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Abstract:



In this paper, three-dimensional real hypersurfaces in non-flat complex space forms, whose shape operator satisfies a geometric condition, are studied. Moreover, the tensor field [image: ] is given and three-dimensional real hypersurfaces in non-flat complex space forms whose tensor field [image: ] satisfies geometric conditions are classified.
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1. Introduction


A real hypersurface is a submanifold of a Riemannian manifold with a real co-dimensional one. Among the Riemannian manifolds, it is of great interest in the area of Differential Geometry to study real hypersurfaces in complex space forms. A complex space form is a Kähler manifold of dimension [image: ] and constant holomorphic sectional curvature c. In addition, complete and simply connected complex space forms are analytically isometric to complex projective space [image: ] if [image: ], to complex Euclidean space [image: ] if [image: ], or to complex hyperbolic space [image: ] if [image: ]. The notion of non-flat complex space form refers to complex projective and complex hyperbolic space when it is not necessary to distinguish between them and is denoted by [image: ].



Let [image: ] be the Kähler structure and [image: ] the Levi–Civita connection of the non-flat complex space form [image: ]. Consider [image: ] a connected real hypersurface of [image: ] and [image: ] a locally defined unit normal vector field on [image: ]. The Kähler structure induces on [image: ] an almost contact metric structure [image: ]. The latter consists of a tensor field of type (1, 1) [image: ] called structure tensor field, a one-form [image: ], a vector field [image: ] given by [image: ] known as the structure vector field of [image: ] and [image: ], which is the induced Riemannian metric on [image: ] by [image: ]. Among real hypersurfaces in non-flat complex space forms, the class of Hopf hypersurfaces is the most important. A Hopf hypersurface is a real hypersurface whose structure vector field [image: ] is an eigenvector of the shape operator [image: ] of [image: ] .



Takagi initiated the study of real hypersurfaces in non-flat complex space forms. He provided the classification of homogeneous real hypersurfaces in complex projective space [image: ] and divided them into five classes ([image: ]), ([image: ]), ([image: ]), ([image: ]) and ([image: ]) (see [1,2,3]). Later, Kimura proved that homogeneous real hypersurfaces in complex projective space are the unique Hopf hypersurfaces with constant principal curvatures, i.e., the eigenvalues of the shape operator [image: ] are constant (see [4]). Among the above real hypersurfaces, the three-dimensional real hypersurfaces in [image: ] are geodesic hyperspheres of radius [image: ], [image: ], called real hypersurfaces of type ([image: ]) and tubes of radius [image: ], [image: ], over the complex quadric called real hypersurfaces of type ([image: ]). Table 1 includes the values of the constant principal curvatures corresponding to the real hypersurfaces above (see [1,2]).


Table 1. Principal curvatures of real hypersurfaces in [image: ]





	Type
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]





	([image: ])
	[image: ]
	[image: ]
	-
	1
	2
	-



	([image: ])
	2[image: ]
	[image: ]
	[image: ]
	1
	1
	1









The study of Hopf hypersurfaces with constant principal curvatures in complex hyperbolic space [image: ], was initiated by Montiel in [5] and completed by Berndt in [6]. They are divided into two types: type ([image: ]), which are open subsets of horospheres ([image: ]), geodesic hyperspheres ([image: ]), or tubes over totally geodesic complex hyperbolic hyperplane [image: ] ([image: ]) and type ([image: ]), which are open subsets of tubes over totally geodesic real hyperbolic space [image: ]. Table 2 includes the values of the constant principal curvatures corresponding to above real hypersurfaces for [image: ] (see [6]).


Table 2. Principal curvatures of real hypersurfaces in [image: ]





	Type
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]
	[image: ]





	([image: ])
	2
	1
	-
	1
	2
	-



	([image: ])
	2[image: ]
	[image: ]
	-
	1
	2
	-



	([image: ])
	2[image: ]
	[image: ]
	-
	1
	2
	-



	([image: ])
	2[image: ]
	[image: ]
	[image: ]
	1
	1
	1









The Levi–Civita connection [image: ] of the non-flat complex space form [image: ] induces on [image: ] a Levi–Civita connection [image: ]. Apart from the last one, Cho in [7,8] introduces the notion of the k-th generalized Tanaka–Webster connection [image: ] on a real hypersurface in non-flat complex space form given by


[image: ]



(1)




for all [image: ], [image: ] tangent to [image: ], where [image: ] is a nonnull real number. The latter is an extension of the definition of generalized Tanaka–Webster connection for contact metric manifolds given by Tanno in [9] and satisfying the relation


[image: ]











The following relations hold:


[image: ]











In particular, if the shape operator of a real hypersurface satisfies [image: ], the generalized Tanaka–Webster connection coincides with the Tanaka–Webster connection.



The k-th Cho operator on [image: ] associated with the vector field [image: ] is denoted by [image: ] and given by


[image: ]



(2)




for any [image: ] tangent to [image: ]. Then, the torsion of the k-th generalized Tanaka–Webster connection [image: ] is given by


[image: ]








for any [image: ], [image: ] tangent to [image: ]. Associated with the vector field [image: ], the k-th torsion operator [image: ] is defined and given by


[image: ]








for any [image: ] tangent to [image: ].



The existence of Levi–Civita and k-th generalized Tanaka–Webster connections on a real hypersurface implies that the covariant derivative can be expressed with respect to both connections. Let [image: ] be a tensor field of type (1, 1); then, the symbols [image: ] and [image: ] are used to denote the covariant derivatives of [image: ] with respect to the Levi–Civita and the k-th generalized Tanaka–Webster connection, respectively. Furthermore, the Lie derivative of a tensor field [image: ] of type (1, 1) with respect to Levi–Civita connection [image: ] is given by


[image: ]



(3)




for all [image: ] tangent to [image: ] . Another first order differential operator of a tensor field [image: ] of type (1, 1) with respect to the k-th generalized Tanaka–Webster connection [image: ] is defined and it is given by


[image: ]



(4)




for all [image: ] tangent to [image: ] .



Due to the existence of the above differential operators and derivatives, the following questions come up

	1.

	
Are there real hypersurfaces in non-flat complex space forms whose derivatives with respect to different connections coincide?




	2.

	
Are there real hypersurfaces in non-flat complex space forms whose differential operator [image: ] coincides with derivatives with respect to different connections?









The first answer is obtained in [10], where the classification of real hypersurfaces in complex projective space [image: ], [image: ], whose covariant derivative of the shape operator with respect to the Levi–Civita connection coincides with the covariant derivative of it with respect to the k-th generalized Tanaka–Webster connection is provided, i.e., [image: ], where [image: ] is any vector field on [image: ]. Next, in [11], real hypersurfaces in complex projective space [image: ], [image: ], whose Lie derivative of the shape operator coincides with the operator [image: ] are studied, i.e., [image: ], where [image: ] is any vector field on [image: ]. Finally, in [12], the problem of classifying three-dimensional real hypersurfaces in non-flat complex space forms [image: ], for which the operator [image: ] applied to the shape operator coincides with the covariant derivative of it, has been studied, i.e., [image: ], for any vector field [image: ] tangent to [image: ].



In this paper, the condition [image: ], where [image: ] is any vector field on [image: ] is studied in the case of three-dimensional real hypersurfaces in [image: ].



The aim of the present paper is to complete the work of [11] in the case of three-dimensional real hypersurfaces in non-flat complex space forms [image: ]. The equality [image: ] is equivalent to the fact that [image: ]. Thus, the eigenspaces of [image: ] are preserved by the k-th torsion operator [image: ], for any [image: ] tangent to [image: ]. First, three-dimensional real hypersurfaces in [image: ] whose shape operator [image: ] satisfies the following relation:


[image: ]



(5)




for any [image: ] orthogonal to [image: ] are studied and the following Theorem is proved:



Theorem 1.

There do not exist real hypersurfaces in [image: ] whose shape operator satisfies relation (5).





Next, three-dimensional real hypersurfaces in [image: ] whose shape operator satisfies the following relation are studied:


[image: ]



(6)




and the following Theorem is provided:



Theorem 2.

Every real hypersurface in [image: ] whose shape operator satisfies relation (6) is locally congruent to a real hypersurface of type ([image: ]).





As an immediate consequence of the above theorems, it is obtained that



Corollary 1.

There do not exist real hypersurfaces in [image: ] such that [image: ], for all [image: ][image: ][image: ].





Next, the following tensor field [image: ] of type (1, 1) is introduced:


[image: ]








for any vector field [image: ] tangent to [image: ]. The relation [image: ] implies that the shape operator commutes with the structure tensor [image: ]. Real hypersurfaces whose shape operator [image: ] commutes with the structure tensor [image: ] have been studied by Okumura in the case of [image: ], [image: ], (see [13]) and by Montiel and Romero in the case of [image: ], [image: ] (see [14]). The following Theorem provides the above classification of real hypersurfaces in [image: ], [image: ].



Theorem 3.

Let M be a real hypersurface of [image: ], [image: ]. Then, [image: ], if and only if M is locally congruent to a homogeneous real hypersurface of type (A). More precisely:



In the case of [image: ]

	(A1)

	
a geodesic hypersphere of radius r , where [image: ],




	(A2)

	
a tube of radius r over a totally geodesic [image: ],[image: ], where [image: ]









In the case of [image: ]

	(A0)

	
a horosphere in [image: ], i.e., a Montiel tube,




	(A1)

	
a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane [image: ],




	(A2)

	
a tube over a totally geodesic [image: ][image: ].











Remark 1.

In the case of three-dimensional real hypersurfaces in [image: ], real hypersurfaces of type ([image: ]) do not exist.





It is interesting to study real hypersurfaces in non-flat complex spaces forms, whose tensor field [image: ] satisfies certain geometric conditions. We begin by studying three-dimensional real hypersurfaces in [image: ] whose tensor field [image: ] satisfies the relation


[image: ]



(7)




for any vector fields [image: ], [image: ] tangent to [image: ].



First, the following Theorem is proved:



Theorem 4.

Every real hypersurface in [image: ] whose tensor field P satisfies relation (8) for any [image: ] orthogonal to [image: ] and [image: ][image: ][image: ] is locally congruent to a real hypersurface of type (A).





Next, we study three-dimensional real hypersurfaces in [image: ] whose tensor field [image: ] satisfies relation (7) for [image: ], i.e.,


[image: ]



(8)




for any vector field [image: ] tangent to [image: ]. Then, the following Theorem is proved:



Theorem 5.

Every real hypersurface in [image: ] whose tensor field P satisfies relation (8) is a Hopf hypersurface. In the case of [image: ] M is locally congruent to a real hypersurface of type (A) or to a real hypersurface of type (B) with [image: ] and in the case of [image: ] M is a locally congruent either to a real hypersurface of type (A) or to a real hypersurface of type (B) with [image: ].





This paper is organized as follows: in Section 2, basic relations and theorems concerning real hypersurfaces in non-flat complex space forms are presented. In Section 3, analytic proofs of Theorems 1 and 2 are provided. Finally, in Section 4, proofs of Theorems 4 and 5 are given.




2. Preliminaries


Throughout this paper, all manifolds, vector fields, etc. are considered of class [image: ] and all manifolds are assumed to be connected.



The non-flat complex space form [image: ], [image: ] is equipped with a Kähler structure [image: ] and [image: ] is the Kählerian metric. The constant holomorphic sectional curvature [image: ] in the case of complex projective space [image: ] is [image: ] and in the case of complex hyperbolic space [image: ] is [image: ]. The Levi–Civita connection of the non-flat complex space form is denoted by [image: ].



Let [image: ] be a connected real hypersurface immersed in [image: ], [image: ], without boundary and [image: ] be a locally defined unit normal vector field on [image: ]. The shape operator [image: ] of the real hypersurface [image: ] with respect to the vector field [image: ] is given by


[image: ]











The Levi–Civita connection [image: ] of the real hypersurface [image: ] satisfies the relation


[image: ]











The Kähler structure of the ambient space induces on [image: ] an almost contact metric structure [image: ] in the following way: any vector field [image: ] tangent to [image: ] satisfies the relation


[image: ]











The tangential component of the above relation defines on [image: ] a skew-symmetric tensor field of type (1, 1) denoted by [image: ] known as the structure tensor. The structure vector field [image: ] is defined by [image: ] and the 1-form [image: ] is given by [image: ] for any vector field [image: ] tangent to [image: ]. The elements of the almost contact structure satisfy the following relation:


[image: ]



(9)




for all tangent vectors [image: ] to [image: ]. Relation (9) implies


[image: ]











Because of [image: ], it is obtained


[image: ]








for all [image: ] tangent to [image: ]. Moreover, the Gauss and Codazzi equations of the real hypersurface are respectively given by


[image: ]



(10)




and


[image: ]



(11)




for all vectors [image: ] tangent to [image: ], where [image: ] is the curvature tensor of [image: ].



The tangent space [image: ] at every point [image: ][image: ][image: ] is decomposed as


[image: ]



(12)




where [image: ] and is called (maximal) holomorphic distribution (if [image: ]).



Next, the following results concern any non-Hopf real hypersurface [image: ] in [image: ] with local orthonormal basis [image: ] at a point [image: ] of [image: ].



Lemma 1.

Let M be a non-Hopf real hypersurface in [image: ]. The following relations hold on M:


[image: ]



(13)




where [image: ] are smooth functions on M and [image: ].





Remark 2.

The proof of Lemma 1 is included in [15].





The Codazzi equation for [image: ][image: ][image: ] and [image: ] implies, because of Lemma 1, the following relations:


[image: ]



(14)






[image: ]



(15)






[image: ]



(16)






[image: ]



(17)




and for [image: ] and [image: ]


[image: ]



(18)







The following Theorem refers to Hopf hypersurfaces. In the case of complex projective space [image: ] it is given by Maeda [16], and, in the case of complex hyperbolic space [image: ] it is given by Ki and Suh [17] (see also Corollary 2.3 in [18]).



Theorem 6.

Let M be a Hopf hypersurface in [image: ], [image: ]. Then,

	(i)

	
[image: ] is constant.




	(ii)

	
If [image: ] is a vector field, which belongs to [image: ] such that [image: ], then


[image: ]












	(iii)

	
If the vector field [image: ] satisfies [image: ] and [image: ] then








[image: ]



(19)









Remark 3.

Let M be a three-dimensional Hopf hypersurface in [image: ]. Since M is a Hopf hypersurface relation [image: ], it holds when [image: ]. At any point [image: ][image: ][image: ], we consider a unit vector field [image: ][image: ][image: ] such that [image: ]. Then, the unit vector field [image: ] is orthogonal to [image: ] and [image: ] and relation [image: ] holds. Therefore, at any point [image: ][image: ][image: ], we can consider the local orthonormal frame [image: ] and the shape operator satisfies the above relations.






3. Proofs of Theorems 1 and 2


Suppose that [image: ] is a real hypersurface in [image: ] whose shape operator satisfies relation (5), which because of the relation of k-th generalized Tanaka-Webster connection (1) becomes


[image: ]



(20)




for any [image: ][image: ][image: ] and for all [image: ][image: ][image: ].



Let [image: ] be the open subset of [image: ] such that


[image: ]











The inner product of relation (20) for [image: ] with [image: ] due to relation (13) implies [image: ] and the shape operator on the local orthonormal basis [image: ] becomes


[image: ]



(21)







Relation (20) for [image: ] and [image: ] and [image: ] due to (21) yields, respectively,


[image: ]



(22)







Differentiation of [image: ] with respect to [image: ] taking into account that [image: ] is a nonzero real number implies [image: ]. Thus, relation (18) results, because of [image: ], in [image: ]. Furthermore, relations (14)–(17) due to [image: ] and relation (22) become


[image: ]



(23)






[image: ]



(24)






[image: ]



(25)






[image: ]



(26)







The inner product of Codazzi equation (11) for [image: ] and [image: ] with [image: ] and [image: ] implies because of [image: ] and relation (21),


[image: ]



(27)







The Lie bracket of [image: ] and [image: ] satisfies the following two relations:


[image: ]











A combination of the two relations above taking into account relations of Lemma 1 and (27) yields


[image: ]











Suppose that [image: ], then [image: ] and relation (26) implies [image: ]. Differentiation of the last one with respect to [image: ] results, taking into account relation (25), in [image: ]. The Riemannian curvature satisfies the relation


[image: ]








for any [image: ], [image: ], [image: ] tangent to [image: ]. Combination of the last relation with Gaussian Equation (10) for [image: ], [image: ] and [image: ] due to relation (22) and relation (24), [image: ], [image: ] and [image: ] implies [image: ], which is a contradiction.



Therefore, on [image: ], relation [image: ] holds. A combination of [image: ] with Gauss Equation (10) for [image: ], [image: ] and [image: ] because of relations (22) and (26) and [image: ] yields


[image: ]











A combination of the latter with relation (23) implies


[image: ]











Differentiation of the above relation with respect to [image: ] gives, due to relation (26) and [image: ],


[image: ]











If the ambient space is the complex projective space [image: ] with [image: ], then the above relation leads to a contradiction. If the ambient space is the complex hyperbolic space [image: ] with [image: ], combination of the latter relation with [image: ] yields [image: ], which is a contradiction.



Thus, [image: ] is empty and the following proposition is proved:



Proposition 1.

Every real hypersurface in [image: ] whose shape operator satisfies relation (5) is a Hopf hypersurface.





Since [image: ] is a Hopf hypersurface, Theorem 6 and remark 3 hold. Relation (20) for [image: ] and for [image: ] implies, respectively,


[image: ]



(28)







Combination of the above relations results in


[image: ]











If [image: ], then [image: ] and relation [image: ] becomes


[image: ]











If [image: ], then [image: ] and relation (19) implies that [image: ] is also constant. Therefore, the real hypersurface is locally congruent to a real hypersurface of type ([image: ]). Substitution of the values of eigenvalues in relation [image: ] leads to a contradiction. Thus, on [image: ], relation [image: ] holds. Following similar steps to the previous case, we are led to a contradiction.



Therefore, on [image: ], we have [image: ] and the first of relations (28) becomes


[image: ]











Supposing that [image: ], then [image: ]. Thus, the real hypersurface is totally umbilical, which is impossible since there do not exist totally umbilical real hypersurfaces in non-flat complex space forms [18].



Thus, on [image: ] relation [image: ] holds. Relation (20) for [image: ] and [image: ] implies, because of [image: ], [image: ]. Thus, [image: ] and the real hypersurface is totally umbilical, which is a contradiction and this completes the proof of Theorem 1.



Next, suppose that [image: ] is a real hypersurface in [image: ] whose shape operator satisfies relation (6), which, because of the relation of the k-th generalized Tanaka-Webster connection (1), becomes


[image: ]



(29)




for any [image: ][image: ][image: ].



Let [image: ] be the open subset of [image: ] such that


[image: ]











The inner product of relation (29) for [image: ] with [image: ] implies, due to relation (13), [image: ] and the shape operator on the local orthonormal basis [image: ] becomes


[image: ]



(30)







Relation (29) for [image: ] yields, taking into account relation (30), [image: ]. Finally, relation (29) for [image: ] implies, due to relation (30) and the last relation,


[image: ]











The above relation results in [image: ], which implies that [image: ] is empty. Thus, the following proposition is proved:



Proposition 2.

Every real hypersurface in [image: ] whose shape operator satisfies relation (6) is a Hopf hypersurface.





Due to the above Proposition, Theorem 6 and Remark 3 hold. Relation (29) for [image: ] and for [image: ] implies, respectively,


[image: ]











Suppose that [image: ]. Then, the above relations imply [image: ], which is a contradiction.



Thus, on [image: ], relation [image: ] holds and this results in the structure tensor [image: ] commuting with the shape operator [image: ], i.e., [image: ] and, because of Theorem 3 [image: ] , is locally congruent to a real hypersurface of type ([image: ]), and this completes the proof of Theorem 2.




4. Proof of Theorems 4 and 5


Suppose that [image: ] is a real hypersurface in [image: ] whose tensor field [image: ] satisfies relation (7) for any [image: ][image: ][image: ] and for all [image: ][image: ][image: ]. Then, the latter relation becomes, because of the relation of the k-th generalized Tanaka-Webster connection (1) and relations (3) and (4),


[image: ]



(31)




for any [image: ][image: ][image: ] and for all [image: ][image: ][image: ].



Let [image: ] be the open subset of [image: ] such that


[image: ]











Relation (31) for [image: ] implies, taking into account relation (13),


[image: ]



(32)




for any [image: ][image: ][image: ].



The inner product of relation (32) for [image: ] with [image: ] due to relation (13) yields [image: ]. Moreover, the inner product of relation (32) for [image: ] with [image: ], taking into account relation (13) and [image: ], results in


[image: ]



(33)







The inner product of relation (32) for [image: ] with [image: ] gives, because of relation (13) and [image: ],


[image: ]











Suppose that [image: ], then the above relation implies [image: ] and relation (33) implies [image: ], which is impossible.



Thus, relation [image: ] holds and relation (33) results in


[image: ]











The latter implies [image: ], which is impossible.



Thus, [image: ] is empty and the following proposition has been proved:



Proposition 3.

Every real hypersurface in [image: ] whose tensor field P satisfies relation (7) is a Hopf hypersurface.





As a result of the proposition above, Theorem 6 and remark 3 hold. Thus, relation (31) for [image: ] and [image: ] and for [image: ] and [image: ] yields, respectively,


[image: ]











Supposing that [image: ], the above relations imply [image: ], which is a contradiction.



Therefore, relation [image: ] holds and this implies that [image: ]. Thus, because of Theorem 3, [image: ] is locally congruent to a real hypersurface of type ([image: ]) and this completes the proof of Theorem 4.



Next, we study three-dimensional real hypersurfaces in [image: ] whose tensor field [image: ] satisfies relation (8). The last relation becomes, due to relation (2),


[image: ]



(34)




for any [image: ] tangent to [image: ].



Let [image: ] be the open subset of [image: ] such that


[image: ]











The inner product of relation (34) for [image: ] implies, taking into account relation (13), [image: ], which is impossible. Thus, [image: ] is empty and the following proposition has been proved



Proposition 4.

Every real hypersurface in [image: ] whose tensor field P satisfies relation (8) is a Hopf hypersurface.





Since [image: ] is a Hopf hypersurface, Theorems 6 and 3 hold. Relation (34) for [image: ] implies, due to [image: ] and [image: ],


[image: ]











We have two cases:



Case I: Supposing that [image: ], then the above relation implies [image: ]. Relation (19) implies, due to the last one, that [image: ], [image: ] are constant. Thus, [image: ] is locally congruent to a real hypersurface with three distinct principal curvatures. Therefore, it is locally congruent to a real hypersurface of type ([image: ]).



Thus, in the case of [image: ], substitution of the eigenvalues of real hypersurface of type ([image: ]) in [image: ] implies [image: ]. In the case of [image: ], substitution of the eigenvalues of real hypersurface of type ([image: ]) in [image: ] yields [image: ].



Case II: Supposing that [image: ], then the structure tensor [image: ] commutes with the shape operator [image: ], i.e., [image: ] and, because of Theorem 3, [image: ] is locally congruent to a real hypersurface of type ([image: ]) and this completes the proof of Theorem 5.



As a consequence of Theorems 4 and 5, the following Corollary is obtained:



Corollary 2.

A real hypersurface M in [image: ] whose tensor field P satisfies relation (7) is locally congruent to a real hypersurface of type (A).






5. Conclusions


In this paper, we answer the question if there are three-dimensional real hypersurfaces in non-flat complex space forms whose differential operator [image: ] of a tensor field of type (1, 1) coincides with the Lie derivative of it. First, we study the case of the tensor field being the shape operator [image: ] of the real hypersurface. The obtained results complete the work that has been done in the case of real hypersurfaces of dimensions greater than three in complex projective space (see [11]). In Table 3 all the existing results and also provides open problems are summarized.


Table 3. Results on condition [image: ]





	Condition
	[image: ]
	[image: ]
	[image: ]





	[image: ]
	does not exist
	does not exist
	open



	[image: ]
	type ([image: ])
	type ([image: ])
	open



	[image: ]
	does not exist
	does not exist
	open









Next, we study the above geometric condition in the case of the tensor field being [image: ], which is introduced here. In Table 4, we summarize the obtained results.


Table 4. Results on condition [image: ]










	Condition
	[image: ]
	[image: ]





	[image: ]
	type ([image: ])
	type ([image: ])



	[image: ]
	type ([image: ]) and
	type ([image: ]) and



	
	type ([image: ]) with [image: ]
	type ([image: ]) with [image: ]



	[image: ]
	type ([image: ])
	type ([image: ])
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