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Abstract: This paper considers a class of large-scale systems which is composed of many interacting
subsystems, and each of them is controlled by an individual controller. For this type of system,
to improve the optimization performance of the entire closed-loop system in a distributed framework
without the entire system’s information or too-complicated network information, connectivity is
always an important topic. To achieve this purpose, a distributed model predictive control (DMPC)
design method is proposed in this paper, where each local model predictive control (MPC) considers
the optimization performance of its strong coupling subsystems and communicates with them.
A method to determine the strength of the coupling relationship based on the closed-loop system’s
performance and subsystem network connectivity is proposed for the selection of each subsystem’s
neighbors. Finally, through integrating the steady-state calculation, the designed DMPC is able to
guarantee the recursive feasibility and asymptotic stability of the closed-loop system in the cases of
both tracking set point and stabilizing system to zeroes. Simulation results show the efficiency of the
proposed DMPC.

Keywords: model predictive control; distributed model predictive control; large-scale systems;
neighborhood optimization

1. Introduction

There is a class of complex large-scale industrial control systems which are composed of many
interacting and spatially distributed subsystems, and each subsystem is controlled by an individual
controller (e.g., large-scale chemical process [1], smart micro-grid [2,3] systems, distributed generation
systems [4]), where the controllers exchange information with each other through a communication
network. The objective is to achieve a good global performance of the entire closed-loop system or a
common goal of all subsystems by the controller network. This objective is usually to track setpoints
with minimized total error or to stabilize the entire system to zeroes in the dynamic control layer.

Distributed model predictive control (DMPC) controls each subsystem by an individual local
model predictive control (MPC), and is one of the most important distributed control or optimization
algorithms [1,5–8], since it not only inherits MPC’s ability to get good optimization performance and
explicitly accommodate constraints [9,10], but also has the advantages of a distributed framework
of fault-tolerance, less computation, and being flexible to system structure [7,11–14]. However,
compared with the centralized control scheme, its performance is still not as good as that of centralized
MPC for coupling systems in a peer-to-peer distributed control framework.

Many algorithms and design methods have appeared in the literature for different types of
systems and for different problems in the design of DMPCs. For example, the design of DMPC
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for nonlinear systems [15,16], DMPC for uncertain systems [15,17], DMPC for networked systems
with time delay [18], a decentralized optimization algorithm for solving DMPC [19], the design of
cooperative strategies for improving the performance of DMPC [20], the design of an event-based
communication DMPC for reducing the load on the communication network [21], as well as the
design of a DPMC control structure [22]. Among these algorithms, several DMPC algorithms
relate to the purpose of improving the closed-loop optimization performance while considering
the information connectivity [5,21,23–26]. Information connectivity is considered because it directly
affects the structural flexibility and error tolerance ability. Reference [27] proposed a DMPC where
each subsystem-based MPC only communicates with its directly-impacted neighbors and uses an
iterative algorithm to obtain the “Nash optimality”. References [20,28,29] proposed cooperative DMPC,
where each MPC considers the cost of the entire system and communicates with all the other MPCs
to obtain “Pareto optimality”. To reduce the information connectivity and increase the structural
flexibility, Reference [30] proposed that each subsystem optimize all the subsystems impacted by it
over the optimization horizon. The solution of this method is equal to the cooperative DMPC, while its
communication efforts are less than the cooperative DMPC, especially for sparse systems. References
[31,32] gave a strategy to dynamically adjust the weighting of performance index in cooperative MPC
to avoid bad performance occurring in some subsystems. In an effort to achieve a trade-off between
the optimization performance of the entire system and the information connectivity, an intuitively
appealing strategy, called impacted-region cost optimization-based DMPC, is proposed in [33–35],
where each subsystem-based MPC only considers the cost of its own subsystem and those of the
subsystems directly impacted by it. Consequently, each MPC only communicates with its neighboring
MPCs. In addition, in some papers, the control flexibility and information connectivity are paid
more attention by researchers. References [14,36] provide a tube-based DMPC where all interactions
are considered as disturbances and each subsystem-based MPC is solved independently. It does
not exchange the state and input trajectory, but the interaction constraints, to avoid the interaction
consistency problem. This method is able to improve the flexibility and fault tolerance ability of the
control network [37]. References [25,37] proposed reconfigurable DMPC and plug-and-play DMPC
based on dissipative theory, which focus on the problem of how to design a DMPC which allows the
addition or deletion of subsystems without any change in existing controllers. It can be seen that
the optimization performance of the entire system and structural flexibility are two conflicting key
points in DMPC design. The selection of the range of each subsystem’s neighbors to be optimized in
each subsystem-based MPC is important in the design of DMPC in order to obtain good optimization
performance without unnecessary information connections. Thus, the aim of this paper is to design an
algorithm to determine the range of each subsystem optimized from the point of view of enlarging
each subsystem MPC’s feasible region, then to improve the entire system’s optimization performance
without too-complicated network connectivity. Then, based on the result of this algorithm, we aim to
design a stabilized neighborhood optimization-based DMPC that handles state constraints and is able
to be used in target tracking.

As for target tracking, the difficulty in DMPC is to guarantee the recursive feasibility.
References [38–40] provide a tracking algorithm for a series of MPC systems, where a steady-state
target optimizer (SSTO) is integrated in the design of the cost function. The proposed controller is
able to drive the whole system to any admissible setpoint in an admissible way, ensuring feasibility
under any change of setpoint. As for distributed systems, [38] gives a DMPC for tracking based on
the method introduced in [39] and a cooperative DMPC strategy. Reference [41] proposes another
method based on global calculations of targeting tracking. It does not require a feasible starting point
of each distributed predictive controller. These methods provide good references and possible methods
for designing a tracking DMPC that considers optimization performance improvement and network
connectivity.

In this paper, strong coupling neighbor-based optimization DMPC is proposed. With this method,
each local MPC coordinates and communicates with its strong coupling neighbors. It takes its
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strongly-coupling downstream subsystems cost function into account in its cost function to improve
the performance of the entire closed-loop system. To reduce the unnecessary network connectivity, the
interaction terms of weak coupling upstream neighbors are ignored in its predictive model and are
considered as bounded disturbances. In addition, the closed-loop optimization performance is used
to determine which interaction should be regarded as strong coupling and be considered in DMPC.
The strategy proposed in [38] is used to guarantee the recursive feasibility and stability in the target
tracking problem. An asymptotically-stable closed-loop system with state constraints is guaranteed.

The remainder of this paper is organized as follows. Section 2 describes the problem to be solved.
Section 3 describes the design of the proposed DMPC. Section 4 analyzes the stability of the closed-loop
system. Section 5 presents the simulation results to demonstrate the effectiveness of the proposed
algorithm. Finally, a brief conclusion to the paper is drawn in Section 6.

2. Problem Description

Considering a large-scale discrete-time linear system which is composed of many interacting
subsystems, the overall system model is: {

x+ = Ax + Bu,
y = Cx,

(1)

where x ∈ Rnx is the system state, u ∈ Rnu is the system current control input, y ∈ Rny is the
controlled output, and x+ is the successor state. The state of the system and control input applied at
sample time t are denoted as x(t),u(t), respectively. Moreover, there are hard constraints in the system
state and control input. That is, for ∀t ≥ 0:

x(t) ∈ X , u(t) ∈ U , (2)

where X ⊂ Rnx and U ⊂ Rnu are compact convex polyhedra containing the origin in their interior.
Given Model (1), without loss of generality, the overall system is divided in to m subsystems,

denoted as Si, i ∈ I0:m. Thus, u = (u1, u2, ..., um) and x = (x1, x2, ..., xm), then the subsystem model for
Si, ∀i ∈ I0:m is:

x+i = Aiixi + Biiui + ∑j∈Ni
Bijuj, (3)

whereNi is the set of subsystems that send inputs to the current subsystem Si. For subsystem Sj, j ∈ Ni,
Sj couples with Si by sending control input ui to Si. In particular, j ∈ Ni if Bij 6= 0. Given the overall
system constraints set X ,U , xi, ui fit hard constraints xi(t) ∈ Xi, ui(t) ∈ Ui.

In this paper, for ease of analysis, here the definitions of neighbor (upstream-neighbor) and
downstream neighbor are given.

Definition 1. Given subsystem Si with state evolution Equation (3), define Sj,Sj ∈ Ni, which send input
information to Si as the neighbor (upstream neighbor) of Si. Moreover, for arbitrary Sj,Sj ∈ Ni, since Si
receives input information from Sj, Si is defined as a downstream neighbor of Sj.

Denote the tracking target as yt. Assume that (A, B) is stabilizable and the state is measurable.
The aim of a tracking problem given a target yt is to design a controller which enables y(t)→ yt in an
admissible way when t→ ∞. Hence, the origin control objective function of the overall system is:

VNorigin(x, yt; u) =
N−1

∑
k=0

(‖Cx(k)− ŷt‖2
Qo

+ ‖u(k)− ût‖2
R) + ‖Cx(N)− ŷt‖2

Po
, (4)
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where Po > 0, Qo > 0, and R > 0 is the weighting coefficients matrix, and ut is steady input
corresponding to yt.

The problem considered here is to design a DMPC algorithm to control a physical network, which
coordinate with each other considering the following performance indicators:

• to achieve a good optimization performance of the entire closed-loop system.
• to guarantee the feasibility of target tracking.
• to simplify the information connectivity among controllers to guarantee good structural flexibility

and error-tolerance of the distributed control framework.

To solve this problem, in this paper, an enhanced strong neighbor-based optimization DMPC is
designed, and is detailed in the next section.

3. DMPC Design

In an interacting distributed system, the state evolution of each subsystem is affected by the
optimal control decisions of its upstream neighbors. Each subsystem considers if these effects will help
to improve the performance of entire closed-loop system. On the other hand, these impacts have
different strengths for different downstream subsystems. Some of the effects are too small and can
be ignored. If these weakly-coupling downstream subsystems’ cost functions are involved in each
subsystem’s optimization problem, additional information connections arise with little improvement
of the performance of the closed-loop system. The increase of information connections will hinder
the error tolerance and flexibility of the distributed control system. Thus, each subsystem-based
MPC takes the cost functions of its strongly-interacting downstream subsystems into account
to improve the closed-loop performance of the entire system and receive information from its
strong-coupling neighbors.

3.1. Strong-Coupling Neighbor-Based Optimization for Tracking

Given that the coupling degrees between different subsystems differ substantially, here we enable
the subsystem to cooperate with strong-coupling neighbors while treating the weak-coupling ones as
disturbance. Define Ni(strong) as a set of strong-coupling neighboring subsystems and Ni(weak) as set of
weak-coupling neighbors. The rule for deciding strong-coupling systems is detailed in Section 3.4.

Then, for Si, we have:

x+i = Aiixi + Biiui + ∑j∈Ni(strong)
Bijuj + wi, (5)

where
wi = ∑j∈Ni(weak)

Bijuj,

wi ∈ Wi,Wi = (⊕BijUj),

Ni(weak) ∪Ni(strong) = Ni = {j|Bij 6= 0, j 6= i}.

The deviation wi represents the influence collection of weak-coupling upstream neighbors in Ni,(weak).
wi is contained in a convex and compact setWi which contains the origin.

If the weak coupling influence wi is neglected, a simplified model based on Si is acquired. That is:

x̄+i = Aii x̄i + Biiūi + ∑j∈Ni(strong)
Bijūj. (6)

Here x̄i , ūi, and ūj, j ∈ Ni(strong) represent the state and input of a simplified subsystem model
which neglects weak-coupling upstream neighbors’ influence wi.

The simplified overall system model with new coupling relation matrix B̄ is:

x̄+ = Ax̄ + B̄ū, (7)
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where x̄ = (x̄1, x̄2, ..., x̄m) and ū = (ū1, ū2, ..., ūm) represent states and inputs in this simplified model.
Considering the target-tracking problem of the simplified model, in order to ensure the output

track, given target yt, constraints are given for terminal state prediction. If the current target yt is set as
the tracking target through the controller optimization, when yt changes, the terminal constraints need
to change immediately. The optimal solution at a previous time may not fit the terminal constraints
brought by the changed yt. This violates the recursive feasibility of the system. Thus, here a steady
state optimization is integrated in the MPC for tracking where an artificial feasible tracking goal ys is
proposed as a medium variable. This variable works as an optimized variable. With setting tracking
point ys equal to the previous target, the recursive feasibility will not be violated by the target change.

The medium target ys and its state x̄S and input ūs should satisfy the simplified system’s steady
state equations. It has

[
A− Inx B̄ 0

C 0 −I

] x̄s

ūs

ys

 =

[
0
0

]
, (8)

[
x̄s ūs

]
= Myys. (9)

Here My is a suitable matrix. That is, target ys’s corresponding inputs ūs and states x̄s in the
simplified model can be expressed by ys. The equation is based on the premise of Lemma 1.14 in [42].
If Lemma 1.14 does not hold, a Mθ and θ which fits

[
x̄s ūs

]
= Mθθ can be found, which can replace

the ys as a variable to be solved.
For the manual tracking target ys for the overall system, we have ys = {y1,s, . . . , yi,s, . . . , ym,s}.

That is, given ys, arbitrary subsystem Si gets a subtracking target ys,i. Similar to (9), x̄s,i, ūs,i are solved.
With the simplified model and artificial tracking target ys,i, according to (9), in the strong-coupling

neighbor-based optimization MPC algorithm, the objective function optimized in subsystem
Si, ∀i ∈ [1, m] is set as V′iN(xi, yt; xi, ui,0:N−1, ys) as follows:

V′iN(xi, yt; xi, ui,0:N−1, ys) =
N−1

∑
k=0

(‖xi(k)− x̄i,s‖2
Qi

+ ‖ui(k)− ūi,s‖2
Ri
) + ‖xi(N)− x̄i,s‖2

Pi
+ V0(yi,s, yt,i)

+
N−1

∑
k=0

∑
h∈Hi

∥∥xh(k)− x̄s,h
∥∥2

Qh
+
∥∥xh(N)− x̄s,h

∥∥
Ph

, (10)

where xi, yt is the given initial state and target, ui,0:N−1 are input predictions in 0 : N − 1 sample time
ahead. ys is the admissible target. Qi = C′i Qo,iCi > 0 and

Hi = {h|i ∈ Nh(strong), ∀Sh, h ∈ [1, m], h 6= i}. (11)

Here, Si’s controller design takes the strong-coupling downstream neighbors’ performances as
part of its optimized objective. That is, the current subsystem Si’s optimal solution is decided by its
own and downstream neighbors in setHi, which is strongly impacted by Si.

Next, we will use the simplified model in (6) with only strong couplings to solve the tracking
problem (10) for each subsystem. To guarantee control feasibility and stability, the following definitions
and assumptions are given.

One important issue is to deal with the deviation caused by neglecting weak-coupling neighbor
inputs. Here robust positively invariantt sets are adopted to enable the deviation of states to be
bounded and the real system’s states to be controlled in X .
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Definition 2. (Robust positively invariant set control law) Given e = (x− x̄) which represents the dynamics
of the error between the origin plant and the simplified model:

e+ = Ake + w, (12)

with Ak = (A + BK). A set φ is called a robust positively invariant set for system (12) if Akφ⊕W ⊆ φ, and
the control law is called a robust positively invariant set control law.

The definition of a robust positively invariant set illustrates that for system x = Ax + Bu + w if φ

and robust positively invariant set control law K exist, then for e(0) = x(0)− x̄(0), the trajectories of
the original system at arbitrary time t denoted as x(t) can be controlled in x(t) = x̄(t)⊕ φ.

Based on this definition, in this paper the dynamics of deviation (xi− x̄i) introduced by neglecting
weak-coupling neighbors can be solved. For subsystem Si proposed as (5), the deviation is written as:

e+i = Aiiei + Biiui,e + wi,

where ei = xi − x̄i is the deviation from the simplified model to the original model and ui,e is the
control law. There exists the set φi as a robust positively invariant set for Si if (Aii + BiiKi)ei ∈ φi
for all ei ∈ φi and all wi ∈ Wi. Here ui,e = Kiei is a feedback control input and we denote Ki as the
robust positively invariant set control law for Si. Then, it is easy to obtain xi(t) = x̄i(t)⊕ φi for time t.
Let (x̄i(t), ūi(t)) ∈ Fi, where Fi = (Xi × Ui)	 (φi × Kiφi), the origin system state and input satisfy
(xi(t), Ki(xi(t)− x̄i(t)) + ūi(t)) ∈ Xi ×Ui. Thus, with the help of a robust positively invariant set, the
original system optimization is transferred to a simplified model. For the overall system, we have
K = diag(K1, K2, ..., Km).

With Definition 2, if the deviation brought by omitting weak-coupling neighbors is controlled in
a robust positively invariant (RPI) set φi with control law Ki and simplified model in (7) has control
law and state ūi, x̄i confined in Ui 	 Kiφi,Xi 	 φi, respectively, the local subsystem will have a feasible
solution for the optimization.

As for the manually-selected tracking target ys, based on the overall simplified model in (7),
the following definition is given:

Definition 3. (Tracking invariant set control law). Consider that overall system (7) is controlled by the
following control law:

ū = K̄(x̄− x̄s) + ūs = K̄x̄ + Lys. (13)

Let A + B̄K̄ be Hurwitz, then this control law steers system (7) to the steady state and input (x̄s, ūs) =

Myys. K̄ is denoted as the tracking invariant set control law.

Denote the set of initial state and steady output that can be stabilized by control law (13) while
fulfilling the system constraints throughout its evolution as an invariant set for tracking ΩK̄. For any
(x(0), ys) ∈ ΩK̄, the trajectory of the system x̄+ = Ax̄ + Bū controlled by ū = K̄x + Lys is confined in
ΩK̄ and tends to (xs, us) = Myys.

Under Definitions 2 and 3, before introducing the enhancing strong neighbor-based optimization
DMPC, some assumptions for the closed-loop system feasibility and stability are given as follows.
The concrete theorem and an analysis of stability and feasibility are given in Section 4.

Assumption 1. The eigenvalues of Aii + BiiKi are in the interior of the unitary circle. φi is an admissible
robust positively invariant set for Si’s deviation (xi − x̄i) subject to constraints Fi, and the corresponding
feedback control law is ui,e = Kiei.
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Assumption 2. Let ΩK̄ be a tracking invariant set for the simplified system (7) subject to constraints F =

{{(x̄1, ū1), ..., (x̄m, ūm)}|∀i, (x̄i, ūi) ∈ (Xi ×Ui)	 (φi × K̄iφi)} , and the corresponding feedback gain matrix
is K̄ = {K̄1, K̄2, . . . , K̄m}.

Assumption 3. For Q = block-diag{Q1, Q2, . . . , Qm}, R = block-diag{R1, R2, . . . , Rm} and P =

block-diag(P1, P2, . . . , Pm), it has:

(A + B̄K̄)′P(A + B̄K̄)− P = −(Q + K̄′RK̄). (14)

Assumption 1 ensures that with the feedback control law ui,e = Kiei, i ∈ I0:m, the state estimated
by the simplified model (7) is near to the real system’s trajectory before the system reaches the target.
In Assumption 2, Ωk̄ is set as a terminal constraint of DMPC. Assumption 3 is used in the proof of the
convergence of system presented in the Appendix A.

So far, the strong-coupling neighbor-based optimization DMPC algorithm, which is solved
iteratively, can be defined as follows:

Firstly, denote the optimal objective of subsystem Si as ViN . According to (10), at iterating step p,
ViN fits:

ViN(xi, yt, p; x̄i, ūi,0:N−1, yi,s)

=
N−1

∑
k=0

(‖x̄i(k)− x̄i,s‖2
Qi

+ ‖ūi(k)− ūi,s‖2
Ri
) + ‖x̄i(N)− x̄i,s‖2

Pi
+ V0(yi,s, yi,t)

+
N−1

∑
k=0

∑
h∈Hi

∥∥∥x̄h(k)− x̄[p−1]
h,s

∥∥∥2

Qh
+
∥∥∥x̄h(N)− x̄[p−1]

h,s

∥∥∥
Ph

. (15)

Compute the optimization solution

(x̄′i(0), ūi,0:N−1
′, yi,s

′) = arg min ViN(xi, yt, p; x̄i, ūi,0:N−1, yi,s), (16)

Subject to constraints:

x̄hi
(k + 1) = Ahihi

x̄hi
(k) + ∑hj∈Nh(strong)

Bhj
ū[p]

hj
(k) + Bhihi

ūhi
(k),

(x̄hi
(k) ūhi

(k)) ∈ F ,F : (Xhi
,Uhi

)	 (Whi
, Khi
Wi), (17a)

(x̄(N), ys) ∈ ΩK̄, (17b)

x̄i(0) ∈ xi − φi, (17c)

Myyi,s = (x̄i,s, ūi,s), (17d)

with hi ∈ Hi ∪ {i}, and φi, Ωk̄ defined in Assumptions 2 and 3, respectively. The optimization
function (16) updates Si’s initial state, inputs in N steps ūi,0:N−1 and current tracking target yi,s based
on the information from subsystems inH.

Secondly, set

ū[p]
i,0:N−1 = γiū′i,0:N−1 + (1− γi)ū

[p−1]
i,0:N−1, (18)

y[p]i,s = γiy′i,s + (1− γi)y
[p−1]
i,s , (19)

x̄[p]i (0) = γix′i(0) + (1− γi)x̄[p−1]
i (0), (20)

m

∑
i=1

γi = 1, γi > 0. (21)
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γi ∈ R, 0 < γi < 1 is to guarantee the consistency of the optimization problem. That is, at the end of
the current sample time, all shared variables converge.

After that, we take
p = p + 1

to iterate until the solutions convergence. Then, we have x̄∗i = x̄[p]i , ū∗i = ū[p]
i,0:N−1, y∗i,s = y[p]i,s .

Finally, when the solution converges, according to Assumption 1, take the control law of Si as

u∗i,0 = ū∗i,0 + Ki(xi − x̄∗i ), (22)

where Ki is the robust positively invariant set control law. ū∗i,0 is the first element of ū∗i . For better
understanding, the algorithm is also presented in Algorithm 1.

Algorithm 1: Enhancing Strong Neighbor-Based Optimization DMPC

Data: initial time t0, inital state xi(t0), and tracking target ytarget (target can be changed with
time according to production demand) for subsystem Si

Result: the control law u∗i (t) for t = t0 : +∞

1 Firstly, determine the strong-coupling neighbors set Ni(strong) by solving Ci,(d∗)’s optimization
in 3.4.

2 Secondly, confirm Si’s downstream neighbor setHi which is the set of subsystems that SSi
has control influence on.

3 Set t = t0.
4 while True do
5 Select Warm Start (reference solution at iteration p = 0, details in Section 3.2) :

v[0]i (t) = (x̄[0]i (0|t), ū[0]
i,0:N−1(t), ȳ[0]i,s (t))

6 Set xi = xi(t), yt = ytarget, p = 1.
7 while True do
8 Set (x̄′i(0), ūi,0:N−1

′, yi,s
′) = arg min{ViN(xi, yt, p; x̄i, ūi,0:N−1, yi,s) : s.t(17)}

9 Get optimization solution at p:

ū[p]
i,0:N−1 = γiū′i,0:N−1 + (1− γi)ū

[p−1]
i,0:N−1

y[p]i,s = γiy′i,s + (1− γi)y
[p−1]
i,s

x̄[p]i (0) = γix′i(0) + (1− γi)x̄[p−1]
i (0)

m

∑
i=1

γi = 1, γi > 0

10 if ||ū[p]
i − ū[p−1]

i || ≤ 1e−6 then
11 Break
12 end
13 Set p = p + 1
14 end

15 Set x̄∗i = x̄[p]i (0), ū∗i = ū[p]
i,0:N−1, y∗i,s = y[p]i,s . u∗i,0 = ū∗i,0 + Ki(xi − x̄∗i )

16 Get u∗i (t) = u∗i,0. Set t = t + 1.
17 end
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In this algorithm, we use an iterative strategy to guarantee the distributed control solution
(x̄(0), ū0:N−1, ys) is consistent. Next, the selection of warm start, the given solution for each subsystem
at initial iterative step 0, is proposed in the next section.

3.2. Warm Start

Considering a new sample time, with updated system states, the choice of a warm start is based
on the principle that it fits the simplified system’s constraints in (17), so that real subsystem solution’s
feasibility is guaranteed. The warm start is designed as the following algorithm:

Algorithm 2: Warm Start for Iterative Algorithm

Data: x(t + 1), yt, ū∗i,0:N−1(t), y∗i,s(t)

Result: the warm start v[0]i (t + 1) = (x̄[0]i (0|t + 1), ū[0]
i,0:N−1(t + 1), ȳ[0]i,s (t + 1))

1 For control inputs, two options are given:
2 Option 1: ũi,0:N−1(t + 1) = (ū∗i,1(t), ..., ū∗i,N−1(t), ūi(N))

3 where ū(N) = (ū1(N), ..., ūm(N)) = K̄x̄∗(N) + Ly∗s (t).

4 Option 2:
5 ûi,0:N−1(t + 1) = (ûi(0), ..., ûi(N − 1)), where

x̂i(0) = x̄∗i (1, t), and x̂i(k + 1) fits

x̂(k + 1) = (x̂1(k + 1), ..., x̂m(k + 1)) = (A + BK̄)x̂(k) + BLy∗s (k), k ∈ I0:N−1

ûi(k) = K̄x̂(k) + Ly∗s (t), k ∈ I0:N−1

6 As for x̄[0]i (0|t + 1), y[0]i,s (t + 1). To ensure feasibility, denote:

x̄[0]i (0|t + 1) = x̄∗i (1|t)

y[0]i,s (t + 1) = y∗i,s(t)

7 Warm Start

8 if (x̄[0]i (t + 1), y[0]i,s (t + 1)) in tracking invariant set, and

ViN(xi(t + 1), yt, 0; x̄[0]i (0|t + 1), ûi,0:N−1(t + 1), y[0]i,s (t + 1)

≤ViN(xi(t + 1), yt, 0; x̄[0]i (0|t + 1), ũi,0:N−1(t + 1), y[0]i,s (t + 1)

then
9 vi(t + 1)[0] = (x̄[0]i (0|t + 1), ûi,0:N−1(t + 1), y[0]i,s (t + 1))

10 end
11 else
12 vi(t + 1)[0] = (x̄[0]i (0|t + 1), ũi,0:N−1(t + 1), y[0]i,s (t + 1))
13 end

The algorithm illustrates that two choices are provided for the warm start. One is acquiring
a solution from the tracking invariant set control law K̄, with the simplified model prediction
(x̄∗i (1|t), y∗i,s(t)) as initial state and tracking target, respectively. The other is taking a solution from the
simplified model prediction at time t. Both of them fit the constraints of (17). Note that the second
option will only be considered when the subsystem enters the tracking invariant set.
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3.3. RPI Control Law and RPI Set

Here one constraint coupling subsystem is considered. Given that for Si we have xi ∈ Xi and
ui ∈ Ui, express the constraints in inequalities: Xi = {xi|lT

i xi| ≤ 1} and Ui = {ui|hT
i ui| ≤ 1}.

The robust positively invariant set φi is denoted as φi = {xi : xT
i Pixi ≤ 1}.

With the definition a of robust positively invariant set in Definition 2, φi should ensure that
∀xi ∈ φi, xi ∈ Xi. That is:

|hT
i xi| ≤ 1, ∀xi ∈ φi. (23)

Based on definitions of Ni(strong) and Ni(weak), Wi is decided according to the constraints of
Ni(weak). For deviation caused by neglecting the subsystem in Ni(weak), a minimization of robust
positive invariant set φi by introducing a parameter γi ∈ [0, 1] can be obtained.

The parameter γi controls the size of the robust positive invariant set φi by further minimizing φi
in φi ⊆

√
γiX . That is:

minγi

s.t. |hT
i xi| ≤

√
γi, ∀xi ∈ φi. (24)

We should also consider the input constraint Ui:

|lT
i Kixi| ≤ 1, ∀xi ∈ φi, (25)

and the constraint brought by the property of robust positive invariant set φi itself should be considered.
Based on the above analysis, referring to [43], we can obtain γi and Ki by solving the following

linear matrix inequality optimization problem:

min
Wi ,Yi ,γi

γi, (26) λiWi ∗ ∗
0 1− λi ∗

AiiWi + BiYi wi Wi

 > 0, ∀wi ∈ vert(Wi), (27)

[
1 ∗

YT
i li Wi

]
> 0, (28)[

γi ∗
Wihi Wi

]
> 0, (29)

and Ki = YiW−1
i . Thus, we get RPI control law Ki and γi, which illustrates the size of φi. To get φi, we

use the procedure in Reference [43].

3.4. Determination of Strong Coupling

There are many measurements to measure the strength of interactions among subsystems.
Different measurements lead to different optimization performance. This paper focuses on
the performance and connectivity of subsystems. Thus, the determination of strong-coupling neighbors
is based on the influence on the size of current subsystem’s robust positively invariant (RPI) set and
subsystem connectivity.

On the one hand, as defined in Definition 2, φi is a robust positively invariant set for subsystem
Si described as x+i = Aiixi + Biiui + ∑j∈Ni

Bijuj when uj is set to zero. Given that φi deals with
deviation caused by neglecting some of the inputs uj, j ∈ Ni, the size of φi is expected to be sufficiently
small. The benefit is that the solution in (15) can get a larger feasible domain. Here we consider
that a sufficiently large domain means the solution has more degrees of freedom and brings better
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subsystem performance. Based on the idea above, to decide to omit the weak-coupling neighbor set
Ni(weak), we choose a neighbor collection which results in a small size of robust positively invariant
set φi. The basis of measuring the robust positively invariant set φi by introducing γi is mentioned
in the previous section. On the other hand, connectivity, as the measurement of subsystem topology
complexity, is easy to obtain. Next, we give the numerical analysis.

Denote an arbitrary option for deciding the strong-, weak-coupling neighbors as Ci,(d), d ∈ Di.
Di = {1, ..., dmax} ∈ I is the label set of ways of Si’s neighbors’ distribution. dmax represents the size
of feasible distribution methods which fits dmax ≤ 2size(Ni). For better understanding of Ci,(d), here
we take an arbitrary neighbor set Ni = {j1, j2, j3} as an example. If we treat ji as a strong-coupling
neighbor and j2, j2 as weak, we have ∃d ∈ Di, Ci,(d), satisfying:

Ci,(d) = {(Ni(strong),Ni(weak))|Ni(strong) = {j1},Ni(weak) = {j2, j3}}.

Option Ci,(d) results in a specified connectivity amount (normalized) ci,(d) ∈ [0, 1] and an RPI set
denoted as φ(i,d) ⊆

√
γi,(d)Xi. Here ci,(d) ∈ [0, 1] are defined as:

ci,(d) =
size(Ni(strong))

size(Ni)
∈ [0, 1]. (30)

To find the optimal distribution Ci,(d∗) of strong- and weak-coupling neighbors, here we take:

Ci,(d∗) = argmin
Ci,(d),Wi,(d),Yi,(d),γi,(d)

((γi,(1) + µici,(1)), ..., (γi,(d) + µici,(d)), ..., (γi,(dmax) + µici,(dmax))),

where for d ∈ Di,  λiWi,(d) ∗ ∗
0 1− λi ∗

AiiWi,(d) + BiYi,(d) wi Wi,(d)

 > 0, ∀wi ∈ vert(Wi,(d)), (31)

[
1 ∗

YT
i,(d)li Wi,(d)

]
> 0, (32)[

γi,(d) ∗
Wi,(d)hi Wi,(d)

]
> 0, (33)

0 ≤ γi,(d) ≤ 1. (34)

In this equation, µi is a weight coefficient for the optimization. γi,(d), Wi,(d), Yi,(d), Xi,(d) represent
the γi, Wi, Yi, Xi under distribution Ci,(d). Moreover, Ci,(d∗) is the optimal solution.

This optimization means that in order to make the optimal decision on strong-coupling
neighbors and weak-coupling neighbors while taking both connectivity and performance into account,
the optimization that minimizes the combination of subsystem connectivity and size of φi should be
solved. To decide whether a neighbor Sj, j ∈ Ni is a strong-coupling neighbor or a weak one, the size
of φi is expected to be small so that the solution in (15) can get a larger feasible domain. At the same
time, the connectivity is expected to be small to reduce the system’s topological complexity.

The optimization achieves the goal of choosing neighbors which result in smaller size of robust
positively invariant set φi and connectivity. Solution Ci,(d∗) reflects the consideration of influence on
RPI set φi and connectivity. With this method, even though “weak-coupling” neighbors are omitted
and deviation is brought, the simplified model has a large degree of freedom to design the control law
of tracking and reduces the connectivity at the same time. Thus, a good system performance and error
tolerance can be obtained.
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4. Stability and Convergence

In this section, the feasibility and stability theorem of strong-coupling neighbor-based DMPC are
given. Denote

XN = {x ∈ X |∃v = (x, u0:N−1, ys), u(k) ∈ U , k ∈ I0:N−1, ys ∈ Ys, s.t.v ∈ ZN},
ZN = {v|u(k) ∈ U , k ∈ I0:N−1, ys ∈ Ys, x(k; x, u) ∈ X , k ∈ I0:N−1, x(N; x, u) ∈ ΩK̄}.

x(k; x, u) represents the current time’s state prediction after k sample time. Ys is the feasible tracking
set based on hard constraints of x and u.

Theorem 1. Assume that Assumptions 1–3 hold. Then, for all initial state x(0) with tracking target yt if
v(0) ∈ ZN , the closed-loop system based on a strong-coupling neighbor-based DMPC algorithm is feasible and
asymptotically stable and converges to ŷs ⊕ Cφk, where ŷs = (ŷ1,s, ..., ŷm,s), ŷi,s = argminV0(yi,s, yi,t) among
feasible targets.

Proof. Feasibility is proved by Lemmas A1, A2. Stability’s proofs are in Lemmas A3, A4 in
the Appendix A.

5. Simulation

The simulation takes an industrial system model with five subsystems interacting with each
other as an example. Between different subsystems, the coupling degrees vary substantially.
The relationships of subsystems and the designed MPC are shown in Figure 1.

In Figure 1, dotted lines are used to represent weak coupling, while solid lines are used to
represent strong coupling. With the strategy we have defined in our paper, weak couplings are
neglected. As a result, it can be seen in Figure 1 that only parts of the subsystems are joint in
cooperation. Subsystem models are also given as follows:

S1 : x1,t+1 =

[
0.5 0.6
0 0.66

]
x1,t +

[
0.1
0.7

]
u1,t +

[
0

0.04

]
u2,t,

y1,t =
[
0 1

]
x1,t, (35a)

S2 : x2,t+1 =

[
0.6 0.1
0 0.71

]
x2,t +

[
0.5
1

]
u2,t +

[
0

0.3

]
u1,t +

[
0

0.01

]
u3,t,

y1,t =
[
0 1

]
x1,t, (35b)

S3 : x3,t+1 =

[
0.7 0.2
0.1 0.4

]
x3,t +

[
0.9
1

]
u3,t +

[
0

0.4

]
u2,t +

[
0

0.05

]
u4,t,

y1,t =
[
0 1

]
x1,t, (35c)

S4 : x4,t+1 =

[
0.9 0.7
0 0.6

]
x4,t +

[
0.4
0.4

]
u4,t +

[
0.3
0.6

]
u3,t +

[
0

0.01

]
u5,t,

y1,t =
[
0 1

]
x1,t, (35d)

S5 : x5,t+1 =

[
0.8 0
0.5 0.78

]
x5,t +

[
0
1

]
u5,t +

[
0.4
0.2

]
u4,t,

y1,t =
[
0 1

]
x1,t. (35e)
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By the strong-coupling neighbor-based DMPC, connections including S2 → S1, S3 → S2,
S4 → S3, S5 → S4 are neglected. For the five subsystems in the given model, γ1, γ2, γ3, γ4, and
γ5, which evaluate the system performance, are obtained by optimization in Section 3.4, they are:

(γ1, γ2, γ3, γ4, γ5) = (0.54, 0.66, 0.72, 0.53, 0). (36)

Among them, γ5 = 0 illustrates that subsystem S5 has no weak-coupling upstream neighbors.
Additionally, the robust positively invariant set feedback control laws are

{K1, K2, K3, K4} = {[−0.119− 0.762]T, [−0.171− 0.434]T, [−0.316− 0.251]T, [−0.724− 0.966]T}.

The optimization horizon N is 10 sample time. Take Q = I10×10 and R = I5×5. To accelerate
the iterative process, in both of these iterative algorithms, the terminal conditions of iteration are
||u[p]

i − u[p−1]
i ||2 ≤ 10−3 or p > 100. If either of these two conditions is satisfied, iteration terminates.

Figure 1. An illustration of the structure of a distributed system and its distributed control framework.
MPC: model predictive control; DMPC: distributed MPC.

The following shows the system performance when the strong-coupling neighbor-based DMPC
algorithm is applied. Here we chose different set-points to detect the system stability. Three groups
of setpoints were given to verify the system’s feasibility and stability. For a better understanding,
cooperative DMPC strategy control results which cooperate with all neighbors are also introduced to
make a comparison. The simulation took a total of 74.3 seconds for 90 sampling times. The performance
comparison of strong-coupling neighbor-based DMPC (SCN-DMPC) with cooperative DMPC where
each subsystem used the full system’s information in their controller is shown in Figures 2–4.

Figure 2 shows the state evolution of each subsystem. The two curves of SCN-DMPC and
cooperative are close to each other. This is because the weak couplings in the given example are tiny
compared with the strong couplings and thus do not have much of an impact on system dynamics.
Besides, SCN-DMPC optimization algorithm was always feasible and was able to keep stable with
a changing tracking target. Figure 3 shows the input difference between these two algorithms. The
control laws of these two algorithms are almost the same. Tracking results are shown in Figure 4.
There was a small off-set in subsystem S1,S3, which could be eliminated by adding an observer. All
other subsystems could track the steady-state target without steady-state off-set. From the simulation
results of Figures 2–4, the stability and good optimization performance of the closed-loop system using
SCN-DMPC is verified.
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Figure 2. States of each subsystem under the control of strong-coupling neighbor-based DMPC (SCN-DMPC) and
cooperative DMPC.

Figure 3. Inputs of each subsystem under the control of SCN-DMPC and cooperative DMPC.



Mathematics 2018, 6, 86 15 of 20

Figure 4. Output of each subsystem under the control of SCN-DMPC and cooperative DMPC.

In Figures 2–4, the curves of SCN-DMPC and cooperative DMPC are close to each other. The
reason is that the weak couplings in the given example were tiny compared with the strong couplings,
and thus they did not have much of an impact on system dynamics, even though a small difference
existed. Specifically, given the state equation input weight coefficients in each subsystem, the deviations
of the five subsystems fit ‖w1‖ ≤ 0.04, ‖w2‖ ≤ 0.01, ‖w3‖ ≤ 0.05, ‖w4‖ ≤ 0.01. The effects of these
disturbances were very small compared with those of each subsystem’s inputs. Under robust feedback
control law, they do not have much of an influence on system dynamics. Besides, the performance of
the simplified model under SCN-DMPC equals to that under the control law optimizing the global
performance of simplified system. As a result, the system performance under SCN-DMPC was close to
that in cooperative DMPC. Under circumstances where the weak interactions are close to the impact of
each subsystem’s inputs (which sacrifices part of the performance to achieve less network connectivity),
omitting weak couplings may result in a greater influence on system dynamics, and the simulation
results can differ.

Moreover, mean square errors between the closed-loop systems with strong-coupling
neighbor-based optimization DMPC and cooperative DMPC outputs are listed in Table 1. The
total error of five subsystems was only 3.5, which illustrates the good optimization performance
of SCN-DMPC.

Table 1. Mean square error (MSE) of outputs between SCN-DMPC and cooperative DMPC.

Item S1 S2 S3 S4 S5

MSE 0.5771 1.1512 0.7111 0.1375 0.9162

Connectivities are compared in the following table.
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Table 2 shows that when strong-coupling neighbor-based DMPC was applied, the total
information connections reduced to eight, which means that five connections were avoided compared
with cooperative DMPC.

Table 2. Comparison of system connectivity with different control methods.

System SCN-DMPC Cooperative DMPC

S1 1 2
S2 2 3
S3 2 4
S4 2 3
S5 1 1
S 8 13

Above all, the simulation results show that the proposed SCN-DMPC achieved a good
performance close to the cooperative DMPC with a significant reduction of information connectivity.

6. Conclusions

In this paper, a strong-coupling neighbor-based optimization DMPC method is proposed to
decide the cooperation among subsystems, where each subsystem’s MPC considers the optimization
performance and evolution of its strong-coupling downstream subsystems and communicates with
them. For strongly-coupled subsystems, the influence on state and objective function are considered.
For weakly-coupled subsystems, influence is neglected in the cooperative design. A closed-loop
system’s performance and network connectivity-based method is proposed to determine the strength of
coupling relationships among subsystems. The feasibility and stability of the closed-loop system in the
case of target-tracking are analyzed. Simulation results show that the proposed SCN-DMPC was able
to achieve similar performance in comparison to the DMPC which did not neglect the information or
influence of weakly coupling subsystems. At the same time, connectivity was significantly decreased.
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simulation and prepared the draft of the paper. Yi Zheng and Shaoyuan Li proposed the idea of Enhancing Strong
Neighbor-based coordination strategy. They contributed to the main theory of the work and gave the inspiration
and guidance of the strong-coupling neighbors’ determination, the algorithm design and stability analysis.

Acknowledgments: This work is supported by the National Nature Science Foundation of China (61673273, 61590924).
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Appendix

In the strong-coupling neighbor-based optimization DMPC algorithm proposed in this paper, the
optimal solution of each subsystem equals to the solution of optimizing the overall system objective
function. That is:

arg min VN(xi, yt, ∞; x̄i, ūi,0:N−1, ys) = arg min ViN(xi, yt; x̄i, ūi,0:N−1, ys), (A1)

where

VN(xi, yt; x̄i, ūi,0:N−1, ys) =
N−1

∑
k=0

(‖x(k)− x̄s‖2
Q + ‖u(k)− ūs‖2

R) + ‖x(N)− x̄s‖2
P + V0(ys, yt). (A2)
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Thus, for easy analysis, here we take the overall objective function VN to prove the feasibility and
stability, and define:

v[p] = {x̄[p]1 , ..., x̄[p]m , ū[p]
1,0:N−1, ..., ū[p]

m,0:N−1, y[p]1,s , ..., y[p]1,m}, (A3)

v∗ = {x̄∗1 , ..., x̄∗m, ū∗1,0:N−1, ..., ū∗m,0:N−1, y∗1,s, ..., y∗1,m}. (A4)

Denote v′[p]i as

v′[p]i =(x̄[p−1]
1 , ..., x̄′[p]i , ..., x̄[p−1]

m , ū[p−1]
1,0:N , ..., ū′[p]i,0:N , ..., ū[p−1]

m,0:N , y[p−1]
1,s , ..., y′[p]i,s , ..., y[p−1]

m,s ). (A5)

Lemma A1. Feasibility. Feasibility can be proved by assuming v(t) ∈ Zn. Then, we get v(t + 1) ∈ Zn.

Proof. The feasibility of the model is proved by analyzing the simplified model.
Refer to the warm start algorithm. At time t + 1, the warm start for arbitrary Si : v̄[0]i (t + 1) =

(x̄[0]i (0|t + 1), ū[0]
i,0:N(t + 1), y[0]i,s (t + 1)). With the warm start, all constraints in (17) are satisfied.

From pth to (p + 1)th iterations, given that

(v′[p+1]
1 , v′[p+1]

2 , ..., v′[p+1]
m )

are feasible, obviously their convex sum v[p+1] is feasible. As a result, the converged simplified solution
v∗(t + 1) is feasible. Based on this, the real system solution is around the invariant set of v∗(t + 1), and
fits the system constraints. That is, (x(t + 1), v(t + 1)) ∈ Zn.

Lemma A2. Convergence. Here we have

VN(x(t), yt; v[p+1](t)) ≤ VN(x(t), yt; v[p](t)).

Proof. Since it has

VN(x, yt, v[p+1]) ≤ γ1VN(x, yt; v′[p+1]
1 ) + ... + γmVN(x, yt; v′[p+1]

m )

≤ γ1VN(x, yt; v[p]) + ... + γmVN(x, yt; v[p])

= VN(x, yt, v[p]), (A6)

convergence is proved.

According to the Lemma above, we have:

VN(x(t), yt; v[p+1](t)) ≤ VN(x(t), yt; v[0](t)). (A7)

Lemma A3. Local Bounded. When (x(t), y[0]s (t) ∈ ΩK̄, then

VN(x(t), yt; v[p](t)) ≤
∥∥∥x(t)− x̄[0]s (t)

∥∥∥2

P
+ V0(y

[0]
s (t), yt).

Proof. Firstly,

VN(x(t), yt; v[0](t)) ≤
∥∥∥x(t)− x̄[0]s (t)

∥∥∥2

P
+ V0(y

[0]
s (t), yt)

will be proved.
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According to the definition of warm start and Assumption 3, here we have:

VN(x(t), yt; v[0](t))

≤
N−1

∑
k=0

∥∥∥x(k; t)− x̄[0]s (t)
∥∥∥

Q
+
∥∥∥u(k)− ū[0]

s (t)
∥∥∥

R
+
∥∥∥x(N)− x̄[0]s (t)

∥∥∥2

P
+ V0(y

[0]
s (t), yt)

=
N−1

∑
k=0

∥∥∥x(k; t)− x̄[0]s (t)
∥∥∥

Q+K̄′RK̄
+
∥∥∥x(N)− x̄[0]s (t)

∥∥∥2

P
+ V0(y

[0]
s (t), yt) (A8)

=
∥∥∥x(N)− x̄[0]s (t)

∥∥∥2

P
+ V0(y

[0]
s (t), yt).

Thus, we have:

VN(x(t), yt; v[p](t)) ≤ VN(x(t), yt; v[0](t))

≤
∥∥∥x(t)− x̄[0]s (t)

∥∥∥2

P
+ V0(ȳ

[0]
s (t), yt). (A9)

Lemma A4. Convergence. Let Assumption 3 hold, for any feasible solution z(0) = (x(0), v(0)) ∈ ZN , the
system converges to equilibrium point zs. That is,

VN(x(t + 1), yt; v̄∗(t + 1))−VN(x(t), yt; v̄∗(t)) ≤ ‖x(t)− x̄s(t)‖2
Q . (A10)

The final tracking points of the simplified system (the optimal solution of VN) are (x̄∗(xs, yt), ū∗(xs, yt)) =

(xs, us), which are the centralized optimal solution.

Proof. For simplified system optimization, we have

VN(x(t + 1), yt, v∗(t + 1)) ≤ VN(x(t + 1), yt; v(0; t + 1)), (A11)

and also

VN(x(t + 1), yt; v(0; t + 1)) ≤ VN(x(t), yt, v∗(t))− ‖x(t)− x̄s(t)‖2
Q − ‖u(t)− ūs(t)‖R . (A12)

According to (A11) and (A12), we have

VN(x(t + 1), yt; v∗(t + 1))−VN(x(t), yt; v∗(t)) (A13)

≤− ‖x(t)− x̄s(t)‖2
Q − ‖u(t)− ūs(t)‖R

≤− ‖x(t)− x̄s(t)‖2
Q .

Since the robust positively invariant set feedback control law K = diag(K1, K2, ..., Km) ensures the
real states in the invariant set of the simplified model, the real system’s stability is proved.
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