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Abstract: We consider a time-non-homogeneous double-ended queue subject to catastrophes and
repairs. The catastrophes occur according to a non-homogeneous Poisson process and lead the system
into a state of failure. Instantaneously, the system is put under repair, such that repair time is governed
by a time-varying intensity function. We analyze the transient and the asymptotic behavior of the
queueing system. Moreover, we derive a heavy-traffic approximation that allows approximating
the state of the systems by a time-non-homogeneous Wiener process subject to jumps to a spurious
state (due to catastrophes) and random returns to the zero state (due to repairs). Special attention
is devoted to the case of periodic catastrophe and repair intensity functions. The first-passage-time
problem through constant levels is also treated both for the queueing model and the approximating
diffusion process. Finally, the goodness of the diffusive approximating procedure is discussed.

Keywords: double-ended queues; time-non-homogeneous birth-death processes; catastrophes;
repairs; transient probabilities; periodic intensity functions; time-non-homogeneous jump-diffusion
processes; transition densities; first-passage-time
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1. Introduction

Double-ended queues are often adopted as stochastic models for queueing systems characterized
by two flows of agents, i.e., customers and servers/resources. When there are a customer and a server
in the system, the match between the request and service occurs immediately, and then, both agents
leave the system. As a consequence, there cannot be simultaneously customers and servers in the
system. Namely, denoting by N(t) the state of the system at time t, it is assumed that N(t) = n, n ∈ N,
if there are n customers waiting for available servers, whereas N(t) = −n, n ∈ N, if there are n servers
waiting for new customers, and N(t) = 0, if the system is empty. Hence, typical models for N(t) are
bilateral continuous-time Markov chains or similar stochastic processes.

Double-ended queueing systems can be applied to model numerous situations in real-world
scenarios. A classical example is provided by taxi-passenger systems, where the role of customers
and servers is played by passengers and taxis, respectively. We recall the first papers on this
topic by Kashyap [1,2] and the subsequent contributions by Sharma and Nair [3], Tarabia [4]
and Conolly et al. [5]. Other examples are provided by the dynamical allocation of live organs
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(servers) to candidates (customers) needing transplantation (cf. Elalouf et al. [6] and the references
therein). Double-ended queues are suitable also to describe different streams arriving at a system (see
Takahashi et al. [7]).

In this area, the interest is typically in the determination of the transient distribution and the
asymptotic distribution of the system state, the busy period density, the waiting time density and
related indices such as means and variances. The difficulties related to the resolution of the birth-death
processes describing the length of the queue, in some cases, can be overcome by means of suitable
transformations as those presented in Di Crescenzo et al. [8]. Such a transformation-based approach
has been successfully exploited also for diffusion processes (see Di Crescenzo et al. [9]), this being of
interest for the analysis of customary diffusion approximations of queue-length processes.

Attention is given often also to variants of the relevant stochastic processes that are adopted
to describe more complex situations, such as bulk arrivals, truncated queues, the occurrence of
disasters and repairs, and so on. In this respect, we recall the recent paper by Di Crescenzo et al. [10],
which is centered on the analysis (i) of a continuous-time stochastic process describing the state of a
double-ended queue subject to disasters and repairs and (ii) of the Wiener process with jumps arising
as a heavy-traffic approximation to the previous model.

In many queueing models of manufacturing systems, it is assumed that the times to failure and
the times to repair of each machine are exponentially distributed. However, exponential distributions
do not always accurately represent distributions encountered in real manufacturing systems. Some
of these models adopt the phase-type distributions for failure and repair times (see, for instance,
Altiok [11–13] and Dallery [14]).

In this paper, we propose and analyze an extension of the queueing model treated in [10] to a
time-non-homogeneous setting in which the intensities of arrivals, services, disasters and repairs
are suitably time dependent. Similarly, we investigate the related heavy-traffic jump-diffusion
approximation, as well. The key features of our analysis and the motivations of the proposed study
are based mainly on the following issues:

• Queueing systems subject to disasters are appropriate to model more realistic situations in
which the number of customers is subject to an abrupt decrease by the effect of catastrophes
occurring randomly in time and due to external causes. The literature on the area of
stochastic systems evolving in the presence of catastrophes is very broad. We restrict
ourselves to mentioning the papers by Economou and Fakinos [15,16], Kyriakidis and
Dimitrakos [17], Krishna Kumar et al. [18], Di Crescenzo et al. [19], Zeifman and Korotysheva [20],
Zeifman et al. [21] and Giorno et al. [22]. The analysis of some time-dependent queueing
models with catastrophes has been performed in Di Crescenzo et al. [23] and, more recently,
in Giorno et al. [24], with special attention to the M(t)/M(t)/1 and M(t)/M(t)/∞ queues.

• We include a repair mechanism in the queueing system under investigation, since it is essential to
model instances when the (random) repair times are not negligible. We remark that the interest in
this feature is increasing in the recent literature on queueing theory (see, for instance, Dimou and
Economou [25]).

• Heavy-traffic approximations are very often proposed in order to describe the queueing systems
under proper limit conditions of the parameters involved. This allows one to come to more
manageable formulas for the description of the queue content. Typically, a customary rescaling
procedure allows one to approximate the queue length process by a diffusion process, as indicated
in Giorno et al. [26]. Examples of diffusion models arising from heavy-traffic approximations
of double-ended queues and of similar matching systems can be found in Liu et al. [27] and
Büke and Chen [28], respectively. In the case of queueing systems subject to catastrophes,
a customary approach leads to jump-diffusion approximating processes (see, for instance,
Di Crescenzo et al. [29] and Dharmaraja et al. [30]).
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Plan of the Paper

In Section 2, we consider a non-homogeneous double-ended queue, whose arrivals and departures
occur with time-varying intensity functions λ(t) > 0 and µ(t) > 0, respectively. We discuss various
features of such a model, including the first-passage time through a constant level.

In Section 3, we consider the non-homogeneous double-ended queue subject to disasters and
repairs, both occurring with time-varying rates. Specifically, we assume that catastrophes occur
according to a non-homogeneous Poisson process with intensity function ν(t) > 0. The effect of
catastrophes moves the system into a spurious failure state, say F. The completion of a system’s repair
occurs with time-varying intensity function η(t) > 0. After any repair, the system starts afresh from
the zero state. Our first aim is to determine the probability q(t|t0) that the system at time t is in the
failure state and the probability p0,n(t|t0) that the system at time t is in the state n ∈ Z (working state).

In Section 4, we study the asymptotic behavior of the state probabilities in two different cases:
(i) when the rates λ(t), µ(t), ν(t), η(t) admit finite positive limits as t tends to infinity and (ii) when
the double-ended queue is time-homogeneous, the catastrophe intensity function ν(t) and the repair
intensity function η(t) being periodic functions with common period Q.

In Section 5, we consider a diffusion approximation, under a heavy-traffic regime, of the
non-homogeneous double-ended queue discussed in Section 2. In this case, the approximating process
is a time-non-homogeneous Wiener process. We discuss various results on this model, including a
first-passage-time problem through a constant level.

In Section 6, we deal with the heavy-traffic jump-diffusion approximation for the discrete model
with catastrophes and repairs. Various results shown for the basic diffusion process treated in the
previous section are thus extended to the present case characterized by jumps. In both Sections 5 and 6,
the goodness of the approximating procedure is discussed, as well.

In Section 7, we finally consider the asymptotic behavior of the densities in the same cases
considered in Section 4. In conclusion, we perform some comparisons between the relevant quantities
of the queueing system and of the approximating diffusion process under the heavy-traffic regime.

2. The Underlying Non-Homogeneous Double-Ended Queue

This section is devoted to the analysis of the basic time-non-homogeneous double-ended queue.
Let {Ñ(t), t ≥ t0}, with t0 ≥ 0, be a continuous-time Markov chain describing the

number of customers in a time-non-homogeneous double-ended queueing system, with state-space
Z = {. . . ,−1, 0, 1, . . .}. We assume that arrivals (upward jumps) and departures (downward jumps)
at time t occur with intensity functions λ(t) > 0 and µ(t) > 0, respectively, where λ(t) and µ(t) are
bounded and continuous functions for t ≥ t0, such that

∫ +∞
t0

λ(t) dt = +∞ and
∫ +∞

t0
µ(t) dt = +∞.

The given assumptions ensure that the eventual transitions from any state occur w.p. 1. The state
diagram of Ñ(t) is shown in Figure 1.
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Figure 1. State diagram of the non-homogeneous double-ended queueing system.

For all j, n ∈ Z and t > t0 ≥ 0, the transition probabilities p̃j,n(t|t0) = P{Ñ(t) = n|Ñ(t0) = j} are
solutions of the system of Kolmogorov forward equations:

dp̃j,n(t|t0)

dt
= λ(t) p̃j,n−1(t|t0)− [λ(t) + µ(t)] p̃j,n(t|t0) + µ(t) p̃j,n+1(t|t0), j, n ∈ Z, (1)
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with the initial condition limt↓t0 p̃j,n(t|t0) = δj,n, where δj,n is the Kronecker delta function. For t ≥ t0

and 0 ≤ z ≤ 1, let:

G̃j(z, t|t0) = E
[
zÑ(t)∣∣Ñ(t0) = j

]
=

+∞

∑
n=−∞

zn p̃j,n(t|t0), j ∈ Z (2)

be the probability generating function of Ñ(t). For any t ≥ t0, we denote the cumulative arrival and
service intensity functions by:

Λ(t|t0) =
∫ t

t0

λ(τ) dτ, M(t|t0) =
∫ t

t0

µ(τ) dτ. (3)

Due to (1), for t ≥ t0, the probability generating Function (2) is the solution of the partial
differential equation:

∂

∂t
G̃j(z, t|t0) =

{
−[λ(t) + µ(t)] + λ(t) z +

µ(t)
z

}
G̃j(z, t|t0), j ∈ Z

to be solved with the initial condition limt↓t0 G̃j(z, t|t0) = zj. Hence, (2) can be expressed in terms of (3)
as follows:

G̃j(z, t|t0) = zj exp
{
−
[
Λ(t|t0) + M(t|t0)

]
+ Λ(t|t0) z +

M(t|t0)

z

}
, j ∈ Z. (4)

Recalling that (cf. Abramowitz [31], p. 376, n. 9.6.33):

exp
{ s

2

(
r +

1
r

)}
=

+∞

∑
n=−∞

rn In(s) (r 6= 0), (5)

where:

Iν(z) =
∞

∑
m=0

(z/2)ν+2m

m! Γ(ν + m + 1)
(ν ∈ R)

denotes the modified Bessel function of first kind and by setting:

s = 2
√

Λ(t|t0) M(t|t0), r = z

√
Λ(t|t0)

M(t|t0)

in (5), from (4), one has:

G̃j(z, t|t0) = e−
[

Λ(t|t0)+M(t|t0)
] +∞

∑
k=−∞

zj+k
[ Λ(t|t0)

M(t|t0)

]k/2
Ik

[
2
√

Λ(t|t0) M(t|t0)
]
, j ∈ Z.

Hence, recalling (2), one obtains the transition probabilities:

p̃j,n(t|t0) = e−
[

Λ(t|t0)+M(t|t0)
] [

Λ(t|t0)

M(t|t0)

](n−j)/2

In−j

[
2
√

Λ(t|t0) M(t|t0)
]
, j, n ∈ Z. (6)

We remark that, since In(z) = I−n(z) for n ∈ N, the following symmetry relation holds:

p̃j,n(t|t0) =
[ Λ(t|t0)

M(t|t0)

]n−j
p̃j,2j−n(t|t0) j, n ∈ Z.

Moreover, from (6), we recover the conditional mean and variance of Ñ(t), for t ≥ t0 and j ∈ Z:

E[Ñ(t)|Ñ(t0) = j] = j + Λ(t|t0)−M(t|t0), Var[Ñ(t)|Ñ(t0) = j] = Λ(t|t0) + M(t|t0). (7)
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We point out that the transition probabilities given in (6) constitute the probability distribution of
the difference of two independent non-homogeneous Poisson processes with intensities λ(t) and µ(t),
respectively, originated at zero (cf. Irwin [32] or Skellam [33] for the homogeneous case).

Let us now consider the first-passage-time (FPT) of Ñ(t) through the state n ∈ Z, starting from
the initial state j ∈ Z. Such a random variable will be denoted as:

T̃j,n(t0) = inf{t ≥ t0 : Ñ(t) = n}, Ñ(t0) = j, j 6= n,

where g̃j,n(t|t0) is its probability density function (pdf). Special interest is given to T̃j,0(t0), which
represents the busy period of the double-ended queue, with initial state Ñ(t0) = j. As is well-known,
due to the Markov property, g̃j,n(t|t0) satisfies the integral equation:

p̃j,n(t|t0) =
∫ t

t0

g̃j,n(τ|t0) p̃n,n(t|τ) dτ, j, n ∈ Z, j 6= n. (8)

Hereafter, we consider the special case in which the arrival and departure intensity functions
are proportional.

Remark 1. Let λ(t) = λϕ(t) and µ(t) = µϕ(t), with λ, µ positive constants, where ϕ(t) is a positive,
bounded and continuous function of t ≥ t0, such that

∫ ∞
t0

ϕ(t) dt = +∞. By setting $ = λ/µ and:

Φ(t|t0) =
∫ t

t0

ϕ(τ) dτ, t ≥ t0, (9)

then the transition probabilities (6) of the non-homogeneous double-ended queueing system Ñ(t) can be
expressed as:

p̃j,n(t|t0) = e−(λ+µ)Φ(t|t0) $(n−j)/2 In−j
[
2λµΦ(t|t0)

]
, j, n ∈ Z. (10)

Hence, from the results given in Section 5 of Giorno et al. [24], we have:

g̃j,n(t|t0) =
|n− j| ϕ(t)

Φ(t|t0)
p̃j,n(t|t0), j, n ∈ Z, j 6= n. (11)

Furthermore, the FPT ultimate probability is given by:

P{T̃j,n(t0) < +∞} =
∫ +∞

t0

g̃j,n(t|t0) dt =

{
1, (λ− µ)(n− j) ≥ 0,

$n−j, (λ− µ)(n− j) < 0.

3. The Queueing System with Catastrophes and Repairs

This section deals with the analysis of the queueing system with catastrophes and repairs.
Let {N(t), t ≥ t0}, with t0 ≥ 0, be a continuous-time Markov chain that describes the number of

customers of a time-non-homogeneous double-ended queueing system subject to disasters and repairs.
The state-space of {N(t), t ≥ t0} is denoted by S = {F} ∪Z = {F, 0,±1,±2, . . .}, where F denotes the
failure state. We assume that the catastrophes occur according to a non-homogeneous Poisson process
with intensity function ν(t). If a catastrophe occurs, then the system goes instantaneously into the
failure state F, and further, the completion of a repair occurs according to the intensity function η(t)
(cf. the diagram shown in Figure 2). We assume that the rates ν(t) and η(t) are positive, bounded and
continuous functions for t ≥ t0, such that

∫ ∞
t0

ν(t) dt = +∞ and
∫ ∞

t0
η(t) dt = +∞. After every repair,

the system starts again from the zero state.



Mathematics 2018, 6, 81 6 of 23

−3· · · −2 −1 0 1 2 3

F

· · ·

λ(t) λ(t)

µ(t)

λ(t)

µ(t)

λ(t)

µ(t)

λ(t)

µ(t)

λ(t)

µ(t)

λ(t)

µ(t)

λ(t)

µ(t) µ(t)

ν(t)
ν(t)

ν(t)

ν(t)
ν(t)

ν(t)
ν(t)η(t)

Figure 2. State diagram of the time-non-homogeneous double-ended queueing system with
catastrophes and repairs.

For any n ∈ Z and t > t0 ≥ 0, we set:

p0,n(t|t0) = P{N(t) = n|N(t0) = 0}, q(t|t0) = P{N(t) = F|N(t0) = 0}. (12)

Hence, p0,n(t|t0) is the transition probability from zero, at time t0, to state n, at time t, when
the system is active (in this case, we say that the system is in the “on” state), whereas q(t|t0) is the
probability that the queueing system is in the state F (called the “failure” state) at time t starting from
zero at time t0. The probabilities given in (12) are the solution of the forward Kolmogorov system of
differential equations:

dq(t|t0)

dt
= −η(t) q(t|t0) + ν(t) [1− q(t|t0)], (13)

dp0,0(t|t0)

dt
= −[λ(t) + µ(t) + ν(t)] p0,0(t|t0) + λ(t) p0,−1(t|t0) + µ(t) p0,1(t|t0) + η(t) q(t|t0), (14)

dp0,n(t|t0)

dt
= −[λ(t) + µ(t) + ν(t)] p0,n(t|t0) + λ(t) p0,n−1(t|t0) + µ(t) p0,n+1(t|t0), n ∈ Z \ {0}, (15)

to be solved with the following initial conditions, based on the Kronecker delta function:

lim
t↓t0

pn,0(t|t0) = δn,0, lim
t↓t0

q(t|t0) = 0. (16)

Conditions (16) imply that at initial time t0, the system is active and it starts from the zero state.
In order to determine the transient probabilities of N(t), similarly as in (3), in the following, we denote
the cumulative catastrophe and repair intensity functions by:

V(t|t0) =
∫ t

t0

ν(τ) dτ, H(t|t0) =
∫ t

t0

η(τ) dτ, t ≥ t0, (17)

respectively.

Transient Probabilities

We first determine the probability that the system is under repair at time t. By solving Equation (13)
with the second of the initial conditions (16), recalling (17), one obtains the probability that the process
N(t) is in the state F (“failure” state) at time t, starting from zero at time t0:

q(t|t0) =
∫ t

t0

ν(τ) e−[V(t|τ)+H(t|τ)] dτ, t ≥ t0. (18)

The transient analysis of the process N(t) can be performed by relating the transient probabilities
to those of the same process in the absence of catastrophes. Indeed, by conditioning on the time of the
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last catastrophe of N(t) before t, the probabilities p0,n(t|t0) can be expressed in terms of p̃0,n(t|t0) as
follows, for n ∈ Z and t ≥ t0 (cf. [10,15,16]):

p0,n(t|t0) = e−V(t|t0) p̃0,n(t|t0) +
∫ t

t0

q(τ|t0) η(τ) e−V(t|τ) p̃0,n(t|τ) dτ. (19)

We note that the first term on the right-hand side of (19) expresses the probability that process
N(t) occupies state n at time t and that no catastrophes occurred in [0, t]. Similarly, the second term
gives the probability that process N(t) occupies state n at time t and that at least one catastrophe (with
successive repair) occurred in [0, t], i.e.,

- starting from zero at time t0, at least a catastrophe and the subsequent repair occur before t; let
τ ∈ (0, t) be the instant at which the last repair occurs, so that a transition entering in the zero
state occurs at time τ with intensity η(τ);

- no catastrophe occurs in the interval (τ, t); then the system, starting from the zero state at time τ,
reaches the state n at time t.

Note that Equation (19) is the suitable extension of (2.7) of [10], which refers to the case of constant
rates. Furthermore, we remark that from (18) and (19), one obtains:

+∞

∑
n=−∞

p0,n(t|t0) + q(t|t0) = 1, t ≥ t0. (20)

Making use of (6) and (18) in (19), for t ≥ t0 and n ∈ Z, one has the following expression for the
transition probabilities of N(t):

p0,n(t|t0) = e−[Λ(t|t0)+M(t|t0)+V(t|t0)]
[ Λ(t|t0)

M(t|t0)

]n/2
In

[
2
√

Λ(t|t0) M(t|t0)
]

+
∫ t

t0

dτ η(τ)e−[Λ(t|τ)+M(t|τ)+V(t|τ)]
[ Λ(t|τ)

M(t|τ)

]n/2
In

[
2
√

Λ(t|τ) M(t|τ)
] ∫ τ

t0

ν(ϑ)e−[V(τ|ϑ)+H(τ|ϑ)] dϑ.

Let us now introduce the r-th conditional moment of N(t), for r ∈ N:

Mr(t|t0) := E[Nr(t)|N(t) ∈ Z, N(t0) = 0] =
1

1− q(t|t0)

+∞

∑
n=−∞

nr p0,n(t|t0). (21)

From (19), it is not hard to see that the moments (21) can be expressed in terms of the conditional
moments M̃r(t|t0) := E[Ñr(t)|Ñ(t0) = 0] as follows, for r ∈ N and t ≥ t0:

Mr(t|t0) =
1

1− q(t|t0)

{
e−V(t|t0) M̃r(t|t0) +

∫ t

t0

q(τ|t0) η(τ)e−V(t|τ) M̃r(t|τ) dτ

}
. (22)

Hence, by virtue of (7), from (22), the conditional mean and second order moment of N(t) can be
evaluated based on the knowledge of the relevant intensity functions.

Hereafter, we see that if the arrival and departure rates are constant, then some simplifications
hold for the transition probabilities and conditional moments.

Theorem 1. For the queueing system with catastrophes and repairs, having constant arrival rates λ(t) = λ

and departure rates µ(t) = µ, for t ≥ t0 and n ∈ Z, one has:

p0,n(t|t0) = e−V(t|t0) p̃0,n(t− t0|0) +
∫ t−t0

0
dx ν(t− x) e−V(t|t−x)

∫ x

0
η(t− u) e−H(t−u|t−x) p̃0,n(u|0) du (23)

and, for r ∈ N,
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Mr(t|t0) =
1

1− q(t|t0)

{
e−V(t|t0) M̃r(t− t0|0) +

∫ t−t0

0
q(t− x|t0) η(t− x)e−V(t|t−x) M̃r(x|0) dx

}
. (24)

Furthermore, it results:

p0,n(t|t0) =
∫ t

t0

p0,0(τ|t0) e−V(t|τ) g̃0,n(t|τ) dτ, n ∈ Z \ {0}, t ≥ t0. (25)

Proof. Since λ(t) = λ and µ(t) = µ, by virtue of (18), Relation (23) follows from (19), whereas
Equation (24) derives from (22). Moreover, making use of (19) in the right-hand side of (25), one has:

∫ t

t0

p0,0(u|t0) e−V(t|u) g̃0,n(t|u) du = e−V(t|t0)
∫ t

t0

p̃0,0(u|t0) g̃0,n(t|u) du

+
∫ t

t0

dτ e−V(t|τ) η(τ) q(τ|t0)
∫ t

τ
p̃0,0(u|τ)g̃0,n(t|u) du. (26)

By virtue of (6), we note that p̃0,0(t|t0) = p̃n,n(t|t0) for n ∈ Z and t ≥ t0. Moreover, since λ(t) = λ

and µ(t) = µ, we obtain:

∫ t

t0

p̃0,0(u|t0) g̃0,n(t|u) du =
∫ t

t0

p̃n,n(u|t0) g̃0,n(t|u) du

=
∫ t−t0

0
p̃n,n(t− t0|τ) g̃0,n(τ|0) dτ = p̃0,n(t− t0|0) = p̃0,n(t|t0). (27)

Substituting (27) in (26), by virtue of (19), Relation (25) immediately follows.

The integrand on the right-hand side of Equation (25) refers to the sample-paths of N(t) that start
from zero at time t0, then reach the state zero at time τ ∈ (t0, t) and, finally, go from zero at time τ to n
at time t for the first time, without the occurrence of catastrophes in (τ, t).

4. Asymptotic Probabilities

In this section, we analyze the asymptotic behavior of the probabilities q(t|t0) and pj,n(t|t0) of the
process N(t) in two different cases:

(i) the intensity functions λ(t), µ(t), ν(t) and η(t) admit finite positive limits as t→ +∞,
(ii) the intensity functions λ(t) and µ(t) are constant, whereas the rates ν(t) and η(t) are periodic

functions with common period Q.

4.1. Asymptotically-Constant Intensity Functions

In the following theorem, we determine the steady-state probabilities and the asymptotic failure
probability of the process N(t) when the intensity functions λ(t), µ(t), ν(t) and η(t) admit finite
positive limits as t tends to +∞.

Theorem 2. If:

lim
t→+∞

λ(t) = λ, lim
t→+∞

µ(t) = µ, lim
t→+∞

ν(t) = ν, lim
t→+∞

η(t) = η, (28)

with λ, µ, ν, η positive constants, then the steady-state probabilities and the asymptotic failure probability of the
process N(t) are:
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q∗ := lim
t→+∞

q(t|t0) =
ν

ν + η
, (29)

p∗0 := lim
t→+∞

p0,0(t|t0) =
ν(1− q)√

(λ + µ + ν)2 − 4λµ
,

p∗n := lim
t→+∞

p0,n(t|t0) =
[λ + µ + ν−

√
(λ + µ + ν)2 − 4λµ

2µ

]n
p∗0 , n ∈ N, (30)

p∗−n := lim
t→+∞

p0,−n(t|t0) =
[λ + µ + ν−

√
(λ + µ + ν)2 − 4λµ

2λ

]n
p∗0 , n ∈ N.

Furthermore, the asymptotic conditional mean, second order moment and variance are:

M∗
1 = lim

t→+∞
M1(t|t0) =

λ− µ

ν
, M∗

2 = lim
t→+∞

M2(t|t0) =
2(λ− µ)2

ν2 +
(λ + µ)

ν
,

V∗ = lim
t→+∞

Var(t|t0) = lim
t→+∞

{M2(t|t0)− [M1(t|t0)]
2} = (λ− µ)2

ν2 +
λ + µ

ν
.

(31)

Proof. The steady-state probabilities and the asymptotic failure probability of N(t) can be obtained
by taking the limit as t → +∞ in Equations (13)–(15), and then solving the corresponding balance
equations. From (21), making use of (29) and (30), the asymptotic conditional mean and variance (31)
immediately follow.

4.2. Periodic Catastrophe and Repair Intensity Functions

Let us assume that the arrival and departure intensity functions are constant, whereas the
catastrophe intensity function ν(t) and the repair intensity function η(t) are periodic, such that
ν(t + kQ) = ν(t) and η(t + kQ) = η(t) for all k ∈ N, t ≥ t0, for a given constant period Q > 0.
We denote by:

ν∗ =
1
Q

∫ Q

0
ν(u) du, η∗ =

1
Q

∫ Q

0
η(u) du, (32)

the average catastrophe and repair rates over the period Q. Since ν(t) and η(t) are periodic functions,
from (17), we have, for t ≥ t0:

V(t + kQ) =
∫ t+kQ

t
ν(u) du = kQν∗, H(t + kQ) =

∫ t+kQ

t
η(u) du = kQη∗, k ∈ N. (33)

Let us now investigate the asymptotic distribution for the process N(t), which can be defined as
follows, for t ≥ t0:

q∗(t) = lim
k→+∞

q(t + kQ|t0), p∗0,n(t) = lim
k→+∞

p0,n(t + kQ|t0), n ∈ Z. (34)

Theorem 3. For the queueing system with catastrophes and repairs, having constant arrival rates λ(t) = λ > 0
and departure rates µ(t) = µ > 0, with ν(t) and η(t) continuous, positive and periodic functions, with period
Q, for t ≥ t0, one has:

p∗0,n(t) =
∫ +∞

0
dx ν(t− x)e−V(t|t−x)

∫ x

0
η(t− u)e−H(t−u|t−x) p̃0,n(u|0) du, n ∈ Z. (35)

q∗(t) =
∫ +∞

0
ν(t− x)e−[V(t|t−x)+H(t|t−x)] dx. (36)

Furthermore, an alternative expression for the failure asymptotic probability is:
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q∗(t) =
1

eQ(ν∗+η∗) − 1

∫ Q

0
ν(t + u)e[V(t+u|t)+H(t+u|t)] du, (37)

with ν∗ and η∗ given in (32).

Proof. Since λ(t) = λ and µ(t) = µ, from (23), for k ∈ N0 and t ≥ t0, one has:

p0,n(t + kQ|t0) = e−V(t+kQ|t0) p̃0,n(t− t0 + kQ|0) +
∫ t−t0+kQ

0
dx ν(t− x) e−V(t+kQ|t−x+kQ)

×
∫ x

0
η(t− u) e−H(t−u+kQ|t−x+kQ) p̃0,n(u|0) du. (38)

Due to the periodicity of ν(t) and η(t), the following equalities hold:

V(t + kQ|t− x + kQ) = V(t|t− x), H(t− u + kQ|t− x + kQ) = H(t− u|t− x).

Hence, from (38), it follows:

p0,n(t + kQ|t0) = e−V(t+kQ|t0) p̃0,n(t− t0 + kQ|0) +
∫ t−t0+kQ

0
dx ν(t− x) e−V(t+|t−x)

×
∫ x

0
η(t− u) e−H(t−u|t−x) p̃0,n(u|0) du. (39)

Then, taking the limit as k→ +∞ in (39) and recalling the second of (34), one obtains (35). Hence,
we note that:

+∞

∑
n=−∞

p∗0,n(t) =
∫ +∞

0
dx ν(t− x)e−V(t|t−x)

∫ x

0
η(t− u)e−H(t−u|t−x) du

= 1−
∫ +∞

0
ν(t− x) e−[V(t|t−x)+H(t|t−x)] dx. (40)

Consequently, by virtue of (20), Equation (36) immediately follows. To prove Equation (37),
we first consider (18), which implies:

q(t + kQ|t0) = e−kQ(ν∗+η∗)
[∫ t

t0

ν(τ)e−[V(t|τ)+H(t|τ)] dτ +
∫ t+kQ

t
ν(τ)e[V(t|τ)+H(t|τ)] dτ

]
. (41)

Since ν(t) and η(t) are periodic functions, one has:

∫ t+kQ

t
ν(τ)e[V(t|τ)+H(t|τ)] dτ

]
=

k−1

∑
r=0

∫ Q

0
ν(t + x)e[V(t+rQ+x|t)+H(t+rQ+x|t)] dx

=

[∫ Q

0
ν(t + x)e[V(t+x|t)+H(t+x|t)] dx

] k−1

∑
r=0

erQ(ν∗+η∗)

=
ekQ(ν∗+η∗) − 1
eQ(ν∗+η∗) − 1

[∫ Q

0
ν(t + x)e[V(t+x|t)+H(t+x|t)] dx

]
. (42)

Substituting (42) in (41) and taking the limit as k→ +∞, one finally is led to (37).

Under the assumptions of Theorem 3, by virtue of the periodicity of ν(t) and η(t), from (35)–(37),
one has that p∗0,n(t) and q∗(t) are periodic functions with period Q. From (21), making use of (35), the
asymptotic conditional moments are expressed as:
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M∗
r (t) := lim

k→+∞
Mr(t + kQ|t0)

=
1

1− q∗(t)

∫ +∞

0
dx ν(t− x)e−V(t|t−x)

∫ x

0
η(t− u)e−H(t−u|t−x) M̃r(u|0) du, (43)

with M̃r(t|0) := E[Ñr(t)|Ñ(0) = 0] and q∗(t) given in (36) or (37).

Example 1. Assume that N(t) has constant arrival rates λ(t) = λ > 0 and departure rates µ(t) = µ > 0.
Furthermore, let the periodic catastrophe and repair intensity functions be given by:

ν(t) = ν +
πa
Q

sin
(2πt

Q

)
, η(t) = η +

πb
Q

cos
(2πt

Q

)
, t ≥ 0, (44)

with a > 0, b > 0, ν > πa/Q and η > πb/Q. Clearly, from (32) and (44), we have that the averages of ν(t)
and η(t) in the period Q are equal to ν and η, respectively. In Figures 3–5, the relevant parameters are taken as:

λ = 0.2, µ = 0.1, Q = 1, ν = 0.5, a = 0.1, η = 0.6, b = 0.15.

On the left of Figure 3, the catastrophe intensity function ν(t) (black curve) is plotted with its average
ν = 0.5 (black dashed line). The repair intensity function η(t) (red curve) is plotted, as well, with its average
η = 0.6 (red dashed line). On the right of Figure 3, the failure probability q(t|0), given in (18), is plotted and
is compared with the asymptotic failure probability q∗ = ν/(ν + η) = 0.454545. The latter is obtained by
considering constant intensity functions ν(t) = ν and η(t) = η. As proved in Theorem 3, q(t|0) admits an
asymptotic periodic behavior, which is highlighted on the right of Figure 3. Instead, in Figure 4, we plot the
probability p0(t|0) (magenta curve), on the left. Moreover, on the right of Figure 4, we show the probabilities
p−1(t|0) (blue curve) and p1(t|0) (red curve), given in (23). The dashed lines indicate the steady-state
probabilities p∗0 = 0.364447 (magenta dashed line), p∗−1 = 0.0470761 (blue dashed line) and p∗1 = 0.0941522
(red dashed line), obtained by considering constant intensity functions ν(t) = ν and η(t) = η. As shown
in Figure 4, the probabilities admit an asymptotic periodic behavior, with period Q = 1. Finally, in Figure 5,
the meanM1(t|0) and the variance Var(t|0) of the process N(t), obtained via (24), are plotted and compared
with the asymptotic values (dashed lines)M∗

1 = 0.2 and V∗ = 0.64, given in (31). Figures 3–5 show that the
relevant quantities reflect the periodic nature of the rates and illustrate the limiting behavior as t grows.

� � � �
�

���

���

���

���

���

���

� � � �
�

���

���

���

���

���
	(�|�)

Figure 3. On the left: the periodic catastrophe intensity function (black curve) and repair intensity
function (red curve), with their averages (dashed lines). On the right: the failure probability q(t|t0),
given in (18), and the limit q∗ (dashed line), given in (29). The parameters are specified in Example 1.
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Figure 4. On the left: p0(t|0) and steady-state probability p∗0 (dashed line). On the right: p−1(t|0) (blue
curve) and p1(t|0) (red curve), with steady-state probabilities p∗−1 and p∗1 (dashed lines), given in (30).
The parameters are specified in Example 1.
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Figure 5. Plots of the mean M1(t|0) (left) and the variance of Var(t|0) (right) of the process N(t),
obtained by means of (24). The dashed lines indicate the asymptotic valuesM∗1 and V∗. The parameters
are specified in Example 1.

5. Diffusion Approximation of the Double-Ended Queueing System

With reference to the time-non-homogeneous double-ended queueing system discussed in
Section 2, hereafter, we consider a heavy-traffic diffusion approximation of the queue-length process.
This is finalized to obtain a more manageable description of the queueing system under a heavy-traffic
regime. To this purpose, we shall adopt a suitable scaling procedure based on a scaling parameter ε.
We first rename the intensity functions related to the double-ended process Ñ(t), by setting:

λ(t) =
λ̂(t)

ε
+

ω2(t)
2 ε2 , µ(t) =

µ̂(t)
ε

+
ω2(t)
2 ε2 , n ∈ Z. (45)

Here, functions λ̂(t), µ̂(t) and ω2(t) are positive, bounded and continuous for t ≥ t0 and
satisfy the conditions

∫ +∞
t0

λ̂(t) dt = +∞,
∫ +∞

t0
µ̂(t) dt = +∞ and

∫ +∞
t0

ω2(t) dt = +∞. Furthermore,
the constant ε in the right-hand sides of (45) is positive and plays a relevant role in the following
approximating procedure.

Let us consider the Markov process {Ñε(t), t ≥ t0}, having state-space {0,±ε,±2ε, . . .}. Namely,
it is defined as Ñε(t) = ε Ñ(t), provided that the intensity functions are modified as in (45). By a
customary scaling procedure similar to that adopted in [10,30], under suitable limit conditions and
for ε ↓ 0, the scaled process Ñε(t) converges weakly to a diffusion process {X̃(t), t ≥ t0} having
state-space R and transition probability density function (pdf):

f̃ (x, t|x0, t0) =
∂

∂x
P{X̃(t) ≤ x|X̃(t0) = x0}, x, x0 ∈ R, t ≥ t0.
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Indeed, with reference to System (1), substituting p̃j,n(t|t0) with f̃ (nε, t|jε, t0)ε in the
Chapman–Kolmogorov forward differential-difference equation for Ñε(t), we have:

∂ f̃ (nε, t|jε, t0)

∂t
=
[ λ̂(t)

ε
+

ω2(t)
2 ε2

]
f̃ [(n− 1)ε, t|jε, t0]−

[ λ̂(t)
ε

+
µ̂(t)

ε
+

ω2(t)
ε2

]
f̃ (nε, t|jε, t0)

+
[ µ̂(t)

ε
+

ω2(t)
2 ε2

]
f̃ [(n + 1)ε, t|jε, t0], j, n ∈ Z.

After setting x = nε and x0 = jε, expanding f̃ as Taylor series and taking the limit as ε ↓ 0,
we obtain the following partial differential equation:

∂

∂t
f̃ (x, t|x0, t0) = −[λ̂(t)− µ̂(t)]

∂

∂x
f̃ (x, t|x0, t0) +

ω2(t)
2

∂2

∂x2 f̃ (x, t|x0, t0), x, x0 ∈ R. (46)

The associated initial condition is limt↓t0 f̃ (x, t|x0, t0) = δ(x − x0), where δ(x) is the Dirac
delta-function. We remark that, due to (45), the limit ε ↓ 0 leads to a heavy-traffic condition about the
rates λ(t) and µ(t) of process Ñ(t). Hence, X̃(t) is a time-non-homogeneous Wiener process with drift
λ̂(t)− µ̂(t) and infinitesimal variance ω2(t), with initial state x0 at time t0. For t ≥ t0 and s ∈ R, let:

H(s, t|x0, t0) = E[eisX̃(t)|X̃(t0) = x0] =
∫ +∞

−∞
eisx f̃ (x, t|x0, t0) dx, x0 ∈ R (47)

be the characteristic function of X̃(t). Due to (46), the characteristic function (47) is the solution of the
partial differential equation:

∂

∂t
H(s, t|x0, t0) =

{
is [λ(t)− µ(t)]− s2

2
ω2(t)

}
H(s, t|x0, t0), x0 ∈ R,

to be solved with the initial condition limt↓t0 H(s, t|x0, t0) = eisx0 . Hence, for t ≥ t0, one has:

H(s, t|x0, t0) = exp
{

is
[

x0 + Λ̂(t|t0)− M̂(t|t0)
]
− s2

2
Ω(t|t0)

}
, x0 ∈ R, (48)

where we have set:

Λ̂(t|t0) =
∫ t

t0

λ̂(τ) dτ, M̂(t|t0) =
∫ t

t0

µ̂(τ) dτ, Ω(t|t0) =
∫ t

t0

ω2(τ) dτ, t ≥ t0. (49)

Clearly, (48) is a normal characteristic function, so that the solution of (46) is the Gaussian pdf:

f̃ (x, t|x0, t0) =
1√

2 π Ω(t|t0)
exp

{
−
[
x− x0 − Λ̂(t|t0) + M̂(t|t0)

]2
2 Ω(t|t0)

}
, x, x0 ∈ R, t ≥ t0. (50)

Then, the conditional mean and variance are:

E[X̃(t)|X̃(t0) = x0] = x0 + Λ̂(t|t0)− M̂(t|t0), Var[X̃(t)|X̃(t0) = x0] = Ω(t|t0), t ≥ t0. (51)

Let us now consider a first-passage-time problem for X̃(t). We denote by T̃x0,x(t0) the random
variable describing the FPT of X̃(t) trough state x ∈ R, starting from x0 at time t0, with x0 6= x.
In analogy to (8), the Markov property yields:

f̃ (x, t|x0, t0) =
∫ t

t0

g̃(x, τ|x0, t0) f̃ (x, t|x, τ) dτ, x0, x ∈ R, x 6= x0, (52)
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where g̃(x, t|x0, t0) is the pdf of T̃x0,x(t0).
Hereafter, we deal with a special case, in which the functions λ̂(t), µ̂(t) and ω2(t) are proportional.

Remark 2. Let λ̂(t) = λ̂ϕ(t), µ̂(t) = µ̂ϕ(t) and ω2(t) = ω2 ϕ(t), where λ̂, µ̂, ω are positive constants
and ϕ(t) is a positive, bounded and continuous function for t ≥ t0, such that

∫ ∞
t0

ϕ(t) dt = +∞. Then,

the transition pdf of X̃(t) becomes:

f̃ (x, t|x0, t0) =
1√

2 π ω2 Φ(t|t0)
exp

{
−
[
x− x0 − (λ̂− µ̂)Φ(t|t0)

]2
2 ω2 Φ(t|t0)

}
, x, x0 ∈ R, t ≥ t0,

where Φ(t|t0) is defined in (9). Moreover, the FPT pdf of T̃x0,x(t0) can be expressed as (see, for instance, [26]):

g̃(x, t|x0, t0) =
|x− x0| ϕ(t)

Φ(t|t0)
f̃ (x, t|x0, t0), x0, x ∈ R, x 6= x0.

The corresponding FPT ultimate probability is given by:

P{T̃x0,x(t0) < +∞} =
∫ +∞

t0

g̃(x, t|x0, t0) dt =

{
1, (λ̂− µ̂)(x− x0) ≥ 0,

e2(λ̂−µ̂)(x−x0)/ω2
, (λ̂− µ̂)(x− x0) < 0.

Clearly, T̃x0,0(t0) is a suitable approximation of the busy period T̃j,0(t0) considered in Section 2.

Goodness of the Approximating Procedure

Thanks to the above heavy-traffic approximation, the state of the time-non-homogeneous
double-ended queue Ñ(t) has been approximated by the non-homogeneous Wiener process X̃(t), with
the transition pdf given in (50).

A first confirmation of the goodness of the approximating procedure can be obtained by the
comparing mean and variance of Ñ(t) with those of X̃(t)/ε, for λ(t) and µ(t) chosen as in (45).
Recalling (7) and (51), the means satisfy the following identity, for all ε > 0:

E[X̃(t)|X̃(t0) = jε] = εE[Ñ(t)|Ñ(t0) = j]. (53)

Moreover, for the variances, we have:

lim
ε↓0

Var[Ñ(t)|Ñ(t0) = j]

Var
[

X̃(t)
ε

∣∣∣ X̃(t0)
ε = j

] = lim
ε↓0

ε2Var[Ñ(t)|Ñ(t0) = j]
Var[X̃(t)|X̃(t0) = jε]

= lim
ε↓0

ε2 [Λ(t|t0) + M(t|t0)]

Ω(t|t0)
= 1,

so that for ε close to zero, one has:

Var[X̃(t)|X̃(t0) = jε] ' ε2Var[Ñ(t)|Ñ(t0) = j]. (54)

The discussion of the goodness of the heavy-traffic approximation involves also the probability
distributions. Let us denote by p̃(ε)j,n (t) the transition probabilities of the process Ñ(t), for λ(t) and µ(t)
given in (45), and for n = x/ε, j = x0/ε. The following theorem holds.

Theorem 4. For t ≥ t0, one has:

lim
ε↓0,

nε=x,jε=x0

p̃(ε)j,n (t|t0)

ε
= f̃ (x, t|x0, t0), (55)

with f̃ (x, t|x0, t0) given in (50).



Mathematics 2018, 6, 81 15 of 23

Proof. To prove (55), we consider separately the following cases: (i) n = j and (ii) n 6= j, with j, n ∈ Z.

(i) For n = j, from (6), one has:

p̃(ε)n,n(t|t0) = exp
{
− Λ̂(t|t0) + M̂(t|t0)

ε
− Ω(t|t0)

ε2

}
I0

[
2

√[ Λ̂(t|t0)

ε
+

Ω(t|t0)

2ε2

] [ M̂(t|t0)

ε
+

Ω(t|t0)

2ε2

]]
. (56)

We recall that Iν(z) ' ez/
√

2πz (cf. [31], p. 377, n. 9.71) when |z| is large, for ν fixed. Hence,
from (56) as ε is close to zero, one has:

p̃(ε)n,n(t|t0)

ε
' 1

2ε
√

π

[ Λ̂(t|t0)

ε
+

Ω(t|t0)

2ε2

]−1/4 [ M̂(t|t0)

ε
+

Ω(t|t0)

2ε2

]−1/4

× exp

{
−
[√

Λ̂(t|t0)

ε
+

Ω(t|t0)

2ε2 −

√
M̂(t|t0)

ε
+

Ω(t|t0)

2ε2

]2}
, n ∈ Z. (57)

We note that:

lim
ε↓0

1
2ε
√

π

[ Λ̂(t|t0)

ε
+

Ω(t|t0)

2ε2

]−1/4 [ M̂(t|t0)

ε
+

Ω(t|t0)

2ε2

]−1/4

=
1

2
√

π
lim
ε↓0

[
εΛ̂(t|t0) +

Ω(t|t0)

2

]−1/4[
εM̂(t|t0) +

Ω(t|t0)

2

]−1/4
=

1√
2 π Ω(t|t0)

and:

lim
ε↓0

exp

{
−
[√

Λ̂(t|t0)

ε
+

Ω(t|t0)

2ε2 −

√
M̂(t|t0)

ε
+

Ω(t|t0)

2ε2

]2}

= lim
ε↓0

exp

{
−
[
Λ̂(t|t0)− M̂(t|t0)

]2 [√
εΛ̂(t|t0) +

Ω(t|t0)

2
+

√
εM̂(t|t0) +

Ω(t|t0)

2

]−2
}

= exp
{
−
[
Λ̂(t|t0)− M̂(t|t0)

]2
2 Ω(t|t0)

}
,

so that, taking the limit as ε ↓ 0 in (57), Equation (55) follows for n = j and x = x0.

(ii) For n 6= j, recalling that In(z) = I−n(z), from (6), one has:

p̃(ε)j,n (t|t0) = exp
{
− Λ̂(t|t0) + M̂(t|t0)

ε
− Ω(t|t0)

ε2

} [ 2εΛ̂(t|t0) + Ω(t|t0)

2εM̂(t|t0) + Ω(t|t0)

](x−x0)/(2ε)

×I|x−x0|/ε

[
2

√[ Λ̂(t|t0)

ε
+

Ω(t|t0)

2ε2

] [ M̂(t|t0)

ε
+

Ω(t|t0)

2ε2

]]
. (58)

Making use of the asymptotic result (cf. [31], p. 378, n. 9.7.7):

Iν(ν z) ' 1√
2πν (1 + z2)1/4

exp
{

ν
[√

1 + z2 + ln
z

1 +
√

1 + z2

]}
, ν→ +∞, 0 < z < +∞,

from (58), we obtain:

p̃(ε)j,n (t|t0)

ε
'

4

∏
j=1

A(ε)
j (x, t|x0, t0), (59)
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where:

A(ε)
1 (x, t|x0, t0) =

[
2εΛ̂(t|t0) + Ω(t|t0)

2εM̂(t|t0) + Ω(t|t0)

](x−x0)/(2ε)

A(ε)
2 (x, t|x0, t0) =

1√
2π

{
ε2(x− x0)

2 +
[
2εΛ̂(t|t0) + Ω(t|t0)

][
2εM̂(t|t0) + Ω(t|t0)

]}−1/4

A(ε)
3 (x, t|x0, t0) =

{ √[
2εΛ̂(t|t0) + Ω(t|t0)

][
2εM̂(t|t0) + Ω(t|t0)

]
ε |x− x0|+

√
ε2 (x− x0)2 +

[
2εΛ̂(t|t0) + Ω(t|t0)

][
2εM̂(t|t0) + Ω(t|t0)

]
} |x−x0 |

ε

A(ε)
4 (x, t|x0, t0) = exp

{
− Λ̂(t|t0) + M̂(t|t0)

ε
− Ω(t|t0)

ε2

}
× exp

{ 1
ε2

√
ε2(x− x0)2 +

[
2εΛ̂(t|t0) + Ω(t|t0)

][
2εM̂(t|t0) + Ω(t|t0)

]}
.

Since:

lim
ε↓0

A(ε)
1 (x, t|x0, t0) = exp

{
(x− x0)

Λ̂(t|t0)− M̂(t|t0)

Ω(t|t0)

}
,

lim
ε↓0

A(ε)
2 (x, t|x0, t0) =

1√
2 π Ω(t|t0)

,

lim
ε↓0

A(ε)
3 (x, t|x0, t0) = exp

{
− (x− x0)

2

Ω(t|t0)

}
,

lim
ε↓0

A(ε)
4 (x, t|x0, t0) = exp

{ (x− x0)
2

2Ω(t|t0)

}
exp

{
− [Λ̂(t|t0)− M̂(t|t0)]

2

2Ω(t|t0)

}
,

by taking the limit as ε ↓ 0 in (59), Equation (55) follows for n 6= j and x 6= x0.

Finally, the goodness of the heavy-traffic approximation is confirmed by the approximation:

p̃(ε)j,n (t|t0) ' ε f̃ (x, t|x0, t0),

which is a consequence of Equation (55) and is valid for ε close to zero.

6. Diffusion Approximation of the Double-Ended Queueing System with Catastrophes
and Repairs

In this section, we consider a heavy-traffic approximation of the time-non-homogeneous
double-ended queueing system subject to disasters and repairs, discussed in Section 3. The continuous
approximation of the discrete model leads to a jump-diffusion process and is similar to the scaling
procedure employed in Section 5. The relevant difference is that the state-space of the process N(t)
presents also a spurious state F.

Let us now consider the continuous-time Markov process {Nε(t), t ≥ t0}, having state-space
{F, 0,±ε,±2ε, . . .}. Under suitable limit conditions, as ε ↓ 0, the scaled process Nε(t) converges
weakly to a jump-diffusion process {X(t), t ≥ t0} having state-space {F} ∪R. The limiting procedure
is analogous to that used in Buonocore et al. [34], which involves spurious states, as well. As in
the previous section, for the approximating procedure, we first assume that the rates λ(t) and
µ(t) are modified as in (45). Hence, the limit ε ↓ 0 leads to a heavy-traffic condition about such
intensity functions. Instead, the catastrophe rate ν(t) and the repair rate η(t) are not affected by the
scaling procedure.

We note that X(t) describes the motion of a particle, which starts at the origin at time t0

and then behaves as a non-homogeneous Wiener process, with drift λ̂(t) − µ̂(t) and infinitesimal
variance ω2(t), until a catastrophe occurs. We remark that the catastrophes arrive according to a
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time-non-homogeneous Poisson process with intensity function ν(t). As soon as a catastrophe occurs,
the process enters into the failure state F and remains therein for a random time (corresponding to the
repair time) that ends according to the time-dependent intensity function η(t). Clearly, catastrophes
are not allowed during a repair period. The effect of a repair is the instantaneous transition of the
process X(t) to the state zero. After that, the motion is subject again to diffusion and proceeds as
before. We recall that ν(t) and η(t) are positive, bounded and continuous functions for t ≥ t0, such
that

∫ +∞
t0

ν(t) dt = +∞ and
∫ +∞

t0
η(t) dt = +∞. We denote by:

f (x, t|0, t0) =
∂

∂x
P{X(t) ≤ x|X(t0) = 0}, x ∈ R, t ≥ 0 (60)

the transition density of X(t) and by q(t|t0) = P{X(t) = F|X(t0) = 0} the probability that the process
is in the failure-state at time t starting from zero at time t0. We point out that the adopted scaling
procedure does not affect the spurious state, so that q(t|t0) is identical to the analogous probability of
the process N(t) and is given in (18). From (15), proceeding similarly as for (46), one obtains that (60)
is the solution of the following partial differential equation, for t > t0:

∂

∂t
f (x, t|0, t0) = −ν(t) f (x, t|0, t0)− [λ̂(t)− µ̂(t)]

∂

∂x
f (x, t|0, t0) +

ω2(t)
2

∂2

∂x2 f (x, t|0, t0), x ∈ R \ {0}, (61)

to be solved with the initial condition limt↓t0 f (x, t|0, t0) = δ(x) and, in analogy to (20), with the
compatibility condition:

∫ +∞

−∞
f (x, t|0, t0) dx + q(t|t0) = 1, t ≥ t0. (62)

6.1. Transient Distribution

Similarly to the discrete model discussed in Section 3, the pdf (60) can be expressed as follows, in
terms of the transition pdf of the time-non-homogeneous Wiener process X̃(t) treated in Section 5:

f (x, t|0, t0) = e−V(t|t0) f̃ (x, t|0, t0) +
∫ t

t0

q(τ|t0) η(τ) e−V(t|τ) f̃ (x, t|0, τ) dτ, x ∈ R, t ≥ 0, (63)

with q(t|t0) and f̃ (x, t|x0, t0) given in (18) and (50), respectively. Making use of (18) and (50) in (63),
for t ≥ t0 and x ∈ R, one has:

f (x, t|0, t0) =
e−V(t|t0)√
2 π Ω(t|t0)

exp
{
−
[
x− Λ̂(t|t0) + M̂(t|t0)

]2
2 Ω(t|t0)

}

+
∫ t

t0

dτ η(τ)
e−V(t|τ)√
2 π Ω(t|τ)

exp
{
−
[
x− Λ̂(t|τ) + M̂(t|τ)

]2
2 Ω(t|τ)

} ∫ τ

t0

ν(ϑ)e−[V(τ|ϑ)+H(τ|ϑ)] dϑ. (64)

For r ∈ N, let us now consider the r-th conditional moment of X(t):

Mr(t|t0) := E[Xr(t)|X(t) ∈ R, X(t0) = 0] =
1

1− q(t|t0)

∫ +∞

−∞
xr f (x, t|0, t0) dx. (65)

From (63), for r ∈ N, it results:

Mr(t|t0) =
1

1− q(t|t0)

{
e−V(t|t0) M̃r(t|t0) +

∫ t

t0

q(τ|t0) η(τ)e−V(t|τ) M̃r(t|τ) dτ

}
, (66)

where M̃r(t|t0) := E[X̃r(t)|X̃(t0) = 0] is the r-th conditional moment of X̃(t). Hence, by virtue of (51),
from (66), we obtain the conditional moments Mr(t|t0).
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In the following theorem, we discuss the special case when the functions λ̂(t)− µ̂(t) and ω2(t)
are constant.

Theorem 5. Consider the process X(t) such that λ̂(t)− µ̂(t) = λ̂− µ̂ and ω2(t) = ω2 for all t ≥ t0. Then,
for t ≥ t0 and x ∈ R, one has:

f (x, t|0, t0)= e−V(t|t0) f̃ (x, t− t0|0, 0) +
∫ t−t0

0
dx ν(t− x)e−V(t|t−x)

∫ x

0
η(t− u)e−H(t−u|t−x) f̃ (x, u|0, 0) du (67)

and, for r ∈ N,

Mr(t|t0) =
1

1− q(t|t0)

{
e−V(t|t0) M̃r(t− t0|0) +

∫ t−t0

0
q(t− x|t0) η(t− x)e−V(t|t−x) M̃r(x|0) dx

}
. (68)

Furthermore, it results:

f (x, t|0, t0) =
∫ t

t0

f (0, τ|0, t0) e−V(t|τ) g̃(x, t|0, τ) dτ, x ∈ R \ {0}, t ≥ t0, (69)

where g̃(x, t|0, τ) is the FPT pdf of T̃0,x(τ), introduced in Section 5.

Proof. It proceeds similarly to the proof of Theorem 1.

6.2. Goodness of the Approximating Procedure

Let us now analyze the goodness of the heavy-traffic approximation considered above. The
time-non-homogeneous process describing the state of the double-ended queueing system with
catastrophes and repairs has been approximated by the diffusion process X(t), whose transition pdf is
given in (63).

First of all, we compare the mean, second order moment and variance of N(t) with those of
X(t)/ε, when λ(t) and µ(t) are chosen as in (45). By virtue of (53) and (54), one has:

M̃1(t|t0) = E[X̃(t)|X̃(t0) = 0] = εE[Ñ(t)|Ñ(t0) = 0] = εM1(t|t0),

M̃2(t|t0) = E[X̃2(t)|X̃(t0) = 0] ' ε2E[Ñ2(t)|Ñ(t0) = 0] =M2(t|t0) as ε ↓ 0.

Hence, recalling (22) and (66), one has:

M1(t|t0) ≡ E[X(t)|X(t0) = 0] = εE[N(t)|N(t0) = 0] ≡ εM1(t|t0).

Moreover,

lim
ε↓0

E[N2(t)|N(t0) = 0]

E
[

X2(t)
ε2

∣∣∣X(t0)
ε = 0

] = lim
ε↓0

ε2
[
e−V(t|t0) M̃2(t|t0) +

∫ t
t0

q(τ|t0) η(τ)e−V(t|τ) M̃2(t|τ) dτ
]

e−V(t|t0) M̃2(t|t0) +
∫ t

t0
q(τ|t0) η(τ)e−V(t|τ) M̃2(t|τ) dτ

= 1,

so that the variances satisfy the following relation, for ε close to zero:

Var[X(t)|X(t0) = 0] ' ε2Var[N(t)|N(t0) = 0].

Furthermore, we denote by p(ε)j,n (t) the transition probabilities of the process N(t), when n = x/ε

and the intensity functions λ(t) and µ(t) are given in (45). The following theorem holds.
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Theorem 6. For t ≥ t0, one has:

lim
ε↓0, nε=x

p(ε)0,n(t|t0)

ε
= f (x, t|0, t0), (70)

with f (x, t|, 0, t0) given in (63).

Proof. From (19), one obtains:

p(ε)0,n(t|t0)

ε
= e−V(t|t0)

p̃(ε)0,n(t|t0)

ε
+
∫ t

t0

q(τ|t0) η(τ) e−V(t|τ) p̃(ε)0,n(t|τ)
ε

dτ. (71)

Taking the limit as ε ↓ 0 on both sides of (71) and recalling (55), for t ≥ t0, one has:

lim
ε↓0, nε=x

p(ε)0,n(t|t0)

ε
= e−V(t|t0) f̃ (x, t|0, t0) +

∫ t

t0

q(τ|t0) η(τ) e−V(t|τ) f̃ (x, t|0, τ) dτ,

so that (70) immediately follows by using (63).

As a consequence of Theorem 6, for λ(t) and µ(t) chosen as in (45) and under heavy-traffic
conditions, the probability p(ε)0,n(t|t0) of the discrete process N(t) is close to ε f (nε, t|0, t0) for ε near
to zero.

7. Asymptotic Distributions

Similar to the analysis performed in Section 4, in this section, we consider the asymptotic behavior
of the density f (x, t|0, t0) of the process X(t) in two different cases:

(i) the functions λ̂(t), µ̂(t), ω2(t), ν(t) and η(t) admit finite positive limits as t→ +∞,
(ii) the functions λ̂(t), µ̂(t) and ω2(t) are constant, and the rates ν(t) and η(t) are periodic functions

with common period Q.

7.1. Asymptotically-Constant Intensity Functions

We assume that the functions λ̂(t), µ̂(t), ω2(t), ν(t) and η(t) admit finite positive limits as t tends
to +∞. In this case, the failure asymptotic probability q∗ = limt→+∞ q(t|t0) of the process X(t) is
provided in (29). Moreover, the steady-state density of the process X(t) is an asymmetric bilateral
exponential density, as given in the following theorem.

Theorem 7. Assuming that:

lim
t→+∞

λ(t) = λ, lim
t→+∞

µ(t) = µ, lim
t→+∞

ω2(t) = ω2, lim
t→+∞

ν(t) = ν, lim
t→+∞

η(t) = η, (72)

with λ̂, µ̂, ω2, ν, η positive constants, then the steady-state pdf of the process X(t) is, for x ∈ R,

f ∗(x) := lim
t→+∞

f (x, t|0, t0) =
ην

η + ν

1√
(λ̂− µ̂)2 + 2ω2 ν

exp
{ (λ̂− µ̂)

ω2 x−

√
(λ̂− µ̂)2 + 2ω2 ν

ω2 |x|
}

. (73)

Furthermore, the asymptotic conditional mean, second order moment and variance are:

lim
t→+∞

M1(t|t0) =
λ̂− µ̂

ν
, lim

t→+∞
M2(t|t0) =

2(λ̂− µ̂)2

ν2 +
ω2

ν
,

lim
t→+∞

Var(t|t0) = lim
t→+∞

{M2(t|t0)− [M1(t|t0)]
2} = (λ̂− µ̂)2

ν2 +
ω2

ν
.

(74)
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Proof. The steady-state density can be obtained by taking the limit as t→ +∞ in Equations (61) and
(62) and recalling (29). Moreover, the asymptotic conditional mean and variance (74) follow from (65),
making use of (29) and (73).

7.2. Periodic Intensity Functions

Let us assume that the functions λ̂(t), µ̂(t) and ω2(t) are constant and that the catastrophe
intensity function ν(t) and the repair intensity function η(t) are periodic, so that ν(t + kQ) = ν(t) and
η(t + kQ) = η(t) for k ∈ N and t ≥ t0. The average catastrophe and repair rates in the period Q are
defined in (32). The asymptotic distribution of the process X(t) is described by the following functions,
for t ≥ t0,

q∗(t) := lim
k→+∞

q(t + kQ|t0), f ∗(x, t) := lim
k→+∞

f (x, t + kQ|0, t0), x ∈ R. (75)

Note that the asymptotic failure probability q∗(t) is given in (36) or, alternatively, in (37). Moreover,
the asymptotic density f ∗(x, t) is determined in the following theorem.

Theorem 8. Consider the stochastic process X(t) and assume λ̂(t)− µ̂(t) = λ̂− µ̂ and ω2(t) = ω2, and that
the intensities ν(t) and η(t) are continuous, positive and periodic functions with period Q. Then, one has:

f ∗(x, t) =
∫ +∞

0
dx ν(t− x)e−V(t|t−x)

∫ x

0
η(t− u)e−H(t−u|t−x) f̃ (x, u|0, 0) du, x ∈ R. (76)

Proof. It proceeds similarly to the proof of Theorem 3, by starting from Equation (67).

By virtue of the periodicity of ν(t) and η(t), from (76), one has that f ∗(x, t) is a periodic function
with period Q. From (65), making use of (76), the asymptotic conditional moments are:

M∗r (t) := lim
k→+∞

Mr(t + kQ|t0)

=
1

1− q∗(t)

∫ +∞

0
dx ν(t− x)e−V(t|t−x)

∫ x

0
η(t− u)e−H(t−u|t−x) M̃r(u|0) du, (77)

where M̃r(t|0) = E[X̃(t)r|X̃(0) = 0] and where q∗(t) is given in (36) or in (37).
The following illustrative example concludes the section.

Example 2. Let X(t) be the approximating jump-diffusion process, subject to disasters and repairs, with drift
λ̂− µ̂ and infinitesimal variance ω2, where λ̂ = 2.0, µ̂ = 1.0 and ω2 = 0.2 and with periodic catastrophe
intensity function ν(t) and repair intensity function η(t) given by (44). The parameters ν, a, η, b, Q are taken
as in Example 1. For these choices, probability q(t|0) is identical as for the discrete model. It is plotted in
Figure 3, on the right.

We now consider the two choices ε = 0.05 and ε = 0.025. Then, the parameters λ and µ are determined
according to (45), so that for ε = 0.05, we have λ = 80 and µ = 60, whereas for ε = 0.025, we have λ = 240
and µ = 200. To show the validity of the approximating procedure, we compare the quantity ε f (ε n, t|0, 0)
with the probability p0,n(t|0), for n = 0,−1, 1, in Figures 6–8, respectively. The case ε = 0.05 is shown on
the left, and ε = 0.025 is on the right. Recall that f (x, t|0, 0) is given in (67), whereas p0,n(t|0) is given in
(23). We note that the goodness of the continuous approximation for p0,n(t|0) improves as ε decreases, this
corresponding to an increase of traffic in the double-ended queue with catastrophes and repairs, due to (45).



Mathematics 2018, 6, 81 21 of 23

0 1 2 3 4 5
t

0.02

0.04

0.06

0.08

0.10

ε f(0,t|0,0)

0 1 2 3 4 5
t

0.02

0.04

0.06

0.08

0.10

ε f(0,t|0,0)

Figure 6. For λ̂ = 2.0, µ̂ = 1.0, ω2 = 0.2, the function ε f (0, t|0, 0) (red curve) is shown with the
probability p0,0(t|0) (black dashed curve) for ε = 0.05 (left) and ε = 0.025 (right). The parameters λ

and µ are shown in Example 2, according to (45).
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Figure 7. For the same choices of parameters of Figure 6, the function ε f (−ε, t|0, 0) (red curve) is
compared with the probability p0,−1(t|0) (black dashed curve) for ε = 0.05 (left) and ε = 0.025 (right).
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Figure 8. For the same choices of parameters of Figure 6, the function ε f (ε, t|0, 0) (red curve) is
compared with the probability p0,1(t|0) (black dashed curve) for ε = 0.05 (left) and ε = 0.025 (right).

8. Conclusions

We analyzed a continuous-time stochastic process that describes the state of a double-ended queue
subject to disasters and repairs. The system is time-non-homogeneous, since arrivals, services, disasters
and repairs are governed by time-varying intensity functions. This model is a suitable generalization
of the queueing system investigated in [10]. Indeed, the previous model is characterized by constant
rates of arrivals, services, catastrophes and repairs. However, motivated by the need to describe more
realistic situations in which the system evolution reflects daily or seasonal fluctuations, in this paper,
we investigated the case where all such rates are time-dependent. Whereas in the previous model, the
approach involved the Laplace transforms, in the present case, the analysis cannot be based on such
a method, but rather on a direct analysis of the relevant equations. Our analysis involved also the
heavy-traffic approximation of the system, which leads to a time-non-homogeneous diffusion process
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useful to describe the queue-length dynamics via more manageable formulas. Future developments of
the present investigation will be centered on the inclusion of multiple types of customers and more
general forms of catastrophe/repair mechanisms.
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