
Article

Several Results of Fractional Differential and Integral
Equations in Distribution

Chenkuan Li 1,*, Changpin Li 2 and Kyle Clarkson 1

1 Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada;
kyleclarkson17@hotmail.com

2 Department of Mathematics, Shanghai University, Shanghai 200444, China; lcp@shu.edu.cn
* Correspondence: lic@brandonu.ca

Received: 10 May 2018; Accepted: 6 June 2018; Published: 8 June 2018
����������
�������

Abstract: This paper is to study certain types of fractional differential and integral equations, such

as θ(x− x0)g(x) = 1
Γ(α)

∫ x
0 (x− ζ)α−1 f (ζ)dζ, y(x) +

∫ x
0

y(τ)√
x−τ

dτ = x−
√

2
+ + δ(x), and xk

+

∫ x
0 y(τ)(x−

τ)α−1 dτ = δ(m)(x) in the distributional sense by Babenko’s approach and fractional calculus.
Applying convolutions and products of distributions in the Schwartz sense, we obtain generalized
solutions for integral and differential equations of fractional order by using the Mittag-Leffler function,
which cannot be achieved in the classical sense including numerical analysis methods, or by the
Laplace transform.
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1. Introduction

Fractional calculus deals with integrals and derivatives of arbitrary order, which unifies and
extends integer-order differentiation and n-fold integration. Up to now, fractional operators have
been applied in various areas, such as anomalous diffusion, long-range interactions, long-memory
processes and materials, waves in liquids, and physics. Recently, Zimbardo et al. [1] generalized the
Parker equation, which describes the acceleration and transport of energetic particles in astrophysical
plasmas, to the case of anomalous by Caputo fractional derivatives. As far as we know, fractional
calculus is one of best tools to construct certain electro-chemical problems and characterizes long-term
behaviors, allometric scaling laws, nonlinear operations of distributions [2] and so on.

An integral equation is an equation containing an unknown function under an integral sign.
Integral equations are useful and powerful mathematical tools in both pure and applied mathematics.
They have various applications in numerous physical problems, chemistry, biology, electronics and
mechanics [3–5]. Many initial and boundary value problems associated with ordinary (or partial)
differential equations can be transformed into problems of solving integral equations [6]. For example,
Gorenflo and Mainardi [7] provided interesting applications of Abel’s integral equations of the first
and second kind in solving the partial differential equation which describes the problem of the heating
(or cooling) of a semi-infinite rod by influx (or efflux) of heat across the boundary into (or from)
its interior. There have been lots of approaches, including numerical analysis, thus far to studying
fractional differential and integral equations, including Abel’s equations, with many applications [8–21].
Recently, Li et al. [22,23] studied integral equations associated with Abel’s types in the distributional
(Schwartz) sense, based on new fractional calculus of distributions and derived fresh results which
are not achievable in the classical sense. On the other hand, the development of science has led to
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formation of many physical and engineering problems that can be mathematically represented by
differential equations. For instance, problems from electric circuits, chemical kinetics, and transfer of
heat can all be characterized as differential equations [24].

We briefly introduce the necessary concepts and definitions of fractional calculus of distributions
in D′(R+) in Section 2, where we demonstrate several examples of computing fractional derivatives as
well as applications to solving Abel’s integral equations of the first kind for arbitrary α ∈ R. In Section 3,
we present Babenko’s approach to solving several fractional differential and integral equations based
on new convolution and product of generalized functions (an active area in distribution theory).
We often obtain an infinite series, related to the Mittag-Leffler function, as the solution of integral or
differential equation. We imply a number of novel results, which cannot be derived or approximated
by numerical analysis methods or by the Laplace transform, since solutions are in the distributional
sense in general.

2. Fractional Calculus in D′(R+)

In order to investigate fractional integral and differential equations in the generalized sense,
we briefly introduce the following basic concepts, with several interesting examples of solving Abel’s
integral equations in distribution. Let D(R) be the Schwartz space (testing function space) [25] of
infinitely differentiable functions with compact support in R, andD′(R) the (dual) space of distributions
defined on D(R). A sequence φ1, φ2, · · · , φn, · · · goes to zero in D(R), if and only if these functions
vanish outside a certain fixed bounded set, and converge to zero uniformly together with their
derivatives of any order. Clearly, D(R) is not empty since it contains the following function

φ(x) =

{
e−

1
1−x2 if |x| < 1,

0 otherwise.

Evidently, any locally integrable function f (x) on R is a (regular) distribution in D′(R) as

( f (x), φ(x)) =
∫ ∞

−∞
f (x)φ(x)dx

is well defined. Hence f is linear and continuous on D(R). Furthermore, the functional δ(x− x0) on
D(R) given by

(δ(x− x0), φ(x)) = φ(x0)

is a member of D′(R), according to the topological structure of the Schwartz testing function space.
Let f ∈ D′(R). The distributional derivative f ′ (or d f /dx), is defined as

( f ′, φ) = −( f , φ′)

for φ ∈ D(R). Therefore,

(δ(n)(x− x0), φ(x)) = (−1)n(δ(x− x0), φ(n)(x)) = (−1)nφ(n)(x0).

Let

g(x) = x+ =

{
x if x > 0,
0 otherwise.

As an example, we will find the distributional derivative of g (note that this function is not
differentiable at x = 0 in the classical sense). Indeed, using integration by parts, we derive

(g′(x), φ(x)) = −(g(x), φ′(x)) = −
∫ ∞

0
xφ′(x)dx =

∫ ∞

0
φ(x)dx = (θ(x), φ(x))
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which infers that
g′(x) = θ(x)

where θ(x) is the Heaviside function.
Let Reλ > −n− 1, λ 6= −1,−2, · · · ,−n. Then the distribution xλ

+ [25] is defined by

(xλ
+, φ(x)) =

∫ ∞

0
xλφ(x)dx =

∫ 1

0
xλ[φ(x)− φ(0)− · · · − tn−1

(n− 1)!
φ(n−1)(0)]dt

+
∫ ∞

1
xλφ(x)dx +

n

∑
k=1

φ(k−1)(0)
(k− 1)!(λ + k)

.

Clearly, the right-hand side regularizes the integral on the left. This defines the distribution xλ
+

for Reλ 6= −1,−2, . . . .
Assume that f and g are distributions in D′(R+). Then the convolution f ∗ g is well defined by

the equation [25]
(( f ∗ g)(x), φ(x)) = (g(x), ( f (y), φ(x + y)))

for φ ∈ D(R). This also implies that

f ∗ g = g ∗ f and ( f ∗ g)′ = g′ ∗ f = g ∗ f ′.

Let D′(R+) be the subspace of D′(R) with support contained in R+. It follows from [25–27] that

Φλ =
xλ−1
+

Γ(λ)
∈ D′(R+) is an entire analytic function of λ on the complex plane, and

xλ−1
+

Γ(λ)

∣∣∣∣∣
λ=−n

= δ(n)(x), for n = 0, 1, 2, . . . (1)

which plays an important role in solving fractional differential equations by using the distributional
convolutions. Let λ and µ be arbitrary numbers, then the following identity

Φλ ∗Φµ = Φλ+µ (2)

is satisfied [23].
Let λ be an arbitrary complex number and g(x) be a distribution in D′(R+). We define the

primitive of order λ of g as the distributional convolution

gλ(x) = g(x) ∗
xλ−1
+

Γ(λ)
= g(x) ∗Φλ. (3)

Note that this is well defined since the distributions g and Φλ are in D′(R+). We shall write
the convolution

g−λ =
dλ

dxλ
g = g(x) ∗Φ−λ

as the fractional derivative of the distribution g of order λ if Reλ ≥ 0, and
dλ

dxλ
g is interpreted as the

fractional integral if Reλ < 0.
We should add that Gorenflo and Mainardi [7] formally presented the derivative of order n

(non-negative integer) of g by the generalized convolution between Φ−n and g,

dn

dxn g(x) = g(n)(x) = Φ−n(x) ∗ g(x) =
∫ x

0
g(τ)δ(n)(x− τ)dτ



Mathematics 2018, 6, 97 4 of 19

based on the well known properties∫ ∞

−∞
g(τ)δ(n)(τ − x)dτ = (−1)ng(n)(x), δ(n)(x− τ) = (−1)nδ(n)(τ − x).

Then, a formal definition of the fractional derivative of order λ could be

Φ−λ(x) ∗ g(x) =
1

Γ(−λ)

∫ x

0

g(τ)
(x− τ)1+λ

dτ, λ ∈ R+.

Note that this convolution is in the distributional sense (and it does not exist in the classical sense
as the kernel Φ−λ(x) is not locally integrable).

Example 1. Let

g(x) =

{
1 if 0 < x < 1 and x is irrational,
0 otherwise.

Then,
g(1.5)(x) = δ(0.5)(x)− δ(0.5)(x− 1)

where

δ(0.5)(x) = −
x−1.5
+

2
√

π
and δ(0.5)(x− 1) = −

(x− 1)−1.5
+

2
√

π
.

In fact, we have for φ ∈ D(R)

(g′(x), φ(x)) = −(g(x), φ′(x)) = −
∫ ∞

−∞
g(x)φ′(x)dx = −

∫ 1

0
φ′(x)dx

= −φ(1) + φ(0) = (δ(x)− δ(x− 1), φ(x))

as the measure of rational numbers is zero. This indicates that

g′(x) = δ(x)− δ(x− 1).

Obviously, by the sequential fractional derivative law, we come to

g(1.5)(x) =
d0.5

dx0.5 g′(x) = δ(0.5)(x)− δ(0.5)(x− 1)

and

δ(0.5)(x) =
d0.5

dx0.5 δ(x) =
d0.5

dx0.5 Φ0 =
x−1.5
+

Γ(−0.5)
= −

x−1.5
+

2
√

π

using
Γ(−0.5) = −2

√
π.

Furthermore,

g(0.5)(x) =
d−0.5

dx−0.5 g′(x) = δ(−0.5)(x)− δ(−0.5)(x− 1)

where

δ(−0.5)(x) = Φ0.5 ∗Φ0 = Φ0.5 =
x−0.5
+

Γ(0.5)
=

x−0.5
+√

π

δ(−0.5)(x− 1) =
(x− 1)−0.5

+√
π
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which are regular distributions (locally integrable functions on R). In general, we can get

g(x) = θ(x)− θ(x− 1)

distributionally by noting that
θ(x) = Φ1(x).

Then, we imply that for any complex number α ∈ C

g(α)(x) = θ(α)(x)− θ(α)(x− 1) = Φ−α(x) ∗Φ1(x) + Φ−α(x) ∗Φ1(x− 1)

= Φ1−α(x) + Φ1−α(x− 1) =
x−α
+

Γ(1− α)
+

(x− 1)−α
+

Γ(1− α)
.

In particular,

g(5/2) =
3x−5/2

+

4
√

π
+

3(x− 1)−5/2
+

4
√

π

by

Γ(−3/2) =
4
3
√

π.

Now we are ready to present the following theorem.

Theorem 1. Let g(x) be an infinitely differentiable function on [0, ∞] and f be an unknown distribution in
D′(R+). Then the generalized Abel’s integral equation of the first kind

θ(x− x0)g(x) =
1

Γ(α)

∫ x

0
(x− ζ)α−1 f (ζ)dζ (4)

has the solution
f (x) = θ(x− x0)g(x) ∗Φ−α

where α is any real number in R and x0 ≥ 0. In particular, we have four different cases depending on the value
of α.

(i) If m < α < m + 1 for m = 0, 1, . . . , then

f (x) =
dm+1

dxm+1 θ(x− x0)g(x) ∗
x−α+m
+

Γ(−α + m + 1)

= g(x0)
(x− x0)

−α
+

Γ(−α + 1)
+ · · ·+ g(m)(x0)

(x− x0)
−α+m
+

Γ(−α + m + 1)

+
1

Γ(−α + m + 1)

∫ x

x0

g(m+1)(ζ)(x− ζ)−α+mdζ

for x ≥ x0.
(ii) If α = 1, 2, . . . , then

f (x) = g(x0)δ
(α−1)(x− x0) + · · ·+ g(α−1)(x0)δ(x− x0) + θ(x− x0)g(α)(x).

(iii) If α = 0, then f (x) = θ(x− x0)g(x).
(iv) If α < 0, then for x ≥ x0

f (x) =
1

Γ(−α)

∫ x

x0

g(ζ)(x− ζ)−α−1dζ

which is well defined.
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Proof. Clearly, we can convert Equation (4) into

θ(x− x0)g(x) = f (x) ∗Φα

which infers that

θ(x− x0)g(x) ∗Φ−α = ( f (x) ∗Φα) ∗Φ−α = f (x) ∗Φ0 = f (x) ∗ δ(x) = f (x)

by using Equations (1) and (2). Assuming m < α < m + 1 for m = 0, 1, . . . , we derive that

Φ−α =
dm+1

dxm+1
x−α+m
+

Γ(−α + m + 1)

where
x−α+m
+

Γ(−α + m + 1)

is a locally integrable function on R since −1 < −α + m < 0. Hence,

f (x) = θ(x− x0)g(x) ∗ dm+1

dxm+1
x−α+m
+

Γ(−α + m + 1)
=

dm+1

dxm+1 θ(x− x0)g(x) ∗
x−α+m
+

Γ(−α + m + 1)
.

In particular, choosing m = 0 (then 0 < α < 1) and x0 = 0 we come to

f (x) =
1

Γ(1− α)

∫ x

0

g′(ζ)
(x− ζ)α

dζ

for a differentiable function g(x) (in the classical sense). This is the solution for the classical Abel’s
integral equation.

Obviously, we get from integration by parts,

(
d

dx
θ(x− x0)g(x), φ(x)) = −

∫ ∞

x0

g(x)φ′(x)dx = g(x0)φ(x0) +
∫ ∞

x0

φ(x)g′(x)dx

where φ is the testing function. This implies that

d
dx

θ(x− x0)g(x) = g(x0)δ(x− x0) + θ(x− x0)g′(x).

By mathematical induction,

dm+1

dxm+1 θ(x− x0)g(x) = g(x0)δ
(m)(x− x0) + g′(x0)δ

(m−1)(x− x0)

= + · · ·+ g(m)(x0)δ(x− x0) + θ(x− x0)g(m+1)(x).

This infers that for x ≥ x0

f (x) =
dm+1

dxm+1 θ(x− x0)g(x) ∗
x−α+m
+

Γ(−α + m + 1)

= g(x0)
(x− x0)

−α
+

Γ(−α + 1)
+ · · ·+ g(m)(x0)

(x− x0)
−α+m
+

Γ(−α + m + 1)

+
1

Γ(−α + m + 1)

∫ x

x0

g(m+1)(ζ)(x− ζ)−α+mdζ.

The rest of the proof follows easily. This completes the proof of Theorem 1.
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Example 2. Let m = 0, 1, . . . . Then the generalized Abel’s integral equation

θ(x− 1)ex =
∫ x

0
f (τ)(x− τ)m−0.5dτ (5)

has the solution in D′(R+)

f (x) =
1(

m− 0.5
m

)
m!
√

π

{
δ(m−0.5)(x− 1)

+ δ(m−3/2)(x− 1) + · · ·+ δ(−0.5)(x− 1) +
1√
π

∫ x

1
θ(τ − 1)eτ(x− τ)−0.5dτ

}
.

Proof. Clearly, we can write Equation (5) to

θ(x− 1)ex =
Γ(m + 0.5)
Γ(m + 0.5)

∫ x

0
f (τ)(x− τ)m−0.5dτ = Γ(m + 0.5)Φm+0.5 ∗ f ,

which deduces that by Theorem 1

f (x) =
1

Γ(m + 0.5)
Φ−m−0.5 ∗ θ(x− 1)ex =

1
Γ(m + 0.5)

Φ0.5 ∗Φ−m−1 ∗ θ(x− 1)ex

as
Φ0 ∗ f = δ ∗ f = f .

Obviously,(
d

dx
θ(x− 1)ex, φ(x)

)
= −

∫ ∞

1
exφ′(x)dx = φ(1) +

∫ ∞

−∞
θ(x− 1)exφ(x)dx

which claims that
d

dx
θ(x− 1)ex = δ(x− 1) + θ(x− 1)ex.

Similarly, we have

d2

dx2 θ(x− 1)ex = δ′(x− 1) + δ(x− 1) + θ(x− 1)ex.

By mathematical induction, we come to

dm+1

dxm+1 θ(x− 1)ex = δ(m)(x− 1) + δ(m−1)(x− 1) + · · ·+ δ(x− 1) + θ(x− 1)ex.

Therefore,

Φ0.5 ∗Φ−m−1 ∗ θ(x− 1)ex

= Φ0.5 ∗
dm+1

dxm+1 θ(x− 1)ex

= Φ0.5 ∗
{

δ(m)(x− 1) + δ(m−1)(x− 1) + · · ·+ δ(x− 1) + θ(x− 1)ex
}

= δ(m−0.5)(x− 1) + δ(m−3/2)(x− 1) + · · ·+ δ(−0.5)(x− 1) +
1√
π

∫ x

1
θ(τ − 1)eτ(x− τ)−0.5dτ.

This completes the proof by noting that

Γ(m + 0.5) =
(

m− 0.5
m

)
m!
√

π.
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Example 3. Let m = 1, 2, . . . and

sin x+ =

{
sin x if x ≥ 0,
0, otherwise.

Then the generalized Abel’s integral equation

sin x+ =
∫ x

0
f (τ)(x− τ)−m−0.5dτ (6)

has the solution in D′(R+)

f (x) =

(
−0.5

m

)
m! xm+0.5

+

√
π

E2,m+3/2(−x2)

where Eα,β(x) is the Mittag-Leffler function, defined by the series expansion

Eα,β(x) =
∞

∑
k=0

xk

Γ(αk + β)

for α, β > 0.

Proof. Evidently, we can convert Equation (6) to

sin x+ =
Γ(−m + 0.5)
Γ(−m + 0.5)

∫ x

0
f (τ)(x− τ)−m−0.5dτ = Γ(−m + 0.5)Φ−m+0.5 ∗ f .

Hence from Theorem 1, we get

f (x) =
1

Γ(−m + 0.5)
Φm−0.5 ∗ sin x+ =

1
Γ(−m + 0.5) Γ(m− 0.5)

∫ x

0
sin τ (x− τ)m−3/2dτ

=
1

Γ(−m + 0.5) Γ(m− 0.5)

∞

∑
k=0

(−1)k

(2k + 1)!

∫ x

0
τ2k+1 (x− τ)m−3/2dτ.

Setting τ = xt, we arrive at

∫ x

0
τ2k+1 (x− τ)m−3/2dτ =

Γ(2k + 2) Γ(m− 0.5)
Γ(2k + m + 3/2)

x2k+m+0.5
+ .

This implies

f (x) =
1

Γ(−m + 0.5)

∞

∑
k=0

(−1)k

Γ(2k + m + 3/2)
x2k+m+0.5
+

=
xm+0.5
+

Γ(−m + 0.5)

∞

∑
k=0

(−x2)k

Γ(2k + m + 3/2)

=
xm+0.5
+

Γ(−m + 0.5)
E2,m+3/2(−x2).

This completes the proof by using

Γ(−m + 0.5) =
√

π(
−0.5

m

)
m!

.
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Furthermore, the generalized Abel’s integral equation

δ(k)(x) + x−
√

3
+ =

∫ x

0
f (τ)(x− τ)−m−0.5dτ

has the solution in D′(R+)

f (x) =

(
−0.5

m

)
m!

√
π

Φm−k−0.5(x) +

(
−0.5

m

)
Γ(−
√

3 + 1)m!
√

π
Φm−

√
3+0.5(x)

for k = 0, 1, . . . and m = 1, 2, . . . .
Similarly, the generalized Abel’s integral equation

δ(k)(x) + x−
√

3
+ =

∫ x

0
f (τ)(x− τ)m−0.5dτ (7)

has the solution in D′(R+)

f (x) =
1(

m− 0.5
m

)
m!
√

π

Φ−m−k−0.5(x) +
Γ(−
√

3 + 1)(
m− 0.5

m

)
m!
√

π

Φ−m−
√

3+0.5(x).

for k, m = 0, 1, . . . .

To end off this section, we would add that many applied problems from physical, engineering and
chemical processes lead to integral equations, which at first glance have nothing in common with Abel’s
integral equations, and due to this perception, additional efforts are undertaken for the development
of analytical or numerical procedure for solving these equations. However, their transformations to
the form of Abel’s integral equations will speed up the solution process [24], or, more significantly,
lead to distributional solutions in cases where classical ones do not exist [22].

As an example, the following integral equation with a moving integration limit∫ y

0

1
(y2 − x2)β

f (x)dx = g(y)

can be converted into Abel’s integral equation to solve in the distributional sense. The interested
readers are referred to [22] for the detailed methods.

3. Babenko’s Approach in Distribution

In this section, we shall extend the method used by Yu. I. Babenko in his book [28], for solving
various types of fractional differential and integral equations in the classical sense, to generalized
functions. The method itself is close to the Laplace transform method in the ordinary sense, but it can be
used in more cases, such as solving fractional differential equations with variable coefficients. Clearly,
it is always necessary to show convergence of the series obtained as solutions by other analytical tools,
although it is a hard job in general [24]. We point out that Babenko’s method can also be used to solve
certain partial differential equations for heat and mass transfer theory, and suggest the interested
readers are referred to [24] for the detailed arguments.

We must add that Oliver Heaviside (1850–1925) introduced an ingenious way of solving ordinary
or partial differential equations arising from electromagnetic problems through algebration [29–31].
He considered, for example, the factor d2/dx2 f as product of the differential operator d2/dx2 with f
itself. Therefore, the differential equation for a given g(x)

y(x) + y′′(x) = g(x)
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can be converted to
(1 + d2/dx2)y(x) = g(x),

which implies that the solution

y(x) = (1 + d2/dx2)−1g(x) =
∞

∑
n=0

(−1)nD2ng(x), D = d/dx

if it converges. This method is identical to Babenko’s Approach.
Let g(x) ∈ D′(R+) be given. We now study Abel’s integral equation of the second kind

y(x) +
λ

Γ(α)

∫ x

0
(x− τ)α−1 y(τ) dτ = g(x) (8)

with demonstrations of examples in the distributional space D′(R+), where α ∈ R and λ is a constant.
Further, we will investigate and solve several integral equations with variable coefficients by products
of distributions and fractional operations of generalized functions. The results derived here cannot be
achieved by the Laplace transform in general, or numerical analysis methods since distributions are
undefined at points in R.

Clearly, Equation (8) is equivalent to the convolutional equation

(δ + λΦα) ∗ y(x) = g(x)

in D′(R+), although it is undefined in the classical sense for α ≤ 0. We should point out it becomes the
differential equation

y + λy ∗ δ(m) = y + λy(m) = g

if α = −m.

Example 4. Let λ be a nonzero constant and α > 0. Then the fractional differential equation

λy(x) + y(α)(x) = δ(x) (9)

has the solution in the space D′(R+)

y(x) = xα−1
+ Eα,α(−λxα

+).

Proof. Equation (9) can be written into

λy + Φ−α ∗ y = δ

which is equivalent to
λΦα ∗ y + y = Φα ∗ δ.

By Babenko’s method we get

y(x) =
∞

∑
n=0

(−1)nλnΦn+1
α ∗ δ =

∞

∑
n=0

(−1)nλnΦn+1
α

=
∞

∑
n=0

(−1)nλnΦα(n+1) =
∞

∑
n=0

(−1)nλn xαn+α−1
+

Γ(αn + α)

= xα−1
+

∞

∑
n=0

(−λxα
+)

n

Γ(αn + α)
= xα−1

+ Eα,α(−λxα
+)

which is convergent, and hence well defined, by noting that xα−1
+ is a locally integrable function on R.
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In particular, the differential equation

λy(x) + y′(x) = δ(x)

has the solution in the space D′(R+)

y(x) = θ(x)e−λx.

Similarly, the fractional differential equation

λy(x) + y(α)(x) = x+

has the solution
y(x) = xα+1

+ Eα,α+2(−λxα
+)

where α > 0.
Indeed,

y(x) =
∞

∑
n=0

(−1)nλnΦn+1
α ∗ x+ =

∞

∑
n=0

(−1)nλnΦn+1
α ∗ x+

Γ(2)

=
∞

∑
n=0

(−1)nλnΦ(n+1)α ∗Φ2 =
∞

∑
n=0

(−1)nλnΦ(n+1)α+2(x)

= xα+1
+

∞

∑
n=0

(−1)nλn xαn
+

Γ(nα + α + 2)
= xα+1

+ Eα,α+2(−λxα
+).

Using the same argument, the fractional differential equation

λy(x) + y(α)(x) = δ′(x)

has the solution
y(x) = xα−2

+ Eα,α−1(−λxα
+)

where α > 1 and xα−2
+ is a regular distribution.

More generally, the fractional differential equation

y(α)(x) + λy(β)(x) = δ(x), α > β ≥ 0

has the solution
y(x) = xα−1

+ Eα−β, α(−λxα−β
+ ).

Remark 1. We begin by using Example 4 as a simple demonstration of Babenko’s Approach. Clearly, all the
equations presented above can be easily solved by the Laplace transform. For example, applying the Laplace
transform to the equation

y(α)(x) + λy(β)(x) = δ(x), α > β ≥ 0

gives

y∗(s) =
1

sα + λsβ
.

The inverse transform implies
y(x) = xα−1

+ Eα−β, α(−λxα−β
+ ).
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However, we must mention that Babenko’s approach in the distributional sense is much more general than
that of the Laplace transform. As an example, the Laplace transform does not work for the equation

y(α)(x) + λy(β)(x) = x−1.5
+ , α > β ≥ 0

as the distribution x−1.5
+ is not locally integrable. As indicated below, Babenko’s approach provides an efficient

method of dealing with this kind of equation.

Example 5. Let α > 0. Then the fractional differential and integral equation (mixed type)

y(0.75)(x) +
λ

Γ(α)

∫ x

0
(x− τ)α−1y(τ)dτ = x−1.5

+ (10)

has the solution in the space D′(R+)

y(x) = −2
√

πx−0.75
+ Eα+0.75, 0.25(−λxα+0.75

+ ).

Proof. Equation (10) can be changed to

y(0.75)(x) + λy(−α)(x) = Γ(−0.5)Φ−0.5(x)

which is equivalent to
Φ−0.75 ∗ y + λΦα ∗ y = −2

√
πΦ−0.5.

Applying Φ0.75 to both sides of the above equation, we only need to study the following
integral equation

y + λΦα+0.75 ∗ y = −2
√

πΦ0.25.

Therefore,

y(x) = −2
√

π
∞

∑
n=0

(−1)nλnΦαn+0.75n ∗Φ0.25 = −2
√

π
∞

∑
n=0

(−1)nλnΦαn+0.75n+0.25

= −2
√

π
∞

∑
n=0

(−1)nλn xαn+0.75n−0.75
+

Γ(αn + 0.75n + 0.25)

= −2
√

πx−0.75
+

∞

∑
n=0

(−λxα+0.75
+ )n

Γ(αn + 0.75n + 0.25)

= −2
√

πx−0.75
+ Eα+0.75, 0.25(−λxα+0.75

+ )

which is convergent.

Example 6. The generalized Abel’s integral equation

y(x) +
∫ x

0

y(τ)√
x− τ

dτ = x−
√

2
+ + δ(x) (11)

has the solution in the space D′(R+)

y(x) = x−
√

2
+ + δ(x)− x−0.5

+ −
Γ(1−

√
2)
√

π x0.5−
√

2
+

Γ(3/2−
√

2)
+

π

1−
√

2
x1−
√

2
+

−Γ(1−
√

2)π3/2x3/2−
√

2
+ E0.5,5/2−

√
2(−
√

πx0.5
+ ) + πE0.5,1(−

√
πt0.5

+ ).
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Proof. Equation (11) can be written into

y(x) +
√

π

Γ(0.5)

∫ x

0

y(τ)√
x− τ

dτ = Γ(1−
√

π)
x−
√

2
+

Γ(1−
√

π)
+

x−1
+

Γ(0)
= Γ(1−

√
π)Φ1−

√
π + Φ0.

By Babenko’s method we get

y(x) =
∞

∑
n=0

(−1)nπn/2Φn/2 ∗
(

Γ(1−
√

π)Φ1−
√

π + Φ0

)
=

∞

∑
n=0

(−1)nπn/2Φn/2 ∗ Γ(1−
√

π)Φ1−
√

π

+
∞

∑
n=0

(−1)nπn/2Φn/2 , I1 + I2.

Clearly,

I2 =
∞

∑
n=0

(−1)nπn/2Φn/2 =
∞

∑
n=0

(−1)nπn/2 xn/2−1
+

Γ(n/2)

= δ(x)−
√

π
x−0.5
+

Γ(0.5)
+

∞

∑
n=2

(−1)nπn/2 xn/2−1
+

Γ(n/2)

= δ(x)− x−0.5
+ + πE0.5,1(−

√
πx0.5

+ )

where
E0.5,1(x) = ex2

erfc(−x)

and erfc(x) is the error function complement defined by

erfc(x) =
2√
π

∫ ∞

x
e−t2

dt.

As for I1, we come to

I1 = Γ(1−
√

2)
∞

∑
n=0

(−1)nπn/2Φn/2+1−
√

2

= x−
√

2
+ −

Γ(1−
√

2)
√

π x0.5−
√

2
+

Γ(3/2−
√

2)

+Γ(1−
√

2)π
x1−
√

2
+

Γ(2−
√

2)
+ Γ(1−

√
2)

∞

∑
n=3

(−1)nπn/2Φn/2+1−
√

2

= x−
√

2
+ −

Γ(1−
√

2)
√

π x0.5−
√

2
+

Γ(3/2−
√

2)
+

π

1−
√

2
x1−
√

2
+

−Γ(1−
√

2)π3/2x3/2−
√

2
+ E0.5,5/2−

√
2(−
√

πx0.5
+ ).

The result follows from the sum of I1 and I2.
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Remark 2. Equation (11) cannot be discussed in the classical sense, including the Laplace transform, since
the fractional integral or derivative of x−

√
2

+ , does not exist in the normal sense. Clearly, the distribution

x−
√

2
+ + δ(x) in the solution is a singular generalized function in D′(R+), while the rest

x−0.5
+ −

Γ(1−
√

2)
√

π x0.5−
√

2
+

Γ(3/2−
√

2)
+

π

1−
√

2
x1−
√

2
+

−Γ(1−
√

2)π3/2x3/2−
√

2
+ E0.5,5/2−

√
2(−
√

πx0.5
+ ) + πE0.5,1(−

√
πx0.5

+ ).

is regular (locally integrable).
Assume f is a distribution in D′(R) and g is a function in C∞(R). Then the product f g is well defined by

( f g, φ) = ( f , gφ)

for all functions φ ∈ D(R) as gφ ∈ D(R). Therefore, the product, for k = 0, 1, . . . ,

λxk

Γ(α)

∫ x

0
(x− τ)α−1 y(τ) dτ

makes sense since xk is in C∞(R) and

λ

Γ(α)

∫ x

0
(x− τ)α−1 y(τ) dτ = λΦα ∗ y

is a distribution in D′(R+) (subspace of D′(R)) for arbitrary α ∈ R if y ∈ D′(R+), according to Section 2.

Example 7. Let k ≥ 1 be an integer. Then the integral equation

xk
∫ x

0

y(τ)√
x− τ

dτ = δ(m)(x)

has a solution in the space D′(R+)

y(x) =
1√
π

{
(−1)k δ(m+k+0.5)(x)

k!(m+k
k )

+ C0δ(0.5)(x) + · · ·+ Ck−1δ(k−0.5)(x)

}

where m is a non-negative integer and C0, · · · , Ck−1 are arbitrary constants.

Proof. First, we show that

xkδ(s)(x) =

 (−1)kk!
(

s
k

)
δ(s−k)(x) if k ≤ s,

0 otherwise

for k, s = 0, 1, 2, . . . .
Indeed,

(xkδ(s)(x), φ(x)) = (−1)s(xkφ(x))(s)
∣∣∣
x=0

= (−1)sk!
(

s
k

)
φ(s−k)(0)

= (−1)kk!
(

s
k

)
(δ(s−k)(x), φ(x))

for k ≤ s.
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On the other hand, we have
xkδ(s)(x) = 0

if k > s.
It follows that

xk δ(m+k)(x) = (−1)kk!
(

m + k
k

)
δ(m)(x).

Therefore,

∫ x

0

y(τ)√
x− τ

dτ = (−1)k δ(m+k)(x)

k!
(

m + k
k

) + C0δ(x) + · · ·+ Ck−1δ(k−1)(x)

which implies that

y(x) =
1√
π

Φ−0.5 ∗
{
(−1)k δ(m+k)(x)

k!(m+k
k )

+ C0δ(x) + · · ·+ Ck−1δ(k−1)(x)

}

=
1√
π

{
(−1)k δ(m+k+0.5)(x)

k!(m+k
k )

+ C0δ(0.5)(x) + · · ·+ Ck−1δ(k−0.5)(x)

}

where C0, · · · , Ck−1 are arbitrary constants.
Furthermore, we let k ≥ 1 be an integer. Then the integral equation

xk
∫ x

0

y(τ)
(x− τ)3/2 dτ = δ(m)(x)

has a solution in the space D′(R+)

y(x) = −2
√

π

{
(−1)k δ(m+k−0.5)(x)

k!(m+k
k )

+ C0δ(−0.5)(x) + · · ·+ Ck−1δ(k−3/2)(x)

}

where m is a non-negative integer and C0, · · · , Ck−1 are arbitrary constants.
In fact, we derive that

y(x) = Γ(−0.5)Φ0.5 ∗
{
(−1)k δ(m+k)(x)

k!(m+k
k )

+ C0δ(x) + · · ·+ Ck−1δ(k−1)(x)

}

= −2
√

π

{
(−1)k δ(m+k−0.5)(x)

k!(m+k
k )

+ C0δ(−0.5)(x) + · · ·+ Ck−1δ(k−3/2)(x)

}
.

It generally follows that the integral equation

xk
∫ x

0
y(τ)(x− τ)α−1 dτ = δ(m)(x)

has a solution

y(x) =
1

Γ(α)

{
(−1)k δ(m+k+α)(x)

k!(m+k
k )

+ C0δ(α)(x) + · · ·+ Ck−1δ(k+α−1)(x)

}

where α 6= 0,−1, . . . .
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Example 8. Let k ≥ 1 be an integer. Then the generalized integral equation

xk
+

∫ x

0

y(τ)√
x− τ

dτ = δ(m)(x) (12)

has a solution in the space D′(R+)

y(x) =
1√
π

{
2(−1)km!
(m + k)!

δ(k+m+0.5)(x) + C0δ(0.5)(x) + · · ·+ Ck−1δ(k−0.5)(x)

}
.

where m = 0, 1, 2, . . . and C0, · · · , Ck−1 are arbitrary constants.

Proof. To solve this integral equation, we require the following more complicated product of
distributions, as xk

+ is not an infinitely differentiable function (but it is a locally integrable function).
It follows from Theorem 2.3 in [32] that

xr
+ δ(r+m)(x) =

(−1)r(r + m)!
2m!

δ(m)(x)

for m, r = 0, 1, 2, . . . . We note that this product can be derived directly from the complex analysis
approach based on the Laurent series of xλ

+, xλ
− as well as e±iλπ , given below

xλ
+ =

(−1)n−1

(n− 1)!(λ + n)
δ(n−1)(x) + F−n(x+, λ),

xλ
− =

1
(n− 1)!(λ + n)

δ(n−1)(x) + F−n(x−, λ),

e±iλπ = (−1)n[1± (λ + n)π + · · · ].

Hence,

∫ x

0

y(τ)√
x− τ

dτ =
2(−1)km!
(m + k)!

δ(k+m)(x) + C0δ(x) + · · ·+ Ck−1δ(k−1)(x)

by noting that
xk
+ δ(i)(x) = 0

where i = 0, 1, 2, · · · , k− 1 and C0, · · · , Ck−1 are arbitrary constants. This implies that Equation (12)
has a solution

y(x) =
1√
π

Φ−0.5 ∗
{

2(−1)km!
(m + k)!

δ(k+m)(x) + C0δ(x) + · · ·+ Ck−1δ(k−1)(x)

}

=
1√
π

{
2(−1)km!
(m + k)!

δ(k+m+0.5)(x) + C0δ(0.5)(x) + · · ·+ Ck−1δ(k−0.5)(x)

}
.

Similarly, we let k ≥ 1 be an integer. Then, the integral equation

xk
+

∫ x

0

y(τ)
(x− τ)3/2 dτ = δ(m)(x)

has a solution in the space D′(R+)

y(x) = − 1
2
√

π

{
2(−1)km!
(m + k)!

δ(k+m−0.5)(x) + C0δ(−0.5)(x) + · · ·+ Ck−1δ(k−3/2)(x)

}
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where m is a non-negative integer, and C0, · · · , Ck−1 are arbitrary constants.
Clearly, the integral equation

xk
+

∫ x

0
y(τ)(x− τ)α−1 dτ = δ(m)(x)

has a solution

y(x) =
1

Γ(α)

{
2(−1)km!
(m + k)!

δ(k+m+α)(x) + C0δ(α)(x) + · · ·+ Ck−1δ(k+α−1)(x)

}

where α 6= 0,−1, . . . .

Gorenflo and Mainardi [7] presented the applications of Abel’s integral equations of the first and
second kind to solve the following partial equation of heat flow:

ut − uxx = 0, u = u(x, t)

in the semi-infinite intervals 0 < x < ∞ and 0 < t < ∞ of space and time, respectively. Our results
on the distributional Abel’s integral equations have potential applications to dealing with differential
equations in distribution and hence finding distributional (weak) solutions.

Remark 3. Generally speaking, there is the lack of definitions for nonlinear operations, such as product and
composition in distribution theory, although it is of great demand in the areas of differential equations and
quantum field theory. As an example, it seems hard to define the distribution δ2(x), as

(δ2(x), φ(x)) = (δ(x), δ(x)φ(x)) = δ(0)φ(0)

is undefined. Fisher, with his coauthors [33–41], has actively used the δ-sequence and neutrix limit due to van
der Corput since 1969, to deduce numerous products, powers, convolutions, and compositions of distributions
by several workable definitions. From the above examples, it is clear to see the relations between products of
generalized functions and integral equations with variable coefficients in distribution.

4. Conclusions

Applying Babenko’s method and fractional calculus, we have studied and solved several fractional
differential and integral equations, including ones with variable coefficients and a mixed type equation,
in the distributional space D′(R+) by using well defined products of generalized functions and the
Mittag-Leffler function. In particular, we discussed Abel’s integral equations of the first and second
kind for arbitrary α ∈ R by fractional operations of distributions, and derived several new and
interesting results which cannot be realized by numerical analysis, as they involve distributions which
are undefined on R, or by the Laplace transform.
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