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Abstract: In this paper, λ-harmonic maps from a Finsler manifold to a Riemannian manifold are
studied. Then, some properties of this kind of harmonic maps are presented and some examples
are given. Finally, the stability of the λ-harmonic maps from a Finsler manifold to the standard unit
sphere Sn(n > 2) is investigated.
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1. Introduction

Harmonic maps between Riemannian manifolds were first introduced by Eells and Sampson
in 1964. They showed that any map φ0 : (M, g) −→ (N, h) from any compact Riemannian manifold
(M, g) into a Riemannian manifold (N, h) with non-positive sectional curvature can be deformed into
a harmonic maps. This is so-called the fundamental existence theorem for harmonic maps. In view
of physics, harmonic maps have been studied in various fields of physics, such as super conductor,
ferromagnetic material, liquid crystal, etc. [1–9].

Lichnerowicz first studied f -harmonic maps between Riemannian manifolds as a generalization
of harmonic maps in 1970 [10]. Recently, in Cherif et al. [11], the researchers proved that any stable
f -harmonic map ψ from sphere Sn(n > 2) to Riemannian manifold N is constant. Course [12] studied
the f -harmonic flow on surfaces. Ou [13] analysed the f-harmonic morphisms as a subclass of harmonic
maps which pull back harmonic functions to f-harmonic functions. Many scholars have studied and
done research on f -harmonic maps, see for instance, [10,11,13–17].

The concept of harmonic maps from a Finsler manifold to a Riemannian manifold was first
introduced by Mo [18]. On the workshop of Finsler Geometry in 2000, Professor S. S. Chern conjectured
that the fundamental existence theorem for harmonic maps on Finsler spaces is true. In [19], Mo
and Yang, the researchers have proved this conjecture and shown that any smooth map from a
compact Finsler manifold to a compact Riemannian manifold of non-positive sectional curvature
can be deformed into a harmonic map which has minimum energy in its homotopy class. Shen
and Zhang [20] extended Mo’s work to Finsler target manifold and obtained the first and second
variation formulas.

As an application, He and Shen [21] proved that any harmonic map from an Einstein Riemannian
manifold to a Finsler manifold with certain conditions is totally geodesic and there is no stable
harmonic map from an Euclidean unit sphere Sn to any Finsler manifolds. Harmonic maps between
Finsler manifolds have been studied extensively by various researchers, see for instance, [18–22].

In [23], J. Lie introduced the notion of F -harmonic maps between Finsler manifolds.
Let F : [0, ∞) −→ [0, ∞) be a C2 function such that F ′ > 0 on (0, ∞). The smooth map
ψ : (M, F) −→ (N, h) is said to be F -harmonic if it is an extermal point of the F -energy functional
EF (ψ) := 1

cm−1

∫
SM F (e(ψ))dVSM, where e(ψ) is the energy density of ψ, cm−1 denotes the volume

of the standard (m − 1)-dimensional sphere and dVSM is the canonical volume element of SM.
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The F -energy functional is the energy , the p-energy, the α−energy of Sacks-Uhlenbeck and

exponential energy when F (t) is equal to t, (2t)
p
2

p (p ≥ 4), (1 + 2t)α(α > 1, dim M = 2) and et,
respectively [20,21,23–25].

In view of physics, when (M, F) is a Riemannian manifold, p-harmonic maps have been
extensively applied in image processing for denoising color images [26,27]. Furthermore, exponential
harmonic maps have been studied on gravity [28]. The concept of F -harmonic maps, as an extension
of harmonic, p-harmonic and exponential harmonic maps, have an important role in physics and
physical cosmology. For instance, instead of the scalar field in the Lagrangian, some of the F -harmonic
maps, such as the trigonometric functions, are studied in order to reproduce the inflation. Moreover,
there are other F -harmonic maps, such as exponential harmonic maps, are investigated in order to
depict the phenomenon of the quintessence [5,29,30].

Let ψ : (M, F) −→ (N, h) be a smooth map from a Finsler manifold (M, F) into a
Riemannian manifold (N, h) and λ : SM × N −→ (0, ∞) be a smooth positive function. A map
ψ : (M, F) −→ (N, h) is said to be λ-harmonic if it is a critical point of the λ-energy functional

Eλ(ψ) :=
1

cm−1

∫
SM

λψTrgψ∗h dVSM, (1)

where g is the fundamental tensor of (M, F), ψ∗h is the pull-back of the metric h by the map ψ and
λψ is a smooth function given by (x, y) ∈ SM −→ λψ(x, y) := λ(x, y, ψ(x)). By considering the
Euler-Lagrange equation associated to the λ-energy functional, it can be seen that any F -harmonic
map ψ : (M, F) −→ (N, h) from a Finsler manifold (M, F) into a Riemannian manifold (N, h) without
critical points (i.e., | dψx |6= 0 for all x ∈ M), is a λ-harmonic map with λ = F ′(e(ψ)).

In particular, when gradhλ = 0 and (M, F) is a Riemannian manifold, λ-harmonic maps
can be considered as the stationary solutions of inhomogeneous Heisenberg spin system, see for
instance [13,14]. Furthermore, the intersection of λ-harmonicity with curvature conditions justifies
their application for gleaning valuable information on weighted manifolds and gradient Ricci solitons,
see [15–17].

The current paper is organized as follows. In Section 2, a few concepts of Finsler geometry
are reviewed. In Section 3, the λ-energy functional of a smooth map from a Finsler manifold to a
Riemannian manifold is introduced and the corresponding Euler-Lagrange equation is obtained via
calculating the first variation formula of the λ-energy functional and an example is given. In Section 4,
the second variation formula of the λ-energy functional for a λ-harmonic map is derived. As an
application, the stability theorems for λ-harmonic maps are given.

2. Preliminaries

Throughout this paper, let (M, F) be an m-dimensional smooth, oriented, compact Finsler
manifold without boundary. In the local coordinates (xi, yi) on TM \ {0}, the fundamental tensor of
(M, F) is defined as follows:

g = gijdxi ⊗ dxj, gij :=
1
2

∂2F2

∂yi∂yj .

In this paper, the following conventions of index ranges are used

1 6 i, j, k, ... 6 m, 1 6 a, b, c, ... 6 m− 1, 1 6 A, B, C, ... 6 2m− 1.

Let ρ : SM −→ M be the natural projection on the projective sphere bundle SM. The Finsler
structure F determines two important quantities on the pull-back bundle ρ∗T∗M as follows:

ω =
∂F
∂yi dxi, A := Aijkdxi ⊗ dxj ⊗ dxk, Aijk :=

F
2

∂gij

∂yk ,
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which are called the Hilbert form and Cartan tensor, respectively. The dual of the Hilbert form ω is the

distinguished section ` := yi

F
∂

∂xi of the pull-back bundle ρ∗TM. Note that, all indices related to ρ∗TM
are raised and lowered with the metric g.

On the pull-back bundle ρ∗TM, there exists uniquely the Chern connection ∇c whose connection
1-forms {ω j

i} are satisfied the following equations

d(dxi)− dxk ∧ωi
k = 0, and dgij − gikωk

j − gjkωk
i = 2Aijk

δyk

F ,

where δyi := dyi + Ni
j dxj [31]. Here Ni

j := γi
jkyk − Ai

jkypyq and γi
jk are the formal Christoffel symbols

of the second kind for gij. The curvature 2-forms of the Chern connection, Ωi
j := dωi

j −ωk
j ∧ωi

k, have
the following structure

Ωi
j :=

1
2

R i
j kldxk ∧ dxl + P i

j kldxk ∧ δyl

F
.

See [22] for an expository proof. The Landsberg curvature of (M, F) is defined as follows:

L := Lijkdxi ⊗ dxj ⊗ dxk, Lijk := gil
ym

F
P l

mjk.

By [22], we have
Lijk = −Ȧijk,

where “.” denotes the covariant derivative along the Hilbert form. Consider a g-orthonormal frame
{ωi = vi

jdxj} for any fibre of ρ∗T∗M where ωm is the Hilbert form ω, and let {ei = uj
i

∂
∂xj } be its dual

frame where em is the distinguished section ` dual to the Hilbert form ω(= ωm). Set

eH
i := uj

i
δ

δxj , êm+a := ui
aF

∂

∂yi ,

ωi := vi
jdxj, ωa

m := va
j

δyj

F
,

(2)

where δ
δxj =

∂
∂xj − Ni

j
∂

∂yi . It can be seen that {ωA}2m−1
A=1 = {ωi, ωa

m} is a local basis for the cotangent

bundle T∗SM and {eA}2m−1
A=1 = {eH

i , êm+a} is a local basis for TSM. By (2), it can be seen that

ωi(eH
j ) = δi

j, ωi(êm+a) = 0, ωa
m(e

H
j ) = 0, ωb

m(êm+a) = δb
a . (3)

Tangent vectors on SM which are annihilated by all {ωa
m}’s form the horizontal sub-bundle HSM

of TSM. The fibres of HSM are m-dimensional. On the other hand, let VSM := ∪x∈MTSx M be the
vertical sub-bundle of TSM, its fibres are m− 1 dimensional. The decomposition TSM = HSM⊕VSM
holds because HSM and VSM are direct summands, (see [32], p. 7). The inner product g = gijdxidxj

on ρ∗TM induces a Riemannian metric ĝ on SM as follows:

ĝ = δijω
i ⊗ω j + δabωa

m ⊗ωb
m.

Furthermore, the volume element dVSM of SM with respect to ĝ is defined as follows

dVSM := ω1 ∧ · · ·ωm ∧ω1
m · · · ∧ωm−1

m .

Lemma 1. [18] For ψ = ψiω
i ∈ Γ(ρ∗T∗M), we have

divĝψ = ∑
i

ψi|i + ∑
a,b

ψaLbba = ∑
i
(c∇eH

i
ψ)(ei) + ∑

a,b
ψaLbba, (4)

where “|” denotes the horizontal covariant derivative with respect to the Chern connection and eH
i is defined

in (2).
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3. The First Variation Formula

Let ψ : (Mm, F) −→ (Nn, h) be a smooth map from a Finsler manifold (M, F) into a Riemannian
manifold (N, h), ρ : SM −→ M a natural projection on SM and ψ̃ = ψ ◦ ρ. In the sequel, we denote
the Chern connection on ρ∗TM by c∇, the connection induced by the Chern connection of (M, F) on
the pulled-back bundle ψ∗TN over SM by ∇ and the Levi-Civita connection on (N, h) by ∇N .

Let λ : SM× N −→ (0, ∞) be a smooth positive function. The λ-energy density of ψ is the function
eλ(ψ) : SM −→ R, defined by

eλ(ψ)(x, y) :=
1
2

λ(x, y, ψ(x))Trgψ∗h, (5)

where ψ∗h is the pull-back of h by the map ψ and Trg stands for taking the trace with respect to g
(the fundamental tensor of F) at (x, y) ∈ SM. By making use of (5), the λ-energy functional is defined
as follows:

Eλ(ψ) :=
1

cm−1

∫
SM

eλ(ψ)dVSM, (6)

where cm−1 denotes the volume of the standard (m− 1)-dimensional sphere and dVSM is the canonical
volume element of SM. A map ψ : (M, F) −→ (N, h) is said to be λ-harmonic if it is a critical point of
the λ-energy functional.

Let {ψt}t∈I be a smooth variation of ψ0 = ψ with the variational vector field

V =
∂ψt

∂t
∣∣
t=0 := Vα ∂

∂x̃α
◦ ψ.

For any t ∈ I, in local coordinate (xi, U) on M and (x̃α, V) on N, the λ-energy density of ψt can
be written as follows:

eλ(ψt)(x, y) =
1
2

f (x, y, ψt(x))gijψα
t|iψ

β

t|jhαβ(x̃), (7)

where x̃ = ψt(x) and dψt(
∂

∂xi ) = ψα
t|i

∂
∂x̃α ◦ψ. Due to the fact that {Vα} is independent of y and using (7),

we have

∂

∂t
eλ(ψt)

∣∣∣∣
t=0

=
1
2

∂

∂t

(
λψt g

ijψα
t|iψ

β

t|jhαβ

)∣∣∣∣
t=0

=
1
2

gijψα
i ψ

β
j hαβ

∂λψt

∂t

∣∣∣∣
t=0

+
1
2

λψgijψα
i ψ

β
j

∂hαβ

∂t

∣∣∣∣
t=0

+ λψgijψα
i

δVβ

δxj hαβ

=
1
2

gijψα
i ψ

β
j hαβ

∂λψt

∂t

∣∣∣∣
t=0

+ ∑
i

λψh(∇ei V, dψ(ei))

= I + I I,

(8)

where λψ is a smooth function given by (x, y) ∈ SM −→ λψ(x, y) := λ(x, y, ψ(x)). By using the
definition of the gradient operator, we get

I = e(ψ)(x, y)
∂

∂t
λ(x, y, ψt(x))

∣∣∣∣
t=0

= e(ψ)(x, y)dλ(x,y)(V)

= h(e(ψ)(x, y)(gradhλ(x,y))ψ(x), V(x)),

(9)

where e(ψ) := 1
2 Trgh(dψ, dψ) and λ(x,y) is the smooth function z ∈ N −→ λ(x,y)(z) = λ(x, y, z).

The function e(ψ) is called the energy density of ψ. Let Ψ := λψh(V, dψ(ei))ω
i, which is a section of

p∗T∗M . By Lemma 4, we have
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divĝΨ = ∑
i
(c∇eH

i
Ψ)(ei) + ΨaPa

bb

= ∑
i

λψ{h(∇eH
i

V, dψ(ei)) + h(V, (∇eH
i

λdψ)(ei))} − h(V, dψ(ea))Ȧa

= h
(

V, λψTrg∇dψ + dψ ◦ p(gradHλψ)− λψdψ ◦ p(KH)

)
+ ∑

i
λψh(∇eH

i
V, dψ(ei)),

(10)

where
K := Ȧi ∂

∂xi (11)

is a section of ρ∗TM. By (10), we get

I I = divĝΨ− h
(

V, λψTrg∇dψ + dψ̃(gradHλψ)− λψdψ̃(KH)

)
. (12)

By substituting (9) and (12) in (8) and considering the Green’s theorem, the first variation formula
of the λ-energy functional is obtained as follows:

d
dt

Eλ(ψt)
∣∣
t=0 = − 1

cm−1

∫
SM

h(τλ(ψ), V)dVSM,

where
τλ(ψ) := λψTrg∇dψ + dψ̃(grad H

ĝ λψ)− λψdψ(K)− e(ψ)(gradhλ) ◦ ψ̃. (13)

Here gradHλ denotes the horizontal part of gradĝ λ ∈ Γ(TSM) and K is defined by (11). The field
τλ(ψ) is said to be the λ-tension field of ψ.

Theorem 1. Let ψ : (M, F) −→ (N, h) be a smooth map from a Finsler manifold (M, F) to a Riemannian
manifold (N, h) and λ ∈ C∞(SM× N). Then, ψ is the λ-harmonic map if and only if τλ(ψ) ≡ 0.

Example 1. Assume that (R2, F) is a locally Minkowski manifold and (R3, 〈, 〉) be the three-dimensional
Euclidean space. Consider the map ψ : (R2, F) −→ (R3, 〈, 〉) defined by

ψ(x1, x2) := (2x2, x1 + 2x2, 3x1 − x2).

Let λ : SR2 × R3 −→ R be a positive smooth map such that λ(x1, x2, y1, y2, ψ(x1, x2)) :=

exp( y2(y2−2y1)
(y2)2+(y1)2 ). Due to the fact that the Landsberg curvature of locally Minkowski manifold vanishes and

considering Theorem 1 and Equation (13), one can see that ψ is λ-harmonic.

Now, we discuss the relation between λ-harmonic maps and F -harmonic maps from a Finsler
manifolds to a Riemannian manifolds. Let F : [0, ∞) −→ [0, ∞) be a C2 function such that F ′ > 0 on
(0, ∞). The smooth map ψ : (M, F) −→ (N, h) is said to be F -harmonic if it is an extermal point of the
F -energy functional

EF (ψ) :=
∫

SM
F (e(ψ))dVSM. (14)

The concept of F -harmonic maps from a Finsler manifold was first introduced by J. Li [23] in 2010.
The F -energy functional is the energy , the p-energy, the α-energy of Sacks-Uhlenbeck and exponential

energy when F (t) is equal to t, (2t)
p
2

p (p ≥ 4), (1 + 2t)α(α > 1, dim M = 2) and et, respectively.
The Euler-Lagrange equation associated to F -energy functional is given by

τF (ψ) := Trg∇(F ′(e(ψ))dψ)−F ′(e(ψ))dψ(K) = 0. (15)
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For more details, see [23]. The field τF (ψ) is called the F -tension field of ψ.

Proposition 1. Let ψ : (M, F) −→ (N, h) be an F -harmonic map from a Finsler manifold to a Riemannian
manifold without critical points (i.e., | dψx |6= 0 for all x ∈ M). Then, ψ is a λ-harmonic map with
λ = F ′(e(ψ)).

Proof. It is obtained from (13) and (15) immediately.

4. Stability of λ-Harmonic Maps

In this section, the second variation formula of the λ-energy functional for a λ-harmonic map
from a Finsler manifold to a Riemannian manifold is obtained. As an application, it is shown that
any stable λ-harmonic map ψ : (M, F) −→ Sn from a Finsler manifold (M, F) to the standard sphere
Sn(n > 2) is constant.

Theorem 2. (The second variation formula). Let (Mm, F) be a Finsler manifold and (N, h) be a Riemannian
manifold and let ψ : (M, F) −→ (N, h) be a λ-harmonic map. Assume that {ψt}t∈I is a smooth variation of
ψ0 = ψ with the variation vector field V = ∂ψt

∂t |t=0. Then, the second variation of λ-energy functional is

d2

dt2 Eλ(ψt)
∣∣
t=0

=
1

cm−1

∫
SM

h
(

V, e(ψ)(∇N
V gradhλ) ◦ ψ + 2Trg < ∇V, dψ > (gradhλ) ◦ ψ− λψTrg(∇2V)

− λψTrgRN(V, dψ)dψ−∇gradH
ĝ λψ

V + λψ∇KH V
)

dVSM,

(16)

where RN is the curvature tensor on (N, h) and K is defined by (11).

Proof. Let p : SM −→ M be a natural projection and ψ̃ = ψ ◦ p, and let c∇ and ∇ be the Chern
connection on p∗TM and the pull-back Chern connection on ψ̃∗TN, respectively. For any t ∈ I,
we shall use the same notation of ∇ for the pull-back Chern connection on ψ̃∗TN. By (5), it can be
shown that

∂2

∂t2 Eλ(ψt)

∣∣∣∣
t=0

=
1

2cm−1
∑

i

∫
SM

∂2

∂t2

{
λ(x, y, ψt(x))h(dψt(ei), dψt(ei))

}∣∣∣∣
t=0

dVSM

=
1

2cm−1
∑

i

∫
SM

{
h(dψt(ei), dψt(ei))

∂2

∂t2 λ(x, y, ψt(x))
}∣∣∣∣

t=0
dVSM

+
2

cm−1
∑

i

∫
SM

{
∂

∂t
(h(∇ ∂

∂t
dψt(ei), dψt(ei)))

∂

∂t
λ(x, y, ψt(x))

}∣∣∣∣
t=0

dVSM

+
1

2cm−1
∑

i

∫
SM

{
λ(x, y, ψt(x))

∂2

∂t2 h(dψt(ei), dψt(ei))

}∣∣∣∣
t=0

dVSM

= I1 + I2 + I3.

(17)
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Now, we calculate each term of the right hand side (RHS) of (17). By (9) and considering the
definition of gradient operator, we get

∂2

∂t2 λ(x, y, ψt(x))
∣∣∣∣
t=0

=
∂

∂t
< (gradhλ(x,y))ψt(x), dψt(

∂

∂t
) >

∣∣∣∣
t=0

= h(∇N
V gradhλ(x,y), V) ◦ ψ̄ + h

(
(gradhλ) ◦ ψ̄,∇ ∂

∂t
dψ(

∂

∂t
)

∣∣∣∣
t=0

).
(18)

Thus, the first term of the RHS of (17) is obtained as follows:

I1 =
1

cm−1

∫
SM

{
h
(

V, e(ψ)(∇N
V gradhλ) ◦ ψ̄

)
+ e(ψ)h

(
(gradhλ) ◦ ψ̄,∇ ∂

∂t
dψt(

∂

∂t
)

∣∣∣∣
t=0

)}
dVSM.

(19)

By calculating the second term of the RHS of (17), we get

I2 =
2

cm−1
∑

i

∫
SM

∂

∂t
(
λ(x, y, ψt(x))

)
h(∇ ∂

∂t
dψt(ei), dψt(ei)

)∣∣∣∣
t=0

dVSM

=
2

cm−1
∑

i

∫
SM

h
(

gradhλ(x,y), V
)
h
(
∇eH

i
V, dψ(ei)

)
dVSM

=
2

cm−1

∫
SM

Trg < ∇V, dψ > h
(
(gradhλ) ◦ ψ, V

)
dVSM.

(20)

Now, we calculate the last term of the RHS of (17). By definition of the function λψ, we have

1
2

λ(x, y, ψt(x))
∂2

∂t2 h(dψt(ei), dψt(ei))

= λψt(x, y)
∂

∂t
h(∇ ∂

∂t
dψt(ei), dψt(ei))

= λψt(x, y)
∂

∂t
h(∇eH

i
dψt(

∂

∂t
), dψt(ei))

= λψt(x, y)
{

h(∇ ∂
∂t
∇eH

i
dψt(

∂

∂t
), dψt(ei)) + h(∇eH

i
dψt(

∂

∂t
),∇eH

i
dψt(

∂

∂t
))

}
= λψt(x, y)

{
h(∇eH

i
∇ ∂

∂t
dψt(

∂

∂t
), dψt(ei)) + h(∇eH

i
dψt(

∂

∂t
),∇eH

i
dψt(

∂

∂t
))

+ h(RN(dψt(
∂

∂t
), dψt(ei))dψt(

∂

∂t
), dψt(ei))

}
.

(21)

Therefore,

I3 =
1

cm−1
∑

i

∫
SM

λψt

{
h(∇eH

i
dψt(

∂

∂t
),∇eH

i
dψt(

∂

∂t
))

+ h(RN(dψt(
∂

∂t
), dψt(ei))dψt(

∂

∂t
), dψt(ei))

}∣∣∣∣
t=0

dVSM

+
1

cm−1
∑

i

∫
SM

λψt h(∇eH
i
∇ ∂

∂t
dψt(

∂

∂t
), dψt(ei))

∣∣∣∣
t=0

dVSM

= I5 + I6.

(22)
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Let Ψ := λψt h(∇eH
i

dψt(
∂
∂t ), dψt(

∂
∂t ))ω

i, which is a section of (p∗T∗M). By Lemma 4, we get

divĝΨ = ∑
i
(c∇eH

i
Ψ)(ei) + ∑

b
ΨaLa

bb

= ∑
i

{
eH

i (λψt)h(∇eH
i

dψt(
∂

∂t
), dψt(

∂

∂t
)) + λψt h(∇eH

i
∇eH

i
dψt(

∂

∂t
), dψt(

∂

∂t
))

+ λψt h(∇eH
i

dψt(
∂

∂t
),∇eH

i
dψt(

∂

∂t
)) + λψt h(∇eH

j
dψt(

∂

∂t
), dψt(

∂

∂t
))(c∇eH

i
ω j)(ei)

}
−∑

b
λψt h(∇eH

a
dψt(

∂

∂t
), dψt(

∂

∂t
))Ȧa

bb.

(23)

By Green’s theorem and Equation (23), the first term of the RHS of (22) is obtained as follows:

I5 = − 1
cm−1

∫
SM

h
(

λψTrg(∇2V) + λψTrgRN(dψ, V)dψ

+∇gradH
ĝ λψ

V − λψ∇KH V, V
)

dVSM.
(24)

Similarly, let Ψ̄ := h(∇ ∂
∂t

dψt(
∂
∂t ), λψt dψt(ei))ω

i, which is a section of p∗T∗M. By Lemma (4),
we also have

divĝΨ̄ = ∑
i

{
λψt h(∇eH

i
∇ ∂

∂t
dψt(

∂

∂t
), dψt(ei)) + h

(
∇ ∂

∂t
dψt(

∂

∂t
), (∇eH

i
λψt dψt)(ei))

}
− λψt ∑

b
h(∇ ∂

∂t
dψt(

∂

∂t
), dψ(K)).

(25)

By (25), we get the second term of the RHS of (22) as follows:

I6 = − 1
cm−1

∫
SM

h
(
∇ ∂

∂t
dψt(

∂

∂t
) |t=0, Trg∇(λψdψ)− λψdψ(K))dVSM. (26)

By making use of (24) and (26), we have

I3 = − 1
cm−1

∫
SM

h
(

λTrg(∇2V) + λψRN(dψ, V)dψ +∇gradH
ĝ λV − λ∇KH V, V

)
dVSM

− 1
cm−1

∫
SM

h
(
∇ ∂

∂t
dψt(

∂

∂t
) |t=0, Trg∇λψdψ− λψdψ(K))dVSM.

(27)

By substituting (19), (20) and (27) in (17), the Equation (16) is obtained and hence completes
the proof.

Definition 1. By considering the assumptions of Theorem 2, set

Qψ
λ(V) :=

d2

dt2 Eλ(ψt)
∣∣
t=0.

A λ-harmonic map ψ is said to be stable λ-harmonic map if Qψ
λ(V) ≥ 0 for any vector field V along ψ.
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Stability of λ-Harmonic Maps to Sn

Let Sn denote the unit n-sphere as a submanifold of Euclidean space (Rn+1, 〈, 〉). At any point
x0 ∈ Sn, every vector field W on the Euclidean space Rn+1 can be split into two parts

W = W> + W⊥ = W> + 〈W, x0〉x0, (28)

where W> is the tangential part of W to Sn and W⊥ = 〈W, x0〉x0 is the normal part to Sn. Denote the
second fundamental form of Sn in Rn+1 by B, the Levi-Civita connection on Rn+1 by ∇R and the
Levi-Civita connection on Sn by ∇S. Then, we have the following relation

∇R
V Z = ∇S

V Z + B(V, Z), (29)

where V and Z are smooth vector fields on Sn. Let X be a normal vector field on Sn, the shape operator
corresponding to X, denoted by AX , is defined as follows:

AX(V) := −(∇R
V X)>, V ∈ χ(Sn). (30)

At each point x0 ∈ Sn, the second fundamental form and the shape operator are related by

〈AX(V), Z〉 = 〈B(V, Z), X〉 = −〈V, Z〉〈x0, X〉, (31)

where V and Z are tangent vector fields on Sn and X is a normal vector field on Sn.

Definition 2. Let (M, F) be a Finsler manifold and (Sn, h) the n-dimensional Euclidean sphere. A smooth
function λ : SM× Sn −→ R is called an adopted function if there exists a parallel orthonormal frame field
{Υα}n+1

α=1 in Rn+1 such that

∑
α

µα(x)h(gradhλ, Υ>α )(z, x) ≥ 0, (32)

for any point (z, x) ∈ SM× Sn, where Υ>α is the tangential part of Υα to Sn and the function µα : Sn −→ R is
defined as follows

µα(x) := 〈(Υα)x, x〉, ∀x ∈ Sn. (33)

Here (Υα)x denotes Υα at the point x. The frame field {Υ1, · · · , Υn+1} which satisfies Equation (32),
is called the λ-frame field in Rn+1.

Now, we provide an example of a function λ satisfying Definition 2.

Example 2. Let (S3, h) be the unit 3-sphere as a submanifold of Euclidean space (R4, 〈, 〉) and let
{Υ1 = (1, 0, 0, 0), Υ2 = (0, 1, 0, 0), Υ3 = (0, 0, 1, 0), Υ4 = (0, 0, 0, 1)} be the standard basis for the tangent
space of Euclidean space (R4, 〈, 〉). Consider the function λ : SM× S3 −→ R defined by

λ(z, x) = K(z)(µ2
1(x) + 2), (34)

for any z ∈ SM and x = (x1, x2, x3, x4) ∈ S3, where K : SM −→ (0, ∞) is a smooth positive function on SM
and µ1 is defined in (33). By (28), (33) and (34), it follows that

(gradhλ)(z,x) = 2K(z)µ1(x)(Υ>1 )x, (35)
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where (Υ>1 )x is the tangential part of Υ1 to Sn at the point x. By (35), at any point (z, x) ∈ SM× S3, the left
hand side of (32) for the function λ which is defined in (34), can be calculated as follows:

4

∑
α=1

µα(x)h(gradhλ, Υ>α )(z, x) = 2K(z)
4

∑
α=1

µα(x)µ1(x)〈Υ>1 , Υ>α 〉(x)

= 2K(z)(x1)2
(

1− (x1)2 − (x2)2 − (x3)2 − (x4)2
)

= 0,

(36)

where we use | x |2= 1, in the last equality. Due to the fact that (z, x) is an arbitrary point on SM × S3

and considering Equation (36), it can be seen that the function λ satisfies Definition 2. Thus, λ is an an
adopted function.

Remark 1. Any smooth function λ ∈ C∞(SM) is an adopted function on Sn.

Based on the above notations, we prove the following result.

Theorem 3. Let (Mm, F) be a Finsler manifold and (Sn, h) the n-dimensional Euclidean sphere (n > 2), and let
λ : SM×Sn −→ R be an adopted function on Sn. Then, any non-constant λ-harmonic map ψ : (M, F) −→ Sn

is unstable.

Proof. Choose an arbitrary point z0 ∈ SM. Then, set ψ̃ = ψ ◦ ρ and x0 = ψ̃(z0), where ρ : SM −→ M
is the natural projection on SM. By (2), one can see that [22]

ρ∗(êm+a) = 0, ρ∗(eH
i ) = ei. (37)

Let {Υ1, · · · , Υn+1} be a λ-frame field in Rn+1 at x0. By (2), we have

n+1

∑
α=1

Qψ
λ(Υ

>
α ) =

1
cm−1

n+1

∑
α=1

∫
SM

h
(

2Trg < ∇Υ>α , dψ̄ > (gradhλ) ◦ ψ̄

−∇gradH
ĝ λψ

Υ>α + λψ∇KH Υ>α − λψTrg(∇2Υ>α )

− λψTrgRS(Υ>α , dψ̄)dψ̄, Υ>α

)
dVSM,

(38)

where∇ and RS denote the induced connection on the pull-back bundle (ψ ◦ ρ)−1TSn and the curvature
tensor of Sn, respectively. Now we discuss at the point x0. Since {Υα} is a parallel frame field in Rn+1

and considering the definition of shape operator, we obtain

∇eH
i

Υ>α = ∇S
dψ̃(eH

i )
Υ>α = (∇R

dψ̃(eH
i )

Υ>α )
>

= (∇R
dψ̃(eH

i )
(Υα − Υ⊥α ))

> = −(∇R
dψ̃(eH

i )
Υ⊥α )

>

= AΥ⊥α (dψ̃(eH
i )).

(39)

According to the definition of the function µα in (33), one can easily check that

AΥ⊥α (V) = −µαV, V ∈ Γ(TSn). (40)
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By (2), (37), (39) and (40) and considering the definition of the energy density, we have

2Trg < ∇Υ>α , dψ̃ > h
(
(gradhλ) ◦ ψ̃, Υ>α

)
= 2

2m−1

∑
A=1

< ∇eA Υ>α , dψ̃(eA) > h
(
(gradhλ) ◦ ψ̃, Υ>α

)
= 2

m

∑
i=1

< ∇eH
i

Υ>α , dψ̃(eH
i ) > h

(
(gradhλ) ◦ ψ̃, Υ>α

)

+ 2
m−1

∑
a=1

< ∇êm+a Υ>α , dψ̃(êm+a) > h
(
(gradhλ) ◦ ψ̃, Υ>α

)
= 2

m

∑
i=1

< ∇eH
i

Υ>α , dψ̃(eH
i ) > h

(
(gradhλ) ◦ ψ̃, Υ>α

)
= 2

m

∑
i=1

< AΥ⊥α (dψ̃(eH
i )), dψ̃(eH

i ) > h
(
(gradhλ) ◦ ψ̃, Υ>α

)
= 2

m

∑
i=1

< −µαdψ̃(eH
i ), dψ̃(eH

i ) > h
(
(gradhλ) ◦ ψ̃, Υ>α

)
= −2

m

∑
i=1

µα < dψ ◦ ρ(eH
i ), dψ ◦ ρ(eH

i ) > h
(
(gradhλ) ◦ ψ̃, Υ>α

)
= −4µαe(ψ)h

(
(gradhλ) ◦ ψ̃, Υ>α

)
,

(41)

where we use

< ∇êm+a Υ>α , dψ̃(êm+a) > =< ∇S
dψ̃(êm+a)

Υ>α , dψ̃(êm+a) >=< ∇S
ψ∗(ρ∗(êm+a)

Υ>α , ψ∗(ρ∗(êm+a)) >

= 0
(42)

in the third equality. Here {eA} = {eH
i , êm+a} is a local basis for TSM which is defined in (2). By similar

calculation, we get 〈
∇gradH

ĝ λψ
Υ>α , Υ>α

〉
= −µα ◦ ψ̃

〈
dψ̃(gradH

ĝ λψ), Υ>α
〉
, (43)

λψ

〈
∇KH Υ>α , Υ>α

〉
= −λψµα ◦ ψ̃

〈
dψ̃(KH), Υ>α

〉
. (44)

By considering (39) and (40), it can be concluded that

∑
i
∇eH

i
∇eH

i
Υ>α = ∑

i
∇eH

i
AΥ⊥α (dψ̃(eH

i ))

= −∑
i
∇eH

i
(µα ◦ ψ̃ dψ̃(eH

i ))

= −dψ̃ (grad µα ◦ ψ̃)− µα ◦ ψ̃ ∑
i
∇eH

i
dψ(ei).

(45)

Since grad µα = Υ>α and using the definition of gradient operator, it can be shown that

dψ̃(grad µα ◦ ψ̃) = ∑
i

〈
dψ̃(eH

i ), (grad µα) ◦ ψ̃
〉

dψ̃(eH
i )

= ∑
i

〈
dψ̃(eH

i ), Υ>α ◦ ψ̃
〉

dψ̃(eH
i ).

(46)
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By means of (45) and (46), we have

∑
α

λψ

〈
Trg(∇2Υ>α ), Υ>α

〉
= −∑

α

µα ◦ ψ̃ 〈λψTrg∇dψ, Υ>α 〉 − λψ | dψ |2 . (47)

Since Sn has a constant curvature and considering Equation (47), it can be seen that

∑
α

λψ

〈
Trg RS(Υ>α , dψ)dψ, Υ>α

〉
= (n− 1)λψ | dψ |2 . (48)

On the other hand, due to the fact that λ is an adopted function and e(ψ) is a non-negative
function and considering Equations (32) and (33), it can be seen that

− 3
cm−1

∑
α

∫
SM

µαe(ψ)h
(
(gradhλ) ◦ ψ̃, Υ>α

)
= − 3

cm−1

∫
SM

e(ψ)∑
α

µαh
(
(gradhλ) ◦ ψ̃, Υ>α

)
≤ 0.

(49)

By substituting (41)–(44) and (47)–(49) in (38) and considering the assumptions of this theorem,
it follows that

∑
α

Qψ
λ(Υ

>
α ) =

2− n
cm−1

∫
SM

λψ | dψ |2 dVSM

+
1

cm−1
∑
α

∫
SM

µα ◦ ψ̃ 〈τλ(ψ), Υ>α 〉dVSM

− 3
cm−1

∑
α

∫
SM

µαe(ψ)h
(
(gradhλ) ◦ ψ̃, Υ>α

)
≤ 2− n

cm−1

∫
SM

λψ | dψ |2 dVSM < 0.

(50)

Thus, the map ψ is unstable and hence completes the proof.

By considering the Theorem 1 and the Remark 3, we obtain the following result.

Corollary 1. [17] Let ψ : (M, F) −→ (Sn, h) be a non-constant λ-harmonic map from a Finsler manifold
(M, F) to the standard n-dimensional sphere Sn(n > 2), and let gradhλ = 0. Then, ψ is unstable.

Author Contributions: All authors contributed equally to this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Trigg, G.L. (Ed.) Mathematical Tools for Physicists; John Wiley and Sons: Hoboken, NJ, USA, 2006; pp. 83–107.
2. Coron, J.M.; Ghidaglia, J.M.; Helein, F. (Eds.) Nematics: Mathematical and Physical Aspects; Springer Science

and Business Media: Paris, France, 2012; pp. 173–187.
3. Alouges, F. A new algorithm for computing liquid crystal stable configurations: The harmonic mapping

case. SIAM J. Numer. Anal. 1997, 34, 1708–1726. [CrossRef]
4. Guo, B.; Hong, M.C. The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps.

Calc. Var. Partial Differ. Equ. 1993, 1, 311–334. [CrossRef]
5. Torbaghan, S.M.K.; Mirmohammad Rezaii, M. F-Harmonic maps between doubly warped product manifolds.

Mathematics 2017, 5, 20. [CrossRef]
6. Ouakkas, S.; Nasri, R.; Djaa, M. On the f -harmonic and f -biharmonic maps. JP J. Geom. Topol. 2010, 10, 11–27.
7. Djelloul, D.; Ouakkas, S. Some results of the f -biharmonic maps and applications. Arab J. Math. Sci. 2017.
8. Ouakkas, S.; Djebbouri, D. Conformal maps, biharmonic maps, and the warped product. Mathematics 2016,

4, 15. [CrossRef]
9. Djaa, N.E.H.; Ouakkas, S.; Djaa, M. Harmonic sections on tangent bundle of order two. Ann. Math. Inform.

2011, 38, 5–25.

http://dx.doi.org/10.1137/S0036142994264249
http://dx.doi.org/10.1007/BF01191298
http://dx.doi.org/10.3390/math5020020
http://dx.doi.org/10.3390/math4010015


Mathematics 2018, 6, 94 13 of 13

10. Lichnerowicz, A. Applications harmoniques et variétés kähleriennes. Rend. Semin. Mat. Fis. Milano 1969,
39, 186–195. [CrossRef]

11. Cherif, A.M.; Djaa, M.; Zegga, K. Stable f -harmonic maps on sphere. Commun. Korean Math. Soc. 2015,
30, 471–479. [CrossRef]

12. Course, N. f -harmonic maps which map the boundary of the domain to one point in the target. N. Y. J. Math.
2007, 13, 423–435.

13. Ou, Y. f -Harmonic morphisms between Riemannian manifolds. Chin. Ann. Math. Ser. B 2014, 35, 225–236.
[CrossRef]

14. Chiang, Y.J. f -biharmonic maps between Riemannian manifolds. J. Geom. Symmetry Phys. 2012, 27, 45–58.
15. Lu, W. On f -bi-harmonic maps and bi- f -harmonic maps between Riemannian manifolds. Sci. China Math.

2015, 58, 1483–1498. [CrossRef]
16. Rimoldi, M.; Veronelli, G. Topology of steady and expanding gradient Ricci solitons via f -harmonic maps.

Differ. Geom. Its Appl. 2013, 31, 623–638. [CrossRef]
17. Kayemi Torbaghan, S.M.; Rezaii, M.M. f -Harmonic maps from Finsler manifolds. Bull. Math. Anal. Appl.

2017, 9, 623–638.
18. Mo, X. Harmonic maps from Finsler manifolds. Ill. J. Math. 2001, 45, 1331–1345.
19. Mo, X.; Yang, Y. The existence of harmonic maps from Finsler manifolds to Riemannian manifolds. Sci. China

Ser. A Math. 2005, 48, 115–130. [CrossRef]
20. Shen, Y. ; Zhang, Y. Second variation of harmonic maps between Finsler manifolds. Sci. China Ser. A Math.

2004, 47, 39–51. [CrossRef]
21. He, Q.; Shen, Y.B. Some results on harmonic maps for Finsler manifolds. Int. J. Math. 2005, 16, 1017–1031.

[CrossRef]
22. Mo, X. An Introduction to Finsler Geometry; World Scientific: Singapore, 2006.
23. Li, J. Stable F-harmonic maps between Finsler manifolds. Acta Math. Sin. 2010, 26, 885–900. [CrossRef]
24. Li, J. Stable P-harmonic maps between Finsler manifolds. Pac. J. Math. 2008, 237, 121–135. [CrossRef]
25. Li, J. Stable exponentially harmonic maps between Finsler manifolds. Bull. Iran. Math. Soc. 2011, 36, 185–207.
26. Vese L.; Osher, S. Numerical methods for p-harmonic flows and applications to image processing. SIAM J.

Numer. Anal. 2002, 40, 2085–2104. [CrossRef]
27. Tang, B.; Sapiro, G.; Caselles, V. Diffusion of general data on non-flat manifolds via harmonic maps theory:

The direction diffusion case. Int. J. Comput. Vis. 2000, 36, 149–161. [CrossRef]
28. Kanfon, A.D.; Füzfa, A; Lambert, D. Some examples of exponentially harmonic maps. J. Phys. A Math. Gen.

2002, 35, 7629–7639. [CrossRef]
29. Kanfon, A.; Lambert, D.L. Kinetical inflation and quintessence by F-harmonic map. J. Mod. Phys. 2012,

11, 1727–1731. [CrossRef]
30. Dong, Y.; Wei, S.W. On vanishing theorems for vector bundle valued p-forms and their applications.

Commun. Math. Phys. 2011, 304, 329–368. [CrossRef]
31. Bao, D.; Chern, S.-S.; Shen, Z. An Introduction to Riemann-Finsler Geometry; Springer Science and Business

Media: New York, NY, USA, 2012; pp. 49–80.
32. Bidabad, B.; Sedaghat, M.K. Hamilton’s Ricci Flow on Finsler Spaces. arXiv 2015, arXiv:1508.02893.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF02924136
http://dx.doi.org/10.4134/CKMS.2015.30.4.471
http://dx.doi.org/10.1007/s11401-014-0825-0
http://dx.doi.org/10.1007/s11425-015-4997-1
http://dx.doi.org/10.1016/j.difgeo.2013.06.001
http://dx.doi.org/10.1360/03ys0338
http://dx.doi.org/10.1360/03ys0040
http://dx.doi.org/10.1142/S0129167X05003211
http://dx.doi.org/10.1007/s10114-010-8440-9
http://dx.doi.org/10.2140/pjm.2008.237.121
http://dx.doi.org/10.1137/S0036142901396715
http://dx.doi.org/10.1023/A:1008152115986
http://dx.doi.org/10.1088/0305-4470/35/35/307
http://dx.doi.org/10.4236/jmp.2012.311213
http://dx.doi.org/10.1007/s00220-011-1227-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	The First Variation Formula
	Stability of -Harmonic Maps
	References

