number of edges in set E1 are
6(2m− 1), 1 ≤ m ≤ n. The set E2 contain those edges which have the eccentricities (ε(u), ε(v)) =
(2k + 1, 2k + 2), n ≤ k ≤ 2n− 1, and the number of edges in set E2 are 12m, 1 ≤ m ≤ n. The set E3

contain those edges which have the eccentricities (ε(u), ε(v)) = (2k + 2, 2k + 3), n ≤ k ≤ 2n− 1,
and the number of edges in set E3 are 12m, 1 ≤ m ≤ n. Also k represent the range of total number
of pairs with that eccentricity. More preciously Table 2 represents the edge partition of oxide
network for (n-levels) based on eccentricity of end vertices.

Figure 1. An oxide network OXn with n = 5.

Table 1. Vertex partition of oxide network for (n-levels) based on eccentricity of each vertex.

ε(u) Number of Vertices Range of k Range of m and n Sets

2k + 1 6(2m− 1) n ≤ k ≤ 2n− 1 1 ≤ m ≤ n, n ≥ 1 V1
2k + 2 6m n ≤ k ≤ 2n− 1 1 ≤ m ≤ n, n ≥ 1 V2

Table 2. Edge partition of oxide network for (n-levels) based on eccentricity of end vertices.

(ε(u), ε(v)) Number of Edges Range of k Range of m and n Sets

(2k + 1, 2k + 1) 6(2m− 1) n ≤ k ≤ 2n− 1 1 ≤ m ≤ n, n ≥ 1 E1
(2k + 1, 2k + 2) 12m n ≤ k ≤ 2n− 1 1 ≤ m ≤ n, n ≥ 1 E2
(2k + 2, 2k + 3) 12m n ≤ k ≤ 2n− 2 1 ≤ m ≤ n− 1, n > 1 E3

4.2. Main Results for Oxide Network

In this section, we computed the close formulae of certain topological indices for this network.
Here we find the analytically closed results of total eccentricity index, average eccentricity index,
eccentricity based Zagreb indices, eccentricity based geometric arithmetic and atom-bond connectivity
indices for oxide networks.
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Theorem 1. Let OXn, for all n ∈ N, be the oxide network, then the total eccentricity index ζ of OXn is

ζ(OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{6mk + 4m− 2k− 1}.

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
Using the vertex partitioned from Table 1 and Equation (2), we have computed the total eccentricity

index as:

ζ(G) = ∑
v∈V(G)

ε(v)

ζ(OXn) = ∑
v∈V1(G)

ε(v) + ∑
v∈V2(G)

ε(v)

=
n

∑
m=1

2n−1

∑
k=n

6(2m− 1) · (2k + 1) +
n

∑
m=1

2n−1

∑
k=n

6m · (2k + 2)

= 6
n

∑
m=1

2n−1

∑
k=n
{(2m− 1) · (2k + 1) + m · (2k + 2)}

After an easy simplification, we get

ζ(OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{6mk + 4m− 2k− 1}.

Theorem 2. Let OXn, for all n ∈ N, be the oxide network, then the average eccentricity index avec of OXn is

avec(OXn) =
2

3n2 + n

n

∑
m=1

2n−1

∑
k=n
{6mk + 4m− 2k− 1}.

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
Using the vertex partitioned from Table 1 and Equation (3), we have computed the average

eccentricity index of oxide network avec(OXn) as:

avec(G) =
1
n ∑

v∈V(G)

ε(v)

avec(OXn) =
1
n ∑

v∈V1(G)

ε(v) +
1
n ∑

v∈V2(G)

ε(v)

avec(OXn) =
1

9n2 + 3n
{

n

∑
m=1

2n−1

∑
k=n

6(2m− 1) · (2k + 1) +
n

∑
m=1

2n−1

∑
k=n

6m · (2k + 2)}

After an easy simplification, we get

avec(OXn) =
2

3n2 + n

n

∑
m=1

2n−1

∑
k=n
{6mk + 4m− 2k− 1}.
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Theorem 3. Let OXn for all n ∈ N, be the oxide network, then the first Zagreb eccentricity index M∗1(OXn) is

M∗1(OXn) = 12
n

∑
m=1

2n−1

∑
k=n
{8mk + 5m− 2k− 1}+ 12

n−1

∑
m=1

2n−2

∑
k=n

m(4k + 5).

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
Using the vertex partitioned from Table 2 and Equation (6), we have computed first Zagreb

eccentricity index M∗1(OXn) as:

M∗1(G) = ∑
uv∈E(G)

[ε(u) + ε(v)]

M∗1(OXn) = ∑
uv∈E1(G)

[ε(u) + ε(v)] + ∑
uv∈E2(G)

[ε(u) + ε(v)] + ∑
uv∈E3(G)

[ε(u) + ε(v)]

=
n

∑
m=1

2n−1

∑
k=n

6(2m− 1)(2k + 1 + 2k + 1) +
n

∑
m=1

2n−2

∑
k=n

12m(2k + 1 + 2k + 2)

+
n−1

∑
m=1

2n−2

∑
k=n

12m(2k + 2 + 2k + 3)

= 6
n

∑
m=1

2n−1

∑
k=n
{(2m− 1)(4k + 2) + 2m(4k + 3)}+ 12

n−1

∑
m=1

2n−2

∑
k=n

m(4k + 5).

After some simplification, we obtain

M∗1(OXn) = 12
n

∑
m=1

2n−1

∑
k=n
{8mk + 5m− 2k− 1}+ 12

n−1

∑
m=1

2n−2

∑
k=n

m(4k + 5).

Theorem 4. Let OXn for all n ∈ N, be the oxide network, then the second Zagreb eccentricity index
M∗∗1 (OXn) is

M∗∗1 (OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{2m(6k2 + 8k + 3)− (2k + 1)2}.

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
The general formula of second Zagreb eccentricity index is

M∗∗1 (G) = ∑
v∈V(G)

[ε(v)]2.

M∗∗1 (G) = ∑
v∈V1(G)

[ε(v)]2 + ∑
v∈V2(G)

[ε(v)]2.

By using the values from Table 1 , we have

M∗∗1 (OXn) =
n

∑
m=1

2n−1

∑
k=n

6(2m− 1) · (2k + 1)2 +
n

∑
m=1

2n−1

∑
k=n

6m · (2k + 2)2.

M∗∗1 (OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{(2m− 1) · (2k + 1)2 + 4m · (k + 1)2}.
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After some simplification, we obtain

M∗∗1 (OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{2m(6k2 + 8k + 3)− (2k + 1)2}.

Theorem 5. Let OXn for all n ∈ N, be the oxide network, then the third Zagreb eccentricity index M∗2(OXn) is

M∗2(OXn) = 12
n

∑
m=1

2n−1

∑
k=n
{2m(8k2 + 8k + 3)− (4k2 + 2k + 1)}+ 24

n−1

∑
m=1

2n−2

∑
k=n

m(2k + 3)(k + 1).

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
The general formula of third Zagreb eccentricity index is

M∗2(G) = ∑
uv∈E(G)

[ε(u) · ε(v)].

M∗2(G) = ∑
uv∈E1(G)

[ε(u) · ε(v)] + ∑
uv∈E2(G)

[ε(u) · ε(v)] + ∑
uv∈E3(G)

[ε(u) · ε(v)]

By using the values from Table 2, we have

M∗2(OXn) =
n

∑
m=1

2n−1

∑
k=n

6(2m− 1)(2k + 1) · (2k + 1) +
n

∑
m=1

2n−1

∑
k=n

12m(2k + 1) · (2k + 2)

+
n−1

∑
m=1

2n−2

∑
k=n

12m(2k + 2) · (2k + 3).

M∗2(OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{(2m− 1)(2k + 1)2 + 2m(4k2 + 4k + 2k + 2)}+ 24

n−1

∑
m=1

2n−2

∑
k=n

m(k + 1)(2k + 3).

After some simplification, we obtain

M∗2(OXn) = 12
n

∑
m=1

2n−1

∑
k=n
{2m(8k2 + 8k + 3)− (4k2 + 2k + 1)}+ 24

n−1

∑
m=1

2n−2

∑
k=n

m(2k + 3)(k + 1).

Theorem 6. Let OXn for all n ∈ N, be the oxide network, then the geometric-arithmetic index GA4(OXn) is

GA4(OXn) = 12
n

∑
m=1

2n−1

∑
k=n

{2m− 1
2

+ 2m
√
(2k + 1)(2k + 2)

(4k + 3)

}

+ 24
n−1

∑
m=1

2n−2

∑
k=n

m

√
(2k + 2)(2k + 3)

4k + 5
.

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
The general formula of eccentricity based geometric arithmetic index is

GA4(G) = ∑
uvεE(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

.
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GA4(G) = ∑
uvεE1(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

+ ∑
uvεE2(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

+ ∑
uvεE3(G)

2
√

ε(u) · ε(v)
ε(u) + ε(v)

Using the edge partitioned from Table 2, we have the following computations

GA4(OXn) =
n

∑
m=1

2n−1

∑
k=n

6(2m− 1) · 2
√
(2k + 1) · (2k + 1)
2k + 1 + 2k + 1

+
n

∑
m=1

2n−1

∑
k=n

12m · 2
√
(2k + 1) · (2k + 2)
2k + 1 + 2k + 2

+
n−1

∑
m=1

2n−2

∑
k=n

12m · 2
√
(2k + 2) · (2k + 3)
2k + 2 + 2k + 3

.

GA4(OXn) = 12
n

∑
m=1

2n−1

∑
k=n

{
(2m− 1)

√
(2k + 1)2

4k + 2
+ 2

√
(2k + 1) · (2k + 2)

4k + 3

}

+ 24
n−1

∑
m=1

2n−2

∑
k=n

m
√
(2k + 2) · (2k + 3)

4k + 5
.

After some simplification, we obtain

GA4(OXn) = 12
n

∑
m=1

2n−1

∑
k=n

{2m− 1
2

+ 2m
√
(2k + 1)(2k + 2)

(4k + 3)

}

+ 24
n−1

∑
m=1

2n−2

∑
k=n

m

√
(2k + 2)(2k + 3)

4k + 5
.

Theorem 7. Let OXn for all n ∈ N, be the oxide network, then the atom-bond connectivity index
ABC5(OXn) is

ABC5(OXn) = 12
n

∑
m=1

2n−1

∑
k=n

{ (2m− 1)
√

k
2k + 1

+ m

√
4k + 1

(2k + 1)(2k + 2)

}

+ 12
n−1

∑
m=1

2n−2

∑
k=n

m

√
4k + 3

(2k + 2)(2k + 3)
.

Proof. Let OXn, where n ∈ N, be the oxide network containing 9n2 + 3n vertices and 18n2 edges.
The general formula of eccentricity based atom-bond connectivity index is

ABC5(G) = ∑
uvεE(G)

√
ε(u) + ε(v)− 2

ε(u) · ε(v) .

ABC5(G) = ∑
uvεE1(G)

√
ε(u) + ε(v)− 2

ε(u) · ε(v) + ∑
uvεE2(G)

√
ε(u) + ε(v)− 2

ε(u) · ε(v) + ∑
uvεE3(G)

√
ε(u) + ε(v)− 2

ε(u) · ε(v) .
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Using the edge partitioned from Table 2, we have the following computations

ABC5(OXn) =
n

∑
m=1

2n−1

∑
k=n

6(2m− 1)

√
2k + 1 + 2k + 1− 2
(2k + 1) · (2k + 1)

+
n

∑
m=1

2n−1

∑
k=n

12m

√
2k + 1 + 2k + 2− 2
(2k + 1) · (2k + 2)

+
n−1

∑
m=1

2n−2

∑
k=n

12m

√
2k + 2 + 2k + 3− 2
(2k + 2) · (2k + 3)

.

ABC5(OXn) = 6
n

∑
m=1

2n−1

∑
k=n
{(2m− 1)

√
4k

(2k + 1)2 + 2m

√
4k + 1

(2k + 1) · (2k + 2)
}

+ 12
n−1

∑
m=1

2n−2

∑
k=n

m

√
4k + 3

(2k + 2) · (2k + 3)
.

After some simplification, we obtain

ABC5(OXn) = 12
n

∑
m=1

2n−1

∑
k=n

{ (2m− 1)
√

k
2k + 1

+ m

√
4k + 1

(2k + 1)(2k + 2)

}

+ 12
n−1

∑
m=1

2n−2

∑
k=n

m

√
4k + 3

(2k + 2)(2k + 3)
.

5. Comparisons and Discussion

For the comparison of these indices numerically for OXn, we computed all indices for different
values of m, k. Now, from Table 3, we can easily see that all indices are in increasing order as the
values of m, k are increasing. The graphical representations of the all indices for OXn are depicted in
Figures 2–8 for certain values of m, k.

Figure 2. The graphically representation of total eccentricity index ζ of OXn.
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Table 3. Numerical computation of all indices for OXn.

[m, k] ζ(G) avec(G) M∗
1 (G) M∗∗

1 (G) M∗
2 (G) GA4(G) ABC5(G)

[1, 1] 42 1.9 1416 2568 2014 112.5 315.4
[2, 2] 162 3.5 4188 5478 4352 279.9 645.3
[3, 3] 354 5.6 8304 10,523 9300 446.7 987.4
[4, 4] 618 8.4 13,764 14,587 11,248 613.6 1125.6
[5, 5] 956 10.5 16,898 16,325 13,654 842.3 1356.4
[6, 6] 1242 14.5 19,652 19,876 16,324 1023.3 1586.7

Figure 3. The graphically representation of the average eccentricity index avec of OXn.

Figure 4. The graphically representation of the first Zagreb eccentricity index M∗1 (OXn).
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Figure 5. The graphically representation of the second Zagreb eccentricity index M∗∗1 (OXn).

Figure 6. The graphically representation of the third Zagreb eccentricity index M∗∗1 (OXn).

Figure 7. The graphically representation of the geometric-arithmetic index GA4(OXn).
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Figure 8. The graphically representation of the atom-bond connectivity index ABC5(OXn).

6. Conclusions

In this paper, we computed the total eccentricity index ζ(OXn), average eccentricity index
avec(OXn), eccentricity-based Zagreb indices M∗1(OXn), M∗∗1 (OXn) and M∗2(OXn), atom-bond
connectivity index ABC5(OXn) and geometric arithmetic index GA4(OXn) of the oxide network
OXn. So these indices are useful to analyzed the physico-chemical, pharmacological and toxicological
properties of the oxide network OXn.
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