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Abstract: In this paper we prove that if M is a simple K3-group, then M×M is uniquely determined
by its order and some information on irreducible character degrees and as a consequence of our
results we show that M×M is uniquely determined by the structure of its complex group algebra.
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1. Introduction

Let G be a finite group, Irr(G) be the set of irreducible characters of G, and denote by cd(G),
the set of irreducible character degrees of G. A finite group G is called a K3-group if |G| has exactly
three distinct prime divisors. By [1], simple K3-groups are A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3)
and U4(2). Chen et al. in [2,3] proved that all simple K3-groups and the Mathieu groups are uniquely
determined by their orders and one or both of their largest and second largest irreducible character
degrees. In [4], it is proved that L2(q) is uniquely determined by its group order and its largest
irreducible character degree when q is a prime or when q = 2a for an integer a ≥ 2 such that 2a − 1 or
2a + 1 is a prime.

Let p be an odd prime number. In [5–8], it is proved that the simple groups L2(q) and some
extensions of them, where q | p3 are uniquely determined by their orders and some information on
irreducible character degrees.

In ([9], Problem 2∗)R. Brauer asked: Let G and H be two finite groups. If for all fields F, two group
algebras FG and FH are isomorphic can we get that G and H are isomorphic? This is false in general. In fact,
E. C. Dade [10] constructed two nonisomorphic metabelian groups G and H such that FG ∼= FH for all
fields F. In [11], Tong-Viet posed the following question:

Question. Which groups can be uniquely determined by the structure of their complex group algebras?

In general, the complex group algebras do not uniquely determine the groups, for example,
CD8 ∼= CQ8. It is proved that nonabelian simple groups, quasi-simple groups and symmetric
groups are uniquely determined up to isomorphism by the structure of their complex group algebras
(see [12–18]). Khosravi et al. proved that L2(p)× L2(p) is uniquely determined by its complex group
algebra, where p ≥ 5 is a prime number (see [19]). In [20], Khosravi and Khademi proved that the
characteristically simple group A5 × A5 is uniquely determined by its order and its character degree
graph (vertices are the prime divisors of the irreducible character degrees of G and two vertices p and q
are joined by an edge if pq divides some irreducible character degree of G). In this paper, we prove that
if M is a simple K3-group, then M×M is uniquely determined by its order and some information about
its irreducible character degrees. In particular, this result is the generalization of ([19], Theorem 2.4) for
p = 5, 7 and 17. Also as a consequence of our results we show that M×M is uniquely determined by
the structure of its complex group algebra.
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2. Preliminaries

If χ = ∑k
i=1 eiχi, where for each 1 ≤ i ≤ k, χi ∈ Irr(G) and ei is a natural number, then each χi is

called an irreducible constituent of χ.

Lemma 1. (Itô’s Theorem) ([21], Theorem 6.15) Let A E G be abelian. Then χ(1) divides |G : A|, for all
χ ∈ Irr(G).

Lemma 2. ([21], Corollary 11.29) Let N E G and χ ∈ Irr(G). If θ is an irreducible constituent of χN ,
then χ(1)/θ(1)

∣∣ |G : N|.

Lemma 3. ([2], Lemma 1) Let G be a nonsolvable group. Then G has a normal series 1 E H E K E G such
that K/H is a direct product of isomorphic nonabelian simple groups and |G/K| | |Out(K/H)|.

Lemma 4. (Itô-Michler Theorem) [22] Let ρ(G) be the set of all prime divisors of the elements of cd(G).
Then p 6∈ ρ(G) = {p : p is a prime number, p | χ(1), χ ∈ Irr(G)} if and only if G has a normal abelian
Sylow p-subgroup.

Lemma 5. ([3], Lemma 2) Let G be a finite solvable group of order pα1
1 pα2

2 . . . pαn
n , where p1, p2, ..., pn are

distinct primes. If (kpn + 1) - pαi
i , for each i ≤ n− 1 and k > 0, then the Sylow pn-subgroup is normal in G.

Lemma 6. ([19], Theorem 2.4) Let p ≥ 5 be a prime number. If G is a finite group such that (i) |G| = |L2(p)|2,
(ii) p2 ∈ cd(G), (iii) there does not exist any element a ∈ cd(G) such that 2p2 | a, (iv) if p is a Mersenne prime
or a Fermat prime, then (p± 1)2 ∈ cd(G), then G ∼= L2(p)× L2(p).

3. The Main Results

Lemma 7. Let S be a simple K3-group and let G be an extension of S by S. Then G ∼= S× S.

Proof. There exists a normal subgroup of G which is isomorphic to S and we denote it by the same
notation. By [23], we know that |Out(S)| 6 4 and G/CG(S) ↪→ Aut(S), which implies that CG(S) 6= 1.
As S is a nonabelian simple group, S ∩ CG(S) = 1 and it follows that SCG(S) ∼= S × CG(S). Also
CG(S) ∼= SCG(S)/S E G/S ∼= S which implies that G is isomorphic to S× S.

Theorem 1. Let G be a finite group. Then G ∼= A5 × A5 if and only if |G| = |A5|2 and 52 ∈ cd(G).

Proof. Obviously by Itô’s theorem, we get that O5(G) = 1. First we show that G is not a solvable group.
If G is a solvable group, then let H be a Hall subgroup of G of order 2452. Since G/HG ↪→ S9, we get
that 5 | |HG|. If 52 | |HG|, then 25 ∈ cd(HG). On the other hand, 252 < |HG| ≤ 2452, a contradiction.
If |HG| = 245, then |G/HG| = 45. Let L/HG be a Sylow 5-subgroup of G/HG. Then L/HG E G/HG
and so L E G and |L| = 5224. Then 25 ∈ cd(L), which is a contradiction. If |HG| | 235, then P, a Sylow
5-subgroup of HG is a normal subgroup of G, which is a contradiction by Lemma 4. Therefore G is a
nonsolvable group.

Since G is nonsolvable, by Lemma 3, G has a normal series 1 E H E K E G such that K/H is a
direct product of isomorphic nonabelian simple groups and |G/K| | |Out(K/H)|. As |G| = 243252, we
have K/H ∼= A5, A6 or A5 × A5 by [23]. If K/H ∼= A6, then |H| = 5 or 10. Using Lemma 2, 5 ∈ cd(H),
a contradiction. If K/H ∼= A5, then |H| = 60 or |H| = 30. By Lemma 2, 5 ∈ cd(H). If H is a solvable
group, then by Lemma 5, P E H, where P ∈ Syl5(H), which is a contradiction. Therefore |H| = 60 and
so H ∼= A5. Hence G is an extension of A5 by A5 and by Lemma 7, G ∼= A5 × A5. If K/H ∼= A5 × A5,
then |H| = 1 and G ∼= A5 × A5.

Theorem 2. Let G be a finite group. Then G ∼= L2(17) × L2(17) if and only if |G| = |L2(17)|2 and
172 ∈ cd(G).
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Proof. Obviously O17(G) = 1. On the contrary let G be a solvable group. First we show that there
exists no normal subgroup N of G such that

(a) |N| = 2i3j17k, where k 6= 0 and i < 8; or (b) |N| = 28172; or (c) |N| = 2817.
Let N be a normal subgroup of G. If |N| = 2i3j17k, where k 6= 0 and i < 8, then by Lemma 5,

P E G, where P ∈ Syl17(G). Hence O17(G) 6= 1, which is a contradiction. If |N| = 28172, then
172 ∈ cd(N), which is impossible. If |N| = 2817, then |G/N| = 3417. If T/N ∈ Syl17(G/N), then
T/N E G/N. Therefore T E G, where |T| = 17228 and this is a contradiction as we stated above.

Let M be a minimal normal subgroup of G, which is an elementary abelian p-group. Obviously
p 6= 17. Let p = 2. Then |M| = 2i, where 0 < i ≤ 8 and so |G/M| = 28−i34172. Then T/M E G/M,
where T/M ∈ Syl17(G/M). Therefore T E G and |T| = 1722i, which is a contradiction. Hence p = 3
and |M| = 3i, where 1 ≤ i ≤ 4.

If i = 4, then G/CG(M) ↪→ Aut(M) ∼= GL(4, 3) and |GL(4, 3)| = 29 × 36 × 5 × 13. Hence
172 | |CG(M)|. Since M is an abelian subgroup of G, thus 34 | |CG(M)|. If |CG(M)| = 172342j, where
j 6= 8, then by the above discussion we get a contradiction. Otherwise, CG(M) = G and so by Burnside
normal p-complement theorem, G has a normal 3-complement of order 17228, which is a contradiction.

If i = 3, then |G/M| = 281723. Let H/M be a Hall subgroup of G/M of order 28172.
Then |H| = 28 33172. Since G/HG ↪→ S3, thus 33172 | |HG|. If 28 - |HG|, then by the above
discussion we get a contradiction. Therefore |HG| = 2833172, i.e., H E G. Let B be a Hall subgroup
of H of order |B| = 28172. Then similarly to the above 2817 | |BH |. If |BH | = 28172, then we get a
contradiction. If |BH | = 2817, then T/BH E B/BH where T/BH ∈ Syl17(B/BH). Therefore |T| = 28172,
which is a contradiction.

If i = 2, then |G/M| = 2832172. Let H/M be a Hall subgroup of G/M of order 28172.
Then |H| = 2832172. Thus similarly to the above, 172 | |HG| and 172 ∈ cd(HG). Then by the same
argument as above we get that HG has a normal subgroup of order 2i172, which is a contradiction.

If i = 1, then |G/M| = 2833172. Let H/M be a Hall subgroup of G/M of order 28172.
Then |H| = 281723. Since G/HG ↪→ S27 we get that 17 | |HG|. If 28 - |HG| or |HG| = 2817k, where
k 6= 0, then we get a contradiction. If |HG| = 281723, then HG has a normal subgroup of order 2i172,
which is a contradiction. If |HG| = 28 × 17× 3, then |G/HG| = 3317. Therefore T/HG E G/HG, where
T/HG ∈ Syl17(G/HG). Hence T E G and |T| = 281723, which is a contradiction as we stated above.

Therefore G is nonsolvable and by Lemma 3, G has a normal series 1 E H E K E G such that
K/H ∼= L2(17) or L2(17)× L2(17) and |G/K| | |Out(K/H)|.

If K/H ∼= L2(17), then |H| = 233217 or 243217 and so 17 ∈ cd(H). If H is a solvable group,
then by Lemma 5, P E H, where P ∈ Syl17(H), which is a contradiction by Lemma 4. Otherwise by
Lemma 3 and [23] we get that H ∼= L2(17). Therefore G is an extension of L2(17) by L2(17) and by
Lemma 7, G ∼= L2(17)× L2(17).

Obviously if K/H ∼= L2(17)× L2(17), then G ∼= L2(17)× L2(17).

In the sequel, we show that if G is a finite group of order |L2(7)× L2(7)|, such that G has an
irreducible character of order 72 or 26, then we can not conclude that G ∼= L2(7)× L2(7). So we need
more assumptions to characterize L2(7)× L2(7).

Remark 1. Using the notations of GAP [24], if A = SmallGroup(56, 11) and H = A × A × Z9, then
|H| = |L2(7)× L2(7)| and H has an irreducible character of degree 72.

Similarly if B = SmallGroup(784, 160) and K = B× S3 × S3, then |H| = |L2(7)× L2(7)| and H has
an irreducible character of degree 26.

Theorem 3. Let G be a finite group. Then G ∼= L2(7)× L2(7) if and only if |G| = 263272 and 26, 72 ∈ cd(G).

Proof. If G is a solvable group, then let H be a Hall subgroup of G of order 2672. Since G/HG ↪→ S9,
we have |HG| = 2i7j, where 0 ≤ i ≤ 6 and 1 ≤ j ≤ 2. Using Lemma 2, 2i, 7j ∈ cd(HG). If O2(HG) 6= 1,
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then by Lemma 2, |O2(HG)| ∈ cd(O2(HG)), which is a contradiction. Similarly O7(HG) = 1, which
shows that G is a nonsolvable group.

Therefore G has a normal series 1 E H E K E G such that K/H ∼= L2(8), L2(7) or L2(7)× L2(7)
and |G/K| | |Out(K/H)|.

If K/H ∼= L2(8), then |H| = 56. Using Lemma 2, 8 ∈ cd(H) and since 64 > 56, we get
a contradiction.

If K/H ∼= L2(7), then |H| = 22 × 3× 7 or 23 × 3× 7. If |H| = 22 × 3× 7, then by Lemma 2,
7 ∈ cd(H). Since there exists no nonabelian simple group S such that |S| | |H|, we get that H is a
solvable group. then by Lemma 5, P E H where P ∈ Syl7(H), which is a contradiction by Lemma 4.
So |H| = 23 × 3× 7, by the same argument for the proof of Theorem A in [2], we get that H ∼= L2(7).
Therefore G is an extension of L2(7) by L2(7) and by Lemma 7, G ∼= L2(7)× L2(7).

If K/H ∼= L2(7)× L2(7), obviously we have G ∼= L2(7)× L2(7).

Remark 2. We note that Theorems 1, 2 and 3 are generalizations of Lemma 6 for special cases p = 5, 7, 17.

Lemma 8. Let G be a finite group. If |G| = 2i3j5, where i ≥ 3 or j ≥ 1, and 2i, 3j ∈ cd(G), then G is not
solvable. If |G| = 2i3j52, where i ≥ 6 or j ≥ 2, and 2i, 3j ∈ cd(G), then G is not solvable.

Proof. On the contrary let G be a solvable group.
Let O2(G) 6= 1 and |O2(G)| = 2t, where 1 ≤ t ≤ i. By the assumption, there exists χ ∈ Irr(G)

such that χ(1) = 2i. If σ ∈ Irr(O2(G)) such that [χO2(G), σ] 6= 0, then by Lemma 2, 2i/σ(1) is a divisor
of |G : O2(G)| = 2i−t. Since σ(1) | |O2(G)|, we get that σ(1) = 2t, which is a contradiction. Similarly
O3(G) = 1.

Therefore Fit(G) = O5(G) 6= 1. We know that G/CG(Fit(G)) ↪→ Aut(Fit(G)) and since G is a
solvable group, CG(Fit(G)) 6 Fit(G). Therefore |G| is a divisor of |Fit(G)| · |Aut(Fit(G))| and easily
we can see that in each case we get a contradiction.

Similarly to the above we have the following result:

Lemma 9. Let G be a finite group.

(a) If |G| = 2i3j7, where i ≥ 2 or j ≥ 2, and 2i, 3j ∈ cd(G), then G is not solvable.
(b) If |G| = 2i3j72, where i ≥ 6 or j ≥ 3, and 2i, 3j ∈ cd(G), then G is not solvable.

Theorem 4. Let G be a finite group.

(a) If |G| = 263452 and 26, 34 ∈ cd(G), then G ∼= A6 × A6 or G ∼= Z5 ×U4(2);
(b) If |G| = 2123852 and 212, 38 ∈ cd(G), then G ∼= U4(2)×U4(2).

Proof. Lemma 8 gives us that G is not solvable and so G has a normal series 1 E H E K E G such that
K/H is a direct product of isomorphic nonabelian simple groups and |G/K| | |Out(K/H)|.

(a) By assumptions K/H is isomorphic to A5, A6, U4(2), A5 × A5 or A6 × A6.

If K/H ∼= A5, then |H| = 24335 or |H| = 23335. By Lemma 8, H is not solvable and H has a
normal series 1 E A E B E H such that B/A is a direct product of m copies of a nonabelian simple
group S and |H/B| | |Out(B/A)|. If |H| = 24335, we have B/A ∼= A5 or A6. Then |A| = 36, 18, 6 or 3,
which is a contradiction. If |H| = 23335, then similarly we get a contradiction.

If K/H ∼= A6, then |H| = 2i325, where 1 ≤ i ≤ 3. By Lemma 2, 2i, 32 ∈ cd(H). Using Lemma 8,
H is not a solvable group and so i 6= 1. Also H has a normal series 1 E A E B E H such that B/A is a
direct product of m copies of a nonabelian simple group S and |H/B| | |Out(B/A)|. If |H| = 23325, by
Theorem B in [2], we get that H ∼= A6, and so by Lemma 7, G ∼= A6 × A6. If |H| = 22325, then |A| = 3,
which is a contradiction.
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If K/H ∼= U4(2), then |H| = 5 and G = K. Therefore G is an extension of Z5 by U4(2). We know
that G/CG(H) ↪→ Aut(H) and (G/H)/(CG(H)/H) ∼= G/CG(H). So G is a central extension of H by
U4(2). Since the Schur multiplier of U4(2) is 2, we get that G ∼= Z5 ×U4(2).

Let K/H ∼= A5× A5. We know that Out(K/H) ∼= Out(A5) o S2, and so |G/K| | 8. Thus |H| = 2i32,
where 0 ≤ i ≤ 2, which is a contradiction.

Finally, if K/H ∼= A6 × A6, then G ∼= A6 × A6.

(b) In this case, we have K/H ∼= A5, A6, U4(2), A5 × A5, A6 × A6 or U4(2)×U4(2).

If K/H ∼= A5, then |H| = 210375 or 29375. By Lemma 8, H is not a solvable group and H has a
normal series 1E AE BE H such that B/A is a nonabelian simple group. Therefore A is a {2, 3}-group
such that O2(A) = O3(A) = 1 and this is a contradiction.

If K/H ∼= A6, then similarly to the above we get a contradiction.
If K/H ∼= U4(2), then |H| = 2i345, where 5 ≤ i ≤ 6. By Lemma 2, 2i, 34 ∈ cd(H). Therefore H is

not a solvable group and H has a normal series 1 E A E B E H such that B/A is a nonabelian simple
group. If |H| = 25345, then A is a {2, 3}-group such that O2(A) = O3(A) = 1 and this is a contradiction.
If |H| = 26345, by Theorem A in [2], we get that H ∼= U4(2) and by Lemma 7, G ∼= U4(2)×U4(2).

Let K/H ∼= A5 × A5. We know that Out(K/H) ∼= Out(A5) o S2. Therefore |G/K| | 8 and thus
|H| = 2i36, where 5 ≤ i ≤ 8, which is a contradiction.

If K/H ∼= A6 × A6, then |Out(K/H)| = 25 and thus |H| = 2i34, where 1 ≤ i ≤ 6, which is
a contradiction.

Therefore K/H ∼= U4(2)×U4(2), and so G ∼= U4(2)×U4(2).

Corollary 1. If |G| = 263452 and 26, 34 ∈ cd(G) and 6 /∈ cd(G), then G ∼= A6 × A6.

Theorem 5. If |G| = 2103672 and 210, 36 ∈ cd(G), then G ∼= U3(3)×U3(3).

Proof. By Lemma 9 it follows that G is not solvable and G has a normal series 1E H E K E G such that
K/H ∼= L2(7), L2(8), U3(3), L2(7)× L2(7), L2(8)× L2(8) or U3(3)×U3(3) and |G/K| | |Out(K/H)|.

If K/H ∼= L2(7), then |H| = 27357 or 26357. By Lemma 9, H is not solvable and H has a normal
series 1 E A E B E H such that B/A is a nonabelian simple group. Therefore A is a {2, 3}-group such
that O2(A) = O3(A) = 1, which is a contradiction. If K/H ∼= L2(8), then similarly to the above we get
a contradiction.

If K/H ∼= L2(7) × L2(7) or K/H ∼= L2(8) × L2(8), then H is a {2, 3}-group, and we get a
contradiction similarly.

If K/H ∼= U3(3), then |H| = 25337 or 24337. By Lemma 9, H is not a solvable group and H has a
normal series 1 E A E B E H such that B/A is a nonabelian simple group.

If |H| = 24337, then A is a {2, 3}-group such that O2(A) = O3(A) = 1, which is a contradiction.
If |H| = 25337, by Theorem C in [2], we get that H ∼= U3(3) and by Lemma 7, G ∼= U3(3)×U3(3).

Finally, if K/H ∼= U3(3)×U3(3), then obviously G ∼= U3(3)×U3(3).

Theorem 6. If G is a finite group such that

(i) |G| = 263472,
(ii) 26, 34 ∈ cd(G),
(iii) 6, 12, 18 /∈ cd(G),

then G ∼= L2(8)× L2(8).

Proof. By Lemmas 3 and 9, we get that G has a normal series 1 E H E K E G such that K/H ∼=
L2(7), L2(8), U3(3), L2(7)× L2(7) or L2(8)× L2(8), and |G/K| | |Out(K/H)|.

If K/H ∼= L2(7), then |H| = 23337 or 22337. By Lemma 9, H is not a solvable group and H has a
normal series 1 E A E B E H such that B/A is a nonabelian simple group and |H/B| | |Out(B/A)|.
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If |H| = 23337, we have B/A ∼= L2(7) or L2(8). If B/A ∼= L2(7), then |A| = 32, a contradiction.
If B/A ∼= L2(8), then by Itô’s theorem, |A| = 1 and 1 E B ∼= L2(8)E H, where |H : B| = 3. By the
proof of Lemma 1 in [2] (Lemma 3 in the present paper), H/B is isomorphic to a subgroup of Out(B/A)

and by [23] we have H ∼= L2(8).3. Using GAP cd(H) = {1, 7, 8, 21, 27}, Z(H) = 1 and Aut(H) ∼=
H. Now similarly to the proof of Lemma 7, G ∼= (L2(8).3) × L2(7). Then 6 ∈ cd(G), which is a
contradiction by (iii). If |H| = 22337, then by Lemma 9, H is not a solvable group, and this is a
contradiction by [23].

If K/H ∼= L2(8), then |H| = 23 · 32 · 7 or 23 · 3 · 7. Using Lemma 9, H is not a solvable group.
If |H| = 23 · 32 · 7, by the same argument as Theorem C in [2], we get that H ∼= L2(8) and by Lemma 7,
G ∼= L2(8)× L2(8). If |H| = 23 · 3 · 7, then by Theorem A in [2], H ∼= L2(7). Since K/H ∼= L2(8),
similarly to the proof of Lemma 7, we get that K ∼= L2(7)× L2(8). So G is a an extension of Z3 by
L2(7)× L2(8). Since 6 ∈ cd(G) or 18 ∈ cd(G), we get a contradiction by (iii).

If K/H ∼= U3(3), then |H| = 42 or |H| = 21.
If |H| = 42, then H is solvable and H′ is a cyclic group, since |H| is square-free. Therefore |H′| = 7

and |H/H′| = 6. Now easily we see that the equation ∑ϕ∈Irr(H) ϕ2(1) = |H|, where ϕ(1) | |H|, has no
solution and so we get a contradiction.

If |H| = 21, then by Lemma 2, we get that 3 ∈ cd(H) and so H is a Frobenius group of order 21,
which is denoted by 7 : 3. Also Z(H) = 1 and Aut(H) ∼= H.2. Now similarly to the proof of Lemma 7,
we get that K ∼= (7 : 3)×U3(3). Since |G : K| = 2, we have G ∼= (7 : 3)×U3(3)).2 and so 6 ∈ cd(G) or
12 ∈ cd(G), which is a contradiction by (iii).

If K/H ∼= L2(7)× L2(7). We know that Out(K/H) ∼= Out(L2(7)) o S2. Then |G/K| | 8 and thus
|H| = 32, which is a contradiction.

Finally K/H ∼= L2(8)× L2(8), and so G ∼= L2(8)× L2(8).

Theorem 7. If |G| = |L3(3)|2 and 28, 36 ∈ cd(G), then G ∼= L3(3)× L3(3).

Proof. First we show that G is not a solvable group. If G is a solvable group, then O2(G) = O3(G) = 1
and so Fit(G) = O13(G) 6= 1. Since |Aut(Z13)| = 223, |Aut(Z169)| = 22 · 3 · 13 and |Aut(Z13 ×
Z13)| = 25 · 32 · 7 · 13, therefore |G| - |Fit(G)| · |Aut(Fit(G))|, which is a contradiction. Therefore G
is nonsolvable and G has a normal series 1 E H E K E G such that K/H ∼= L3(3) or L3(3)× L3(3),
where |G/K| | |Out(K/H)|. If K/H ∼= L3(3)× L3(3), then G = L3(3)× L3(3). If K/H ∼= L3(3), then
|G/K| = 1 or 2, and thus |H| = 243313 or |H| = 233313. If H is a solvable group, then Fit(H) ∼= Z13

and |H| - |Fit(H)| · |Aut(Fit(H))|, which is a contradiction. Hence H is not a solvable group and so
H ∼= L3(3) and by Lemma 7, G ∼= L3(3)× L3(3).

As a consequence of the above theorem, by ([25], Theorem 2.13), we have the following result
which is a partial answer to the question arose in [11].

Corollary 2. Let M be a simple K3-group and H = M×M. If G is a group such that CG ∼= CH, then G ∼= H.
Thus M×M, where M is a simple K3-group, is uniquely determined by the structure of its complex group algebra.
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