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Abstract: The hyperspace consists of all the subsets of a vector space. It is well-known that the
hyperspace is not a vector space because it lacks the concept of inverse element. This also says that we
cannot consider its normed structure, and some kinds of fixed point theorems cannot be established
in this space. In this paper, we shall propose the concept of null set that will be used to endow a norm
to the hyperspace. This normed hyperspace is clearly not a conventional normed space. Based on this
norm, the concept of Cauchy sequence can be similarly defined. In addition, a Banach hyperspace
can be defined according to the concept of Cauchy sequence. The main aim of this paper is to study
and establish the so-called near fixed point theorems in Banach hyperspace.
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1. Introduction

Given a universal set X, the collection of all nonempty subsets of X is called the hyperspace.
The topic of set-valued analysis is to study the mathematical properties on hyperspace by referring
to the monographs [1–7]. Especially, the set-valued optimization and differential inclusion have
been well-studied. The purpose of this paper is to study the near fixed point theorem in hyperspace.
The concept of near fixed point is the first attempt at studying the fixed point theory in hyperspace.
The conventional fixed point theorem in normed space can be used to study the existence of solutions
for some mathematical problems. Especially, the application of fixed point theorems in economics can
refer to the articles [8–10]. Therefore, the potential applications of near fixed point theorems established
in this paper can be used to study the existence of solutions for the mathematical problems that involve
the set-valued mappings. This could be future research.

Let X be a topological vector space, and let K(X) be the collection of all nonempty compact and
convex subsets of X. Given A, B ∈ K(X), the set addition is defined by

A⊕ B = {a + b : a ∈ A and b ∈ B}

and the scalar multiplication in K(X) is defined by

λA = {λa : a ∈ A} ,

where λ is a constant in R. It is clear to see that K(X) cannot be a vector space under the above set
addition and scalar multiplication. The main reason is that there is no additive inverse element for
each element in K(X).

The substraction between A and B is denoted and defined by

A	 B ≡ A⊕ (−B) = {a− b : a ∈ A and b ∈ B} .
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Let θX be the zero element of the vector space X. It is clear to see that the singleton set {θX},
denoted by θK(X), can be regarded as the zero element of K(X) since

A⊕ θK(X) = A⊕ {θX} = A. (1)

On the other hand, since A	 A 6= {θX}, it means that A	 A is not the zero element of K(X).
In other words, the additive inverse element of A in K(X) does not exist. This says that K(X) cannot
form a vector space under the above set addition and scalar multiplication. The following set

Ω = {A	 A : A ∈ K(X)}

is called the null set of K(X), which can be regarded as a kind of “zero element” of K(X). We also
recall that the true zero element of K(X) is θK(X) ≡ {θX}, since (1) is satisfied.

Recall that the (conventional) normed space is based on the vector space by referring to the
monographs [11–17]. Since K(X) is not a vector space, we cannot consider the (conventional) normed
space (K(X), ‖ · ‖). Therefore we cannot study the fixed point theorem in (K(X), ‖ · ‖) using the
conventional way. In this paper, although K(X) is not a vector space, we still can endow a norm
to K(X) in which the axioms are almost the same as the axioms of conventional norm. The only
difference is that the concept of null set is involved in the axioms. Under these settings, we shall study
the so-called near fixed point theorem in the normed hyperspace (K(X), ‖ · ‖).

Let T : K(X)→ K(X) be a function from K(X) into itself. We say that A ∈ K(X) is a fixed point
if and only if T(A) = A. Since K(X) lacks the vector structure, we cannot expect to obtain the fixed
point of the mapping T using conventional methods. In this paper, we shall try to construct a subset
A of X satisfying T(A)⊕ω1 = A⊕ω2 for some ω1, ω2 ∈ Ω. Since the null set Ω can play the role of
zero element in K(X), i.e., the elements ω1 and ω2 can be ignored in some sense, this kind of subset A
is said to be a near fixed point of the mapping T.

In Sections 2 and 3, the concept of normed hyperspace is proposed, where some interesting
properties are derived in order to study the near fixed point theorem. In Section 4, according to
the norm, the concept of Cauchy sequence can be similarly defined. In addition, the Banach hyperspace
is defined based on the Cauchy sequence. In Section 5, we present many near fixed point theorems
that are established using the almost identical concept in normed hyperspace.

2. Hyperspaces

Let X be a vector space with zero element θX, and let K(X) be the collection of all subsets of X.
Under the set addition and scalar multiplication in K(X), it is clear to see that K(X) cannot form
a vector space. One of the reasons is that, given any A ∈ K(X), the difference A	 A is not a zero
element of K(X). It is clear to see that the singleton set {θX} is a zero element, since

A⊕ {θX} = {θX} ⊕ A = A

for any A ∈ K(X). However, when A ∈ K(X) is not a singleton set, we cannot have A	 A = {θX}.
In this section, we shall present some properties involving the null set Ω, which will be used for
establishing the so-called near fixed point theorems in K(X).

Remark 1. For further discussion, we first recall some well-known properties given below:

• (A⊕ B)⊕ C = A⊕ (B⊕ C);
• λ(A⊕ B) = λA⊕ λB for λ ∈ R;
• λ1(λ2 A) = (λ1λ2)A for λ1, λ2 ∈ R;
• if A is a convex subset of X and λ1 and λ2 have the same sign, then (λ1 + λ2)A = λ1 A⊕ λ2 A.
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We also recall that the following family

Ω = {A	 A : A ∈ K(X)}

is called the null set of K(X). For further discussion, we present some useful properties.

Proposition 1. The following statements hold true:

• The singleton set {θX} ≡ θK(X) is in the null set Ω;
• ω ∈ Ω implies −ω = ω;
• λΩ = Ω for λ ∈ R with λ 6= 0;
• Ω is closed under the set addition; that is, ω1 ⊕ω2 ∈ Ω for any ω1, ω2 ∈ Ω.

Since the null set Ω is treated as a zero element, we can propose the almost identical concept for
elements in K(X).

Definition 1. Given any A, B ∈ K(X), we say that A and B are almost identical if and only if there exist

ω1, ω2 ∈ Ω such that A⊕ω1 = B⊕ω2. In this case, we write A Ω
= B.

When A, B and C are not singleton sets, if A	 B = C, then we cannot have A = B⊕ C. However,

we can have A Ω
= B⊕C. Indeed, since A	 B = C, by adding B on both sides, we obtain A⊕ω = B⊕C,

where ω = B	 B ∈ Ω. This says that A Ω
= B⊕ C.

Proposition 2. The binary relation Ω
= is an equivalence relation.

Proof. For any A ∈ K(X), A = A implies A Ω
= A, which shows the reflexivity. The symmetry is

obvious by the definition of the binary relation Ω
=. Regarding the transitivity, for A Ω

= B and B Ω
= C,

we want to claim A Ω
= C. By definition, we have

A⊕ω1 = B⊕ω2 and B⊕ω3 = C⊕ω4

for some ωi ∈ Ω for i = 1, · · · , 4. Then

A⊕ω1 ⊕ω3 = B⊕ω3 ⊕ω2 = C⊕ω4 ⊕ω2,

which shows A Ω
= C, since Ω is closed under the set addition. This completes the proof.

According to the equivalence relation Ω
=, for any A ∈ K(X), we define the equivalence class

[A] =
{

B ∈ K(X) : A Ω
= B

}
.

The family of all classes [A] for A ∈ K(X) is denoted by [K(X)]. In this case, the family [K(X)] is
called the quotient set of K(X). We also have that B ∈ [A] implies [A] = [B]. In other words, the family
of all equivalence classes form a partition of the whole set K(X). We also remark that the quotient set
[K(X)] is still not a vector space. The reason is

(α + β)[A] 6= α[A] + β[A]

for αβ < 0, since (α + β)A 6= αA + βA for A ∈ K(X) with αβ < 0.
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3. Normed Hyperspaces

Notice that K(X) is not a vector space. Therefore we cannot consider the normed space
(K(X), ‖ · ‖). However, we can propose the so-called normed hyperspace involving the null set
Ω as follows.

Definition 2. Given the nonnegative real-valued function ‖ · ‖: K(X) → R+, we consider the
following conditions:

(i) ‖ αA ‖= |α| ‖ A ‖ for any A ∈ K(X) and α ∈ F;
(i′) ‖ αA ‖= |α| ‖ A ‖ for any A ∈ K(X) and α ∈ F with α 6= 0;
(ii) ‖ A⊕ B ‖≤‖ A ‖ + ‖ B ‖ for any A, B ∈ K(X);
(iii) ‖ A ‖= 0 implies A ∈ Ω.

We say that ‖ · ‖ satisfies the null condition when condition (iii) is replaced by ‖ A ‖= 0 if and
only if A ∈ Ω. Different kinds of normed hyperspaces are defined below.

• We say that (K(X), ‖ · ‖) is a pseudo-seminormed hyperspace if and only if conditions (i′) and (ii)
are satisfied.

• We say that (K(X), ‖ · ‖) is a seminormed hyperspace if and only if conditions (i) and (ii) are satisfied.
• We say that (K(X), ‖ · ‖) is a pseudo-normed hyperspace if and only if conditions (i′), (ii) and (iii)

are satisfied.
• We say that (K(X), ‖ · ‖) is a normed hyperspace if and only if conditions (i), (ii) and (iii) are satisfied.

Now we consider the following definitions:

• We say that ‖ · ‖ satisfies the null super-inequality if and only if ‖ A⊕ω ‖≥‖ A ‖ for any A ∈ K(X)

and ω ∈ Ω.
• We say that ‖ · ‖ satisfies the null sub-inequality if and only if ‖ A⊕ω ‖≤‖ A ‖ for any A ∈ K(X)

and ω ∈ Ω.
• We say that ‖ · ‖ satisfies the null equality if and only if ‖ A⊕ω ‖=‖ A ‖ for any A ∈ K(X) and

ω ∈ Ω.

For any A, B ∈ K(X), since −(B	 A) = A	 B, we have

‖ A	 B ‖=‖ B	 A ‖ .

Example 1. We consider the (conventional) normed space (X, ‖ · ‖X). For any A ∈ K(X), we define

‖ A ‖= sup
a∈A
‖ a ‖X .

Then we have the following properties.

• ‖ A ‖= 0 if and only if A = {θX} ∈ Ω. Indeed, if A = {θX}, then it is obvious that ‖ A ‖= 0.
For the converse, if ‖ A ‖= 0, then we have ‖ a ‖X= 0 for all a ∈ A, i.e., A = {θX}.

• We have
‖ λA ‖= sup

a∈λA
‖ a ‖X= sup

b∈A
‖ λb ‖X= |λ| sup

b∈A
‖ b ‖X= |λ| ‖ A ‖ .

• We want to claim ‖ A⊕ B ‖≤‖ A ‖ + ‖ B ‖. We denote by

ζ1 = sup
{(a,b):a∈A,b∈B}

‖ a ‖X and ζ2 = sup
{(a,b):a∈A,b∈B}

‖ b ‖X .

Then we see that ‖ a ‖X + ‖ b ‖X≤ ζ1 + ζ2 for all a ∈ A and b ∈ B.
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Therefore we obtain

sup
{(a,b):a∈A,b∈B}

(‖ a ‖X + ‖ b ‖X) ≤ ζ1 + ζ2 = sup
{(a,b):a∈A,b∈B}

‖ a ‖X + sup
{(a,b):a∈A,b∈B}

‖ b ‖X .

Now we have

‖ A⊕ B ‖ = sup
c∈A⊕B

‖ c ‖X= sup
{(a,b):a∈A,b∈B}

‖ a + b ‖X

≤ sup
{(a,b):a∈A,b∈B}

(‖ a ‖X + ‖ b ‖X)

≤ sup
{(a,b):a∈A,b∈B}

‖ a ‖X + sup
{(a,b):a∈A,b∈B}

‖ b ‖X

= sup
a∈A
‖ a ‖X + sup

b∈B
‖ b ‖X=‖ A ‖ + ‖ B ‖ .

We conclude that (K(X), ‖ · ‖) is a normed hyperspace. For ω ∈ Ω, it means that ω = B	 B for
some B ∈ K(X). Then we have

‖ ω ‖=‖ B	 B ‖= sup
{(b1,b2):b1,b2∈B}

‖ b1 − b2 ‖X .

Since ‖ ω ‖ is not equal to zero in general, it means that the null condition is not satisfied.

Proposition 3. Let (K(X), ‖ · ‖) be a pseudo-seminormed hyperspace such that ‖ · ‖ satisfies the null
super-inequality. For any A, C, B1, · · · , Bm ∈ K(X), we have

‖ A	 C ‖≤‖ A	 B1 ‖ + ‖ B1 	 B2 ‖ + · · ·+ ‖ Bj 	 Bj+1 ‖ + · · ·+ ‖ Bm 	 C ‖ .

Proof. We have

‖ A	 C ‖ ≤‖ A⊕ (−C)⊕ B1 ⊕ · · · ⊕ Bm ⊕ (−B1)⊕ · · · ⊕ (−Bm) ‖
(using the null super-inequality for m times)

=‖ [A⊕ (−B1)]⊕ [B1 ⊕ (−B2)] + · · ·+ [Bj ⊕ (−Bj+1)] + · · ·+ [Bm ⊕ (−C)] ‖
≤‖ A	 B1 ‖ + ‖ B1 	 B2 ‖ + · · ·+ ‖ Bj 	 Bj+1 ‖ + · · ·+ ‖ Bm 	 C ‖

(using the triangle inequality).

This completes the proof.

Proposition 4. The following statements hold true.

(i) Let (K(X), ‖ · ‖) be a pseudo-seminormed hyperspace such that ‖ · ‖ satisfies the null equality. For any

A, B ∈ K(X), if A Ω
= B, then ‖ A ‖=‖ B ‖.

(ii) Let (K(X), ‖ · ‖) be a pseudo-normed hyperspace. For any A, B ∈ K(X), ‖ A	 B ‖= 0 implies A Ω
= B.

(iii) Let (K(X), ‖ · ‖) be a pseudo-seminormed hyperspace such that ‖ · ‖ satisfies the null super-inequality

and null condition. For any A, B ∈ K(X), A Ω
= B implies ‖ A	 B ‖= 0.

Proof. To prove part (i), we see that A Ω
= B implies A⊕ω1 = B⊕ω2 for some ω1, ω2 ∈ Ω. Therefore,

using the null equality, we have ‖ A ‖=‖ A⊕ ω1 ‖=‖ B⊕ ω2 ‖=‖ B ‖. To prove part (ii), suppose
that ‖ A 	 B ‖= 0. Then A 	 B ∈ Ω, i.e., A 	 B = ω1 for some ω1 ∈ Ω. Then, by adding B on

both sides, we have A⊕ ω2 = B⊕ ω1 for some ω2 ∈ Ω, which says that A Ω
= B. To prove part (iii),
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for A Ω
= B, we have A⊕ω1 = B⊕ω2 for some ω1, ω2 ∈ Ω. Since Ω is closed under the vector addition,

it follows that
A	 B⊕ω1 = A⊕ω1 	 B = B⊕ω2 	 B = ω3 (2)

for some ω3 ∈ Ω. Using the null super-inequality, null condition and (2), we have

‖ A	 B ‖≤‖ A	 B⊕ω1 ‖=‖ ω3 ‖= 0.

This completes the proof.

4. Cauchy Sequences

Let (K(X), ‖ · ‖) be a pseudo-seminormed hyperspace. Given a sequence {An}∞
n=1 in K(X) , it is

clear that ‖ An 	 A ‖=‖ A	 An ‖. The concept of limit is defined below.

Definition 3. Let (K(X), ‖ · ‖) be a pseudo-seminormed hyperspace. A sequence {An}∞
n=1 in K(X) is

said to converge to A ∈ K(X) if and only if

lim
n→∞

‖ An 	 A ‖= lim
n→∞

‖ A	 An ‖= 0.

We have the following interesting results.

Proposition 5. Let (K(X), ‖ · ‖) be a pseudo-normed hyperspace with the null set Ω.

(i) If the sequence {An}∞
n=1 in (K(X), ‖ · ‖) converges to A and B simultaneously, then [A] = [B].

(ii) Suppose that ‖ · ‖ satisfies the null equality. If the sequence {An}∞
n=1 in (K(X), ‖ · ‖) converges to

A ∈ K(X), then, give any B ∈ [A], the sequence {An}∞
n=1 converges to B.

Proof. To prove the first case of part (i), we have

lim
n→∞

‖ A	 An ‖= lim
n→∞

‖ An 	 B ‖= 0.

By Proposition 3, we have

0 ≤‖ A	 B ‖≤‖ A	 An ‖ + ‖ An 	 B ‖→ 0 + 0 = 0, (3)

which says that ‖ A	 B ‖= 0. By Definition 2, we see that A	 B ∈ Ω, i.e. A Ω
= B, which also says that

B is in the equivalence class [A].
To prove part (ii), for any B ∈ [A], i.e., A⊕ ω1 = B⊕ ω2 for some ω1, ω2 ∈ Ω, using the null

equality, we have

0 ≤‖ An 	 B ‖=‖ B	 An ‖=‖ ω2 ⊕ B	 An ‖=‖ ω1 ⊕ A	 An ‖=‖ A	 An ‖→ 0.

This completes the proof.

Inspired by part (ii) of Proposition 5, we propose the following concept of limit.

Definition 4. Let (K(X), ‖ · ‖) be a pseudo-seminormed hyperspace. If the sequence {An}∞
n=1 in

K(X) converges to some A ∈ K(X), then the equivalence class [A] is called the class limit of {An}∞
n=1.

We also write
lim

n→∞
An = [A] or An → [A].

We need to remark that if [A] is a class limit and B ∈ [A] then it is not necessarily that the sequence
{An}∞

n=1 converges to y unless ‖ · ‖ satisfies the null equality. In other words, for the class limit [A],
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if ‖ · ‖ satisfies the null equality, then part (ii) of Proposition 5 says that sequence {An}∞
n=1 converges

to B for any B ∈ [A].

Proposition 6. Let (K(X), ‖ · ‖) be a pseudo-normed hyperspace such that ‖ · ‖ satisfies the null
super-inequality. Then the class limit is unique.

Proof. Suppose that the sequence {An}∞
n=1 is convergent with the class limits [A] and [B].

Then, by definition, we have

lim
n→∞

‖ A	 An ‖= lim
n→∞

‖ An 	 A ‖= lim
n→∞

‖ B	 An ‖= lim
n→∞

‖ An 	 B ‖= 0,

which says that ‖ A 	 B ‖= 0 by referring to (3). By part (ii) of Proposition 4, we have A Ω
= B,

i.e., [A] = [B]. This shows the uniqueness in the sense of class limit.

Definition 5. Let (K(X), ‖ · ‖) be a pseudo-seminormed hyperspace. A sequence {An}∞
n=1 in K(X) is

called a Cauchy sequence if and only if, given any ε > 0, there exists N ∈ N such that

‖ An 	 Am ‖=‖ Am 	 An ‖< ε

for m, n > N with m 6= n. If every Cauchy sequence in K(X) is convergent, then we say that K(X)

is complete.

Proposition 7. Let (K(X), ‖ · ‖) be a pseudo-seminormed hyperspace such that ‖ · ‖ satisfies the null
super-inequality. Then every convergent sequence is a Cauchy sequence.

Proof. If {An}∞
n=1 is a convergent sequence, then, given any ε > 0, ‖ An 	 A ‖=‖ A	 An ‖< ε/2 for

sufficiently large n. Therefore, by Proposition 3, we have

‖ An 	 Am ‖=‖ Am 	 An ‖≤‖ Am 	 A ‖ + ‖ A	 An ‖<
ε

2
+

ε

2
= ε

for sufficiently large n and m, which says that {An}∞
n=1 is a Cauchy sequence. This completes

the proof.

Definition 6. Different kinds of Banach hyperspaces are defined below.

• Let (K(X), ‖ · ‖) be a pseudo-seminormed hyperspace. If K(X) is complete, then it is called
a pseudo-semi-Banach hyperspace.

• Let (K(X), ‖ · ‖) be a seminormed hyperspace. If K(X) is complete, then it is called
a semi-Banach hyperspace.

• Let (K(X), ‖ · ‖) be a pseudo-normed hyperspace. If K(X) is complete, then it is called
a pseudo-Banach hyperspace.

• Let (K(X), ‖ · ‖) be a normed hyperspace. IfK(X) is complete, then it is called a Banach hyperspace.

Example 2. Continued from Example 1, we further assume that (X, ‖ · ‖X) is a (conventional) Banach
space. Then we want to show that the normed hyperspace (K(X), ‖ · ‖) is complete. Suppose that
{An}∞

n=1 is a Cauchy sequence in (K(X), ‖ · ‖). Let A be the collection of all sequences induced from
the sequence {An}∞

n=1. More precisely, each element in A is a sequence {an}∞
n=1 with an ∈ An for all n.

Firstly, we need to claim that each sequence in A is convergent. Since {An}∞
n=1 is a Cauchy sequence,

i.e., ‖ An 	 Am ‖< ε for m, n > N with m 6= n, we have

ε >‖ An 	 Am ‖= sup
x∈An−Am

‖ x ‖X= sup
{(an ,am):an∈An ,am∈Am}

‖ an − am ‖X , (4)
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which says that ‖ an − am ‖X< ε for any sequence {an}∞
n=1 with an ∈ An for all n, where ε is

independent of an and am. By the completeness of (X, ‖ · ‖X), it follows that each sequence {an}∞
n=1

is convergent to some a ∈ X, i.e., ‖ an − a ‖X→ 0 as n → ∞ in the uniform sense, which means
‖ an − a ‖X< ε such that ε is independent of an and a. Indeed, if ε is dependent of an and a, then

‖ an − am ‖X≤‖ an − a ‖X + ‖ a− am ‖X

says that ε is dependent of an and am, which is a contradiction. We can define a subset A of X that
collects all of the limit points of each sequence in A. Then, finally, we want to claim ‖ An 	 A ‖→ 0 as
n→ ∞. For any x ∈ An − A, we have x = an − a for some an ∈ An and a ∈ A. Since a is a limit point
of some sequence {a◦n}∞

n=1, for m > n > N, using (4), we have

‖ an − a ‖X≤‖ an − a◦m ‖X + ‖ a◦m − a ‖X< ε+ ‖ a◦m − a ‖X ,

where ε is independent of an and a◦m by referring to (4) again. Since ‖ a◦m − a ‖X→ 0 as m→ ∞ in the
uniform sense, it follows that ‖ an − a ‖X→ 0 as n→ ∞ in the uniform sense. Therefore we obtain

‖ An 	 A ‖= sup
x∈An−A

‖ x ‖X= sup
{(an ,a):an∈An ,a∈A}

‖ an − a ‖X→ 0 as n→ ∞.

This shows that the sequence {An}∞
n=1 is convergent, i.e., (K(X), ‖ · ‖) is a Banach hyperspace.

5. Near Fixed Point Theorems

Let T : K(X) → K(X) be a function from K(X) into itself. We say that A ∈ K(X) is a fixed
point if and only if T(A) = A. This concept is completely different from the concept of fixed point in
set-valued functions. Some conventional fixed point theorems are based on the normed space that is
also a vector space. Since (K(X), ‖ · ‖) is not a vector space, we cannot study the corresponding fixed
point theorems based on (K(X), ‖ · ‖). However, we can study the so-called near fixed point that is
defined below.

Definition 7. Let T : K(X) → K(X) be a function defined on K(X) into itself. A point A ∈ K(X) is

called a near fixed point of T if and only if T(A)
Ω
= A.

By definition, we see that T(A)
Ω
= A if and only if there exist ω1, ω2 ∈ Ω such that T(A) = A,

T(A)⊕ω1 = A, or T(A) = A⊕ω1 or T(A)⊕ω1 = A⊕ω2.

Definition 8. Let (K(X), ‖ · ‖) be a pseudo-seminormed hyperspace. A function T : (K(X), ‖ · ‖)
→ (K(X), ‖ · ‖) is called a contraction on K(X) if and only if there is a real number 0 < α < 1 such that

‖ T(A)	 T(B) ‖≤ α ‖ A	 B ‖

for any A, B ∈ K(X).

Given any initial element A0 ∈ K(X), we define the iterative sequence {An}∞
n=1 using the function

T as follows:
A1 = T(A0), A2 = T(A1) = T2(A0), · · · , An = Tn(A0). (5)

Under some suitable conditions, we are going to show that the sequence {An}∞
n=1 can converge

to near a fixed point.
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Theorem 1. Let (K(X), ‖ · ‖) be a Banach hyperspace with the null set Ω such that ‖ · ‖ satisfies the null
equality. Suppose that the function T : (K(X), ‖ · ‖)→ (K(X), ‖ · ‖) is a contraction on K(X). Then T has

a near fixed point A ∈ K(X) satisfying T(A)
Ω
= A. Moreover, the near fixed point A is obtained by the limit

‖ A	 An ‖=‖ An 	 A ‖→ 0 as n→ ∞

in which the sequence {An}∞
n=1 is generated according to (5). We also have the following properties.

• The uniqueness is in the sense that there is a unique equivalence class [A] such that any Ā 6∈ [A] cannot be
near a fixed point.

• Each point Ā ∈ [A] is also a near fixed point of T satisfying T(Ā)
Ω
= Ā and [Ā] = [A].

• If Ā is a near fixed point of T, then Ā ∈ [A], i.e., [Ā] = [A]. Equivalently, if A and Ā are the near fixed

points of T, then A Ω
= Ā.

Proof. Given any initial element A0 ∈ K(X), we are going to show that {An}∞
n=1 is a Cauchy sequence.

Since T is a contraction on K(X), we have

‖ Am+1 	 Am ‖ =‖ T(Am)	 T(Am−1) ‖≤ α ‖ Am 	 Am−1 ‖
= α ‖ T(Am−1)	 T(Am−2) ‖≤ α2 ‖ Am−1 	 Am−2 ‖
≤ · · · ≤ αm ‖ A1 	 A0 ‖ .

For n < m, using Proposition 3, we obtain

‖ Am 	 An ‖ ≤‖ Am 	 Am−1 ‖ + ‖ Am−1 	 Am−2 ‖ + · · ·+ ‖ An+1 	 An ‖

≤
(

αm + αm+1 + · · ·+ αn
)
· ‖ A1 	 A0 ‖

= αn · 1− αm−n

1− α
· ‖ A1 	 A0 ‖ .

Since 0 < α < 1, we have 1− αm−n < 1 in the numerator, which says that

‖ Am 	 An ‖≤
αn

1− α
· ‖ A1 	 A0 ‖→ 0 as n→ ∞.

This proves that {An}∞
n=1 is a Cauchy sequence. Since K(X) is complete, there exists A ∈ K(X)

such that
‖ A	 An ‖=‖ An 	 A ‖→ 0 as n→ ∞.

We are going to show that any point Ā ∈ [A] is a near fixed point. Now we have Ā⊕ω1 = A⊕ω2

for some ω1, ω2 ∈ Ω. Using the triangle inequality and the fact of contraction on K(X), we have

‖ Ā	 T(Ā) ‖ =‖ (Ā⊕ω1)	 T(Ā) ‖ (since ‖ · ‖ satisfies the null equality)

≤‖ (Ā⊕ω1)	 Am ‖ + ‖ Am 	 T(Ā) ‖ (using Proposition 3)

=‖ (Ā⊕ω1)	 Am ‖ + ‖ T(Am−1)	 T(Ā) ‖
≤‖ (Ā⊕ω1)	 Am ‖ +α ‖ Am−1 	 Ā ‖
=‖ (Ā⊕ω1)	 Am ‖ +α ‖ Am−1 	 Ā⊕ (−ω1) ‖

(since −ω1 ∈ Ω and ‖ · ‖ satisfies the null equality)

=‖ (Ā⊕ω1)	 Am ‖ +α ‖ Am−1 	 (Ā⊕ω1) ‖ (using Remark 1)

=‖ (A⊕ω2)	 Am ‖ +α ‖ Am−1 	 (A⊕ω2) ‖
=‖ A	 Am ‖ +α ‖ Am−1 	 A ‖

(using −ω2 ∈ Ω, the null equality and Remark 1),
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which implies ‖ Ā	 T(Ā) ‖= 0 as m → ∞. We conclude that T(Ā)
Ω
= Ā for any point Ā ∈ [A] by

part (ii) of Proposition 4.

Now assume that there is another near fixed point Ā of T with Ā 6∈ [A], i.e., Ā Ω
= T(Ā). Then

Ā⊕ω1 = T(Ā)⊕ω2 and A⊕ω3 = T(A)⊕ω4

for some ωi ∈ Ω, i = 1, · · · , 4. Since T is a contraction on K(X) and ‖ · ‖ satisfies the null equality,
we obtain

‖ Ā	 A ‖ =‖ (Ā⊕ω1)	 (A⊕ω3) ‖
(using −ω3 ∈ Ω, the null equality and Remark 1)

=‖ (T(Ā)⊕ω2)	 (T(A)⊕ω4) ‖=‖ T(Ā)	 T(A) ‖
(using −ω4 ∈ Ω, the null equality and Remark 1)

≤ α ‖ Ā	 A ‖ .

Since 0 < α < 1, we conclude that ‖ Ā 	 A ‖= 0, i.e., Ā Ω
= A, which contradicts Ā 6∈ [A].

Therefore, any Ā 6∈ [A] cannot be the near fixed point. Equivalently, if Ā is a near fixed point of T,
then Ā ∈ [A]. This completes the proof.

Definition 9. Let (K(X), ‖ · ‖) be a pseudo-normed hyperspace. A function T : (K(X), ‖ · ‖) →
(K(X), ‖ · ‖) is called a weakly strict contraction on K(X) if and only if the following conditions are
satisfied:

• A Ω
= B, i.e., [A] = [B] implies ‖ T(A)	 T(B) ‖= 0.

• A 6Ω= B, i.e., [A] 6= [B] implies ‖ T(A)	 T(B) ‖<‖ A	 B ‖.

By part (ii) of Proposition 4, we see that if A 6Ω= B, then ‖ A 	 B ‖6= 0, which says that the
weakly strict contraction is well-defined. In other words, (K(X), ‖ · ‖) should be assumed to be a
pseudo-normed hyperspace rather than pseudo-seminormed hyperspace. We further assume that
‖ · ‖ satisfies the null super-inequality and null condition. Part (iii) of Proposition 4 says that if T is a
contraction on K(X), then it is also a weakly strict contraction on K(X).

Theorem 2. Let (K(X), ‖ · ‖) be a Banach hyperspace with the null set Ω Suppose that ‖ · ‖ satisfies the null
super-inequality and null condition, and that the function T : (K(X), ‖ · ‖)→ (K(X), ‖ · ‖) is a weakly strict
contraction on K(X). If {Tn(A0)}∞

n=1 forms a Cauchy sequence for some A0 ∈ K(X), then T has a near fixed

point A ∈ K(X) satisfying T(A)
Ω
= A. Moreover, the near fixed point A is obtained by the limit

‖ Tn(A0)	 A ‖=‖ A	 Tn(A0) ‖→ 0 as n→ ∞.

Assume further that ‖ · ‖ satisfies the null equality. Then we also have the following properties.

• The uniqueness is in the sense that there is a unique equivalence class [A] such that any Ā 6∈ [A] cannot be
a near fixed point.

• Each point Ā ∈ [A] is also a near fixed point of T satisfying T(Ā)
Ω
= Ā and [Ā] = [A].

• If Ā is a near fixed point of T, then Ā ∈ [A], i.e., [Ā] = [A]. Equivalently, if A and Ā are the near fixed

points of T, then A Ω
= Ā.

Proof. Since {Tn(A0)}∞
n=1 is a Cauchy sequence, the completeness says that there exists A ∈ K(X)

such that
‖ Tn(A0)	 A ‖=‖ A	 Tn(A0) ‖→ 0.
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Therefore, given any ε > 0, there exists an integer N such that ‖ Tn(A0)	 A ‖< ε for n ≥ N.
We consider the following two cases.

• Suppose that Tn(A0)
Ω
= A. Since T is a weakly strict contraction on K(X), it follows that

‖ Tn+1(A0)	 T(A) ‖= 0 < ε

by part (iii) of Proposition 4.

• Suppose that Tn(A0)
Ω
6= A. Since T is a weakly strict contraction on K(X), we have

‖ Tn+1(A0)	 T(A) ‖<‖ Tn(A0)	 A ‖< ε for n ≥ N.

The above two cases say that ‖ Tn+1(A0)	 T(A) ‖→ 0. Using Proposition 3, we obtain

‖ A	 T(A) ‖≤‖ A	 Tn+1(A0) ‖ + ‖ Tn+1(A0)	 T(A) ‖→ 0 as n→ ∞,

which says that ‖ A	 T(A) ‖= 0, i.e., T(A)
Ω
= A by part (ii) of Proposition 4. This shows that A is

a near fixed point.
Assume that ‖ · ‖ satisfies the null equality. We are going to claim that each point Ā ∈ [A] is also

a near fixed point of T. Since Ā Ω
= A, we have Ā⊕ω1 = A⊕ω2 for some ω1, ω2 ∈ Ω. Then, using the

null equality for ‖ · ‖, we obtain

‖ Tn(A0)	 Ā ‖ =‖ Ā	 Tn(A0) ‖=‖ (Ā⊕ω1)	 Tn(A0) ‖=‖ (A⊕ω2)	 Tn(A0) ‖
=‖ A	 Tn(A0) ‖→ 0 as n→ ∞.

Using the above argument, we can also obtain ‖ Tn+1(A0) 	 T(Ā) ‖→ 0 as n → ∞.
Using Proposition 3, we have

‖ Ā	 T(Ā) ‖≤‖ Ā	 Tn+1(A0) ‖ + ‖ Tn+1(A0)	 T(Ā) ‖→ 0 as n→ ∞,

which says that ‖ Ā	 T(Ā) ‖= 0. Therefore we conclude that T(Ā)
Ω
= Ā for any point Ā ∈ [A] by

part (ii) of Proposition 4.

Suppose that Ā 6∈ [A] is another near fixed point of T. Then T(Ā)
Ω
= Ā and [Ā] 6= [A], i.e., A 6Ω= Ā.

Then T(A) ⊕ ω1 = A ⊕ ω2 and T(Ā) ⊕ ω3 = Ā ⊕ ω4, where ωi ∈ Ω for i = 1, 2, 3, 4. Therefore
we obtain

‖ A	 Ā ‖ =‖ (A⊕ω2)	 (Ā⊕ω4) ‖
(using −ω4 ∈ Ω, the null equality and Remark 1)

=‖ (T(A)⊕ω1)	 (T(Ā)⊕ω3) ‖=‖ T(A)	 T(Ā) ‖
(using −ω3 ∈ Ω, the null equality and Remark 1)

<‖ A	 Ā ‖ (since A 6Ω= Ā and T is a weakly strict contraction).

This contradiction says that Ā cannot be a near fixed point of T. Equivalently, if Ā is a near fixed
point of T, then Ā ∈ [A]. This completes the proof.

Now we consider another fixed point theorem based on the concept of weakly uniformly strict
contraction which was proposed by Meir and Keeler [18].
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Definition 10. Let (K(X), ‖ · ‖) be a pseudo-normed hyperspace with the null set Ω. A function
T : (K(X), ‖ · ‖) → (K(X), ‖ · ‖) is called a weakly uniformly strict contraction on K(X) if and only if
the following conditions are satisfied:

• for A Ω
= B, i.e., [A] = [B], ‖ T(A)	 T(B) ‖= 0;

• given any ε > 0, there exists δ > 0 such that ε ≤‖ A	 B ‖< ε + δ implies ‖ T(A)	 T(B) ‖< ε

for any A 6Ω= B, i.e., [A] 6= [B].

By part (ii) of Proposition 4, we see that if A 6Ω= B, then ‖ A	 B ‖6= 0, which says that the weakly
uniformly strict contraction is well-defined. In other words, (K(X), ‖ · ‖) should be assumed to be
a pseudo-normed hyperspace rather than pseudo-seminormed hyperspace.

Remark 2. We observe that if T is a weakly uniformly strict contraction on K(X), then T is also
a weakly strict contraction on K(X).

Lemma 1. Let (K(X), ‖ · ‖) be a pseudo-normed hyperspace with the null set Ω, and let T : (K(X), ‖ · ‖)
→ (K(X), ‖ · ‖) be a weakly uniformly strict contraction on K(X). Then the sequence
{‖ Tn(A)	 Tn+1(A) ‖}∞

n=1 is decreasing to zero for any A ∈ K(X).

Proof. For convenience, we write Tn(A) = An for all n. Let cn =‖ An 	 An+1 ‖.

• Suppose that [An−1] 6= [An]. By Remark 2, we have

cn =‖ An 	 An+1 ‖=‖ Tn(A)	 Tn+1(A) ‖<‖ Tn−1(A)	 Tn(A) ‖=‖ An−1 	 An ‖= cn−1.

• Suppose that [An−1] = [An]. Then, by the first condition of Definition 10,

cn =‖ Tn(A)	 Tn+1(A) ‖=‖ T(An−1)	 T(An) ‖= 0 < cn−1.

The above two cases say that the sequence {cn}∞
n=1 is decreasing. We consider the following cases.

• Let m be the first index in the sequence {An}∞
n=1 such that [Am−1] = [Am]. Then we want to claim

cm−1 = cm = cm+1 = · · · = 0. Since Am−1
Ω
= Am, we have

cm−1 =‖ Am−1 	 Am ‖= 0.

Using the first condition of Definition 10, we also have

0 =‖ T(Am−1)	 T(Am) ‖=‖ Tm(A)	 Tm+1(A) ‖=‖ Am 	 Am+1 ‖= cm,

which says that Am
Ω
= Am+1, i.e., [Am] = [Am+1]. Using the similar arguments, we can obtain

cm+1 = 0 and [Am+1] = [Am+2]. Therefore the sequence {cn}∞
n=1 is decreasing to zero.

• Suppose that [Am+1] 6= [Am] for all m ≥ 1. Since the sequence {cn}∞
n=1 is decreasing, we assume

that cn ↓ ε > 0, i.e., cn ≥ ε > 0 for all n. There exists δ > 0 such that ε ≤ cm < ε + δ for
some m, i.e.,

ε ≤‖ Am 	 Am+1 ‖< ε + δ.

By the second condition of Definition 10, we have

cm+1 =‖ Am+1 	 Am+2 ‖=‖ Tm+1(A)	 Tm+2(A) ‖=‖ T(Am)	 T(Am+1) ‖< ε,

which contradicts cm+1 ≥ ε.

This completes the proof.
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Theorem 3. Let (K(X), ‖ · ‖) be a Banach hyperspace with the null set Ω. Suppose that ‖ · ‖ satisfies the
null super-inequality, and that the function T : (K(X), ‖ · ‖) → (K(X), ‖ · ‖) is a weakly uniformly strict

contraction on K(X). Then T has a near fixed point satisfying T(A)
Ω
= A. Moreover, the near fixed point A is

obtained by the limit
‖ Tn(A0)	 A ‖=‖ A	 Tn(A0) ‖→ 0 as n→ ∞.

Assume further that ‖ · ‖ satisfies the null equality. Then we also have the following properties.

• The uniqueness is in the sense that there is a unique equivalence class [A] such that any Ā 6∈ [A] cannot be
a near fixed point.

• Each point Ā ∈ [A] is also a near fixed point of T satisfying T(Ā)
Ω
= Ā and [Ā] = [A].

• If Ā is a near fixed point of T, then Ā ∈ [A], i.e., [Ā] = [A]. Equivalently, if A and Ā are the near fixed

points of T, then A Ω
= Ā.

Proof. According to Theorem 2 and Remark 2, we just need to claim that if T is a weakly uniformly
strict contraction, then {Tn(A0)}∞

n=1 = {An}∞
n=1 forms a Cauchy sequence. Suppose that {An}∞

n=1
is not a Cauchy sequence. Then there exists 2ε > 0 such that, given any N, there exist n > m ≥ N
satisfying ‖ Am 	 An ‖> 2ε. Since T is a weakly uniformly strict contraction on K(X), there exists
δ > 0 such that

ε ≤‖ A	 B ‖< ε + δ implies ‖ T(A)	 T(B) ‖< ε for any A 6Ω= B.

Let δ′ = min{δ, ε}. We are going to claim

ε ≤‖ A	 B ‖< ε + δ′ implies ‖ T(A)	 T(B) ‖< ε for any A 6Ω= B. (6)

Indeed, if δ′ = ε, i.e., ε < δ, then ε + δ′ = ε + ε < ε + δ.
Let cn =‖ An 	 An+1 ‖. Since the sequence {cn}∞

n=1 is decreasing to zero by Lemma 1, we can
find N such that cN < δ′/3. For n > m ≥ N, we have

‖ Am 	 An ‖> 2ε ≥ ε + δ′, (7)

which implicitly says that Am 6
Ω
= An. Since the sequence {cn}∞

n=1 is decreasing by Lemma 1 again,
we obtain

‖ Am 	 Am+1 ‖= cm ≤ cN <
δ′

3
≤ ε

3
< ε. (8)

For j with m < j ≤ n, using Proposition 3, we have

‖ Am 	 Aj+1 ‖≤‖ Am 	 Aj ‖ + ‖ Aj 	 Aj+1 ‖ . (9)

We want to show that there exists j with m < j ≤ n such that Am 6
Ω
= Aj and

ε +
2δ′

3
<‖ Am 	 Aj ‖< ε + δ′. (10)

Let γj =‖ Am 	 Aj ‖ for j = m + 1, · · · , n. Then (7) and (8) says that γm+1 < ε and γn > ε + δ′.
Let j0 be an index such that

j0 = max
{

j ∈ [m + 1, n] : γj ≤ ε +
2δ′

3

}
.
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Then we see that j0 < n, since γn > ε + δ′. By the definition of j0, we also see that j0 + 1 ≤ n and

γj0+1 > ε + 2δ′
3 , which also says that Am 6

Ω
= Aj0+1. Therefore expression (10) will be obtained if we can

show that

ε +
2δ′

3
< γj0+1 < ε + δ′.

Suppose that this is not true, i.e., γj0+1 ≥ ε + δ′. From (9), we have

δ′

3
> cN ≥ cj0 =‖ Aj0 	 Aj0+1 ‖≥ γj0+1 − γj0 ≥ ε + δ′ − ε− 2δ′

3
=

δ′

3
.

This contradiction says that (10) is sound. Since Am 6
Ω
= Aj, using (6), we see that (10) implies

‖ Am+1 	 Aj+1 ‖=‖ T(Am)	 T(Aj) ‖< ε. (11)

Therefore we obtain

‖ Am 	 Aj ‖ ≤‖ Am 	 Am+1 ‖ + ‖ Am+1 	 Aj+1 ‖ + ‖ Aj+1 	 Aj ‖ (by Proposition 3)

< cm + ε + cj (by (11))

<
δ′

3
+ ε +

δ′

3
= ε +

2δ′

3
,

which contradicts (10). This contradiction says that the sequence {Tn(A)}∞
n=1 = {An}∞

n=1 is a Cauchy
sequence, and the proof is complete.
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