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Abstract: The model of a two-dimensional birth-death process with possible catastrophes is studied.
The upper bounds on the rate of convergence in some weighted norms and the corresponding
perturbation bounds are obtained. In addition, we consider the detailed description of two examples
with 1-periodic intensities and various types of death (service) rates. The bounds on the rate of
convergence and the behavior of the corresponding mathematical expectations are obtained for
each example.

Keywords: continuous-time Markov chains; catastrophes; bounds; birth-death process; rate
of convergence

1. Introduction

There is a large number of papers devoted to the research of continuous-time Markov chains and
models with possible catastrophes, see for instance [1–21], and the references therein. Such models
are widely used in queueing theory and biology, particularly, for simulations in hight-performance
computing. In some recent papers, the authors deal with more or less special birth-death processes
with additional transitions from and to origin [9–13,18–20]. In [22], a general class of Markovian
queueing models with possible catastrophes is analyzed and some bounds on the rate of convergence
are obtained. Here we consider a more specific but important model of a two-dimensional birth-death
process with possible catastrophes and obtain the upper bounds on the rate of convergence in some
weighted norms and the corresponding perturbation bounds.

Ergodicity bounds in l-1 norm (associated with total variation) for such processes can be obtained
quite easily due to the possibility of catastrophes, i.e., transitions to zero from any other state.
Obtaining the estimates in weighted norms that guarantee the convergence of the corresponding
mathematical expectations as well as the construction of the corresponding limiting characteristics are
more complex problems.
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In addition, we consider in detail two examples with 1-periodic intensities and various types of
death (service) rates. The bounds on the rate of convergence and the behavior of the corresponding
mathematical expectations are obtained for each example.

Our results seem to be interesting for both queueing theory and biology applications.
Let X(t) = (X1(t), X2(t)) be two-dimensional birth-death-catastrophe process (where Xi(t) is

the corresponding number of particles of type i, i = 1, 2) such that in the interval (t, t + h) the
following transitions are possible with order h: birth of a particle of type i, death of a particle of type i,
and catastrophe (or transition to the zero state 0 = (0, 0)).

Denote by λ1,i,j(t), λ2,i,j(t), µ1,i,j(t), µ2,i,j(t), and by ξi,j(t) corresponding birth, death,
and catastrophe rates for the process. Namely, λ1,i,j(t) is the rate of transition from state (i, j) to
state (i + 1, j) at the moment t, λ2,i,j(t) is the rate of transition from state (i, j) to state (i, j + 1), µ1,i,j(t)
is the rate of transition from state (i, j) to state (i − 1, j), µ2,i,j(t) is the rate of transition from state
(i, j) to state (i, j− 1), and finally, ξi,j(t) is the rate of transition from state (i, j) to state (0, 0) at the
moment t.

The transition rate diagram associated with the process is presented in Figure 1.

Figure 1. Transition rate diagram.

Suppose that all intensities are nonnegative and locally integrable on [0; ∞) as functions of t.
Moreover, we also suppose that the condition of boundedness

λ1,i,j(t) + λ2,i,j(t) + µ1,i,j(t) + µ2,i,j(t) + ξi,j(t) ≤ L < ∞, (1)

hold for any i, j and almost all t ≥ 0.
We renumber the states of two-dimensional process X(t) = (X1(t), X2(t)) (0,0), (0,1), (1,0), (0,2),

(1,1), (2,0), . . . by increasing the sum of coordinates, and in the case of the same sum, by increasing
the first coordinate. Hence we obtain one-dimensional vector p(t) = (p0(t), p1(t), . . . )T of state
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probabilities in a new numeration, and therefore, we can rewrite the forward Kolmogorov system in
the following form:

dp
dt

= A (t) p, t ≥ 0, (2)

where A(t) =
(
aij(t)

)
is the corresponding transposed intensity matrix:

A(t) =



a00 µ1,0,1 + ξ0,1 µ2,1,0 + ξ1,0 ξ0,2 ξ1,1 ξ2,0 ξ0,3 ξ1,2 ξ2,1 ξ3,0 · · ·
λ1,0,0 a11 0 µ1,0,2 µ2,1,1 0 0 0 0 0 · · ·
λ2,0,0 0 a22 0 µ1,1,1 µ2,2,0 0 0 0 0 · · ·

0 λ1,0,1 0 a33 0 0 µ1,0,3 µ2,1,2 0 0 · · ·
0 λ2,0,1 λ1,1,0 0 a44 0 0 µ1,1,2 µ2,2,1 0 · · ·
0 0 λ2,1,0 0 0 a55 0 0 µ1,2,1 µ2,3,0 · · ·
0 0 0 λ1,0,2 0 0 a66 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·


,

and aii(t) = −∑i ai,j(t).
Throughout the paper by ‖ · ‖ we denote the l1-norm, i. e., ‖x‖ = ∑ |xi|, and ‖B‖ = supj ∑i |bij|

for B = (bij)
∞
i,j=0.

Let Ω be a set all stochastic vectors, i.e., l1 vectors are with nonnegative coordinates and unit
norm. Hence the assumption (1) implies the bound ‖A(t)‖ ≤ 2L for almost all t ≥ 0. Therefore,
the operator function A(t) from l1 into itself is bounded for almost all t ≥ 0 and locally integrable on
[0; ∞). Therefore, we can consider the forward Kolmogorov system as a differential equation in the
space l1 with bounded operator.

It is well known, see [23], that the Cauchy problem for such a differential equation has a unique
solution for an arbitrary initial condition, and p(s) ∈ Ω implies p(t) ∈ Ω for t ≥ s ≥ 0.

We have
p(t) = U(t, s)p(s), (3)

where U(t, s) is the Cauchy operator of Equation (2).

Note that the vector of state probabilities can be written in ’two-dimensional form’ as
p(t) = (p00(t), p01(t), p10(t), p02(t), p11(t), . . . )T .

2. Bounds in l1 Norm

Consider the first equation in forward Kolmogorov system and rewrite it in the following form:

dp0

dt
= − (a00 + ξ(t)) p0 + ∑

i≥1
(a0i(t)− ξ(t))pi + ξ(t), (4)

where ξ(t) = infi,j ξi,j(t).
Then we have from Equation (2) the following system:

dp
dt

= B(t)p + f(t), (5)

where f(t) = (ξ(t), 0, . . .)T and

B(t) =



a00 − ξ µ1,0,1 + ξ0,1 − ξ µ2,1,0 + ξ1,0 − ξ ξ0,2 − ξ ξ1,1 − ξ ξ2,0 − ξ ξ0,3 − ξ ξ1,2 − ξ ξ2,1 − ξ ξ3,0 − ξ · · ·

λ1,0,0 a11 0 µ1,0,2 µ2,1,1 0 0 0 0 0 · · ·

λ2,0,0 0 a22 0 µ1,1,1 µ2,2,0 0 0 0 0 · · ·

0 λ1,0,1 0 a33 0 0 µ1,0,3 µ2,1,2 0 0 · · ·

0 λ2,0,1 λ1,1,0 0 a44 0 0 µ1,1,2 µ2,2,1 0 · · ·

0 0 λ2,1,0 0 0 a55 0 0 µ1,2,1 µ2,3,0 · · ·

0 0 0 λ1,0,2 0 0 a66 0 0 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·



.
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We have

p(t) = V(t)p(0) +
∫ t

0
V(t, τ)f(τ) dτ, (6)

where V(t, τ) is the Cauchy operator of Equation (5).
Then one can estimate the logarithmic norm of B(t) in the space of sequences l1 (see [24]):

γ (B(t))1 = max

(
a00(t)− ξ(t) + ∑

i≥1
ai0(t),

sup
i≥1

(
aii(t) + a0i(t)− ξ(t) + ∑

j 6=i,j≥1
aji(t)

))
= −ξ(t).

(7)

Then for all 0 ≤ s ≤ t we have

‖V(t, s)‖ ≤ e
−

t∫
s

ξ(τ) dτ
. (8)

Therefore, the following statement is correct (see details in [16,18]).

Theorem 1. Let the intensities of catastrophes be essential, that is∫ ∞

0
ξ(t) dt = ∞. (9)

Then the process X(t) is weakly ergodic and the following bound of the rate of convergence holds:

‖p∗(t)− p∗∗(t)‖ ≤ 2e
−

t∫
0

ξ(τ) dτ

, (10)

for all initial conditions p∗(0), p∗∗(0) and any t ≥ 0.

Consider now the ”perturbed” process X̄ = X̄(t), t ≥ 0, adding a dash on top for all
corresponding characteristics.

Put Â(t) = A(t)− Ā(t), and assume that the perturbations are “uniformly small”, i.e., for almost
all t ≥ 0 the following inequality is correct

‖Â(t)‖ ≤ ε. (11)

Consider the stability bounds of the process X(t) under these perturbations. In addition,
we assume that the process is exponentially ergodic, that is, that for some positive M, a and for all s, t,
0 ≤ s ≤ t the following inequality holds

e−
∫ t

s ξ(u) du ≤ Me−a(t−s). (12)

Then from Theorem 1:

‖p∗(t)− p∗∗(t)‖ ≤ e
−

t∫
s

ξ(τ) dτ
‖p∗(s)− p∗∗(s)‖ ≤ 2e

−
t∫

s
ξ(τ) dτ

≤ 2Me−a(t−s). (13)

Here we apply the approach proposed in [25] for a stationary case and generalized for a
nonstationary situation in [15,16].

We have

‖p(t)− p̄(t)‖ ≤ Me−a(t−s)‖p(s)− p̄(s)‖+ M
∫ t

s
‖Â(u)‖e−a(u−s)du. (14)
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Therefore we obtain

‖p(t)− p̄(t)‖ ≤
{
‖p(s)− p̄(s)‖+ (t− s)ε, 0 < t < a−1 log M,
a−1(log M + 1−Me−a(t−s))ε + Me−a(t−s)‖p(s)− p̄(s)‖, t ≥ a−1 log M.

(15)

It implies the following statement.

Theorem 2. If the condition (12) is fulfilled and the perturbations are uniformly small:

‖Â(t)‖ ≤ ε, (16)

for almost all t ≥ 0. Then the following bound holds:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ ε (1 + log M)

a
, (17)

for any initial conditions p(0), p̄(0).

Corollary 1. Let the intensities of the process be 1-periodic and instead of (12) we have the following inequality

∫ 1

0
ξ(t)dt ≥ θ > 0. (18)

Then (17) is correct for
M = eK, a = θ, (19)

where K = sup|t−s|≤1
∫ t

s ξ(τ)dτ < ∞.

3. Bounds in Weighted Norms

Consider the diagonal matrix D = diag(d0, d1, d2, d3, · · · ), with entries of the increasing sequence
{dn}, where d0 = 1, and the corresponding space of sequences l1D =

{
z = (p0, p1, p2, . . .)T} such that

‖z‖1D = ‖Dz‖1 < ∞.
Then one can estimate the logarithmic norm of operator B(t) in l1D space.
According to the general approach, we obtain the matrix

DB(t)D−1 =



a00 − ξ (µ1,0,1 + ξ0,1 − ξ)
d0
d1

(µ2,1,0 + ξ1,0 − ξ)
d0
d2

(ξ0,2 − ξ)
d0
d3

(ξ1,1 − ξ)
d0
d4

(ξ2,0 − ξ)
d0
d5

(ξ0,3 − ξ)
d0
d6

(ξ1,2 − ξ)
d0
d7

· · ·

λ1,0,0
d1
d0

a11 0 µ1,0,2
d1
d3

µ2,1,1
d1
d4

0 0 0 · · ·

λ2,0,0
d2
d0

0 a22 0 µ1,1,1
d2
d4

µ2,2,0
d2
d5

0 0 · · ·

0 λ1,0,1
d3
d1

0 a33 0 0 µ1,0,3
d3
d6

µ2,1,2
d3
d7

· · ·

0 λ2,0,1
d4
d1

λ1,1,0
d4
d2

0 a44 0 0 µ1,1,2
d4
d7

· · ·

0 0 λ2,1,0
d5
d2

0 0 a55 0 0 · · ·

0 0 0 λ1,0,2
d6
d3

0 0 a66 0 · · ·

· · · · · · · · · · · · · · · · · · · · ·



,

where aii(t) = −∑i ai,j(t).
Consider now the logarithmic norm

γ (B(t))1D = γ
(

DB(t)D−1
)

1
. (20)
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Let us make the correspondence between the column number of matrix DB(t)D−1 and the number
of zeros under the main diagonal in this column (till the first nonzero element). Then we obtain the
arithmetic progression {ai}:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 · · ·

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 · · ·

1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 · · ·

We compose the sequence {bi} of the number of identical entries of the third line: 2, 3, 4, 5, 6, · · · .
Note that ∑N

i=1 bi is equal to the last ak, corresponding to the number of zeros N in the k-th column.
Then the sum of the first N elements of sequence {bi} is approximately equal to the number of

the column an = n:
(2b1 + (N − 1)) N ≈ 2an = 2n.

Knowing the column number n, one can find the formula for the number of zeros N under the
main diagonal in this column till the first nonzero element. We note that the number of zeros over the
diagonal till µ1,i,j is one less.

If N is not an integer, we must take the nearest right to N an integer.
One can see that columns 2, 5, 9, 14, ... (these columns correspond to sums ∑

j
i=1 bi and integer N)

contain death rates µ2,i,j(t) only, and columns 3, 6, 10, 15, ... contain death rates µ1,i,j(t) only, and all
other columns contain the both death intensities.

Consider the following quantities:
for n = 0

αn (t) = λ1,0,0(t) + λ2,0,0(t) + ξ(t)− λ1,0,0(t)
d1
d0
− λ2,0,0(t)

d2
d0

,

for n = 1

αn (t) = λ1,0,1(t) + λ2,0,1(t) + µ1,0,1(t) + ξ1(t)− λ1,0,1(t)
d3
d1
− λ2,0,1(t)

d4
d1
− (µ1,0,1(t) + ξ1(t)− ξ(t)) d0

d1
,

for n = 2

αn (t) = λ1,1,0(t) + λ2,1,0(t) + µ2,1,0(t) + ξ2(t)− λ1,1,0(t)
d4
d2
− λ2,1,0(t)

d5
d2
− (µ2,1,0(t) + ξ2(t)− ξ(t)) d0

d2
,

for integer −3+
√

9+8n
2 :

αn (t) = λ1,s−1(n)(t) + λ2,s−1(n)(t) + µ2,s−1(n)(t) + ξs(i,j)(t)− λ1,s−1(n)(t)
dn+N+1

dn
− λ2,s−1(n)(t)

dn+N+2
dn

−µ2,s−1(n)(t)
dn−N−1

dn
− (ξs(i,j)(t)− ξ(t)) d0

dn
, N = −3+

√
9+8n

2 ,

for integer −3+
√

9+8(n−1)
2 :

αn (t) = λ1,s−1(n)(t) + λ2,s−1(n)(t) + µ1,s−1(n)(t) + ξs(i,j)(t)− λ1,s−1(n)(t)
dn+N+1

dn
− λ2,s−1(n)(t)

dn+N+2
dn

−µ1,s−1(n)(t)
dn−N

dn
− (ξs(i,j)(t)− ξ(t)) d0

dn
, N =

⌈
−3+

√
9+8n

2

⌉
,

in other cases:

αn (t) = λ1,s−1(n)(t) + λ2,s−1(n)(t) + µ1,s−1(n)(t) + µ2,s−1(n)(t) + ξs(i,j)(t)− λ1,s−1(n)(t)
dn+N+1

dn

−λ2,s−1(n)(t)
dn+N+2

dn
− µ1,s−1(n)(t)

dn−N
dn
− µ2,s−1(n)(t)

dn−N−1
dn

−(ξs(i,j)(t)− ξ(t)) d0
dn

, N =
⌈
−3+

√
9+8n

2

⌉
.

Then the following algorithm helps us to correlate the number n and pair (i, j):
(1) n1 = n− 1,
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(2) n2 = n1 − 2,
· · ·
(k) nk = nk−1 − k, while nk > 0,
(k+1) i = nk, j = k− nk.

We obtain
γ (B(t))1D = − inf

t
αn(t) = −α(t). (21)

Therefore, for all 0 ≤ s ≤ t we have the bound for the corresponding Cauchy operator:

‖V(t, s)‖1D ≤ e
−

t∫
s

α(τ) dτ
, (22)

and the following statement.

Theorem 3. Let for some sequence {di} we have the condition∫ ∞

0
α(t) dt = ∞. (23)

Then the process X(t) is weakly ergodic and the following bound of the rate of convergence is correct:

‖p∗(t)− p∗∗(t)‖1D ≤ e
−

t∫
0

α(τ) dτ

‖p∗(0)− p∗∗(0)‖1D , (24)

for any initial conditions p∗(0), p∗∗(0) and for all t ≥ 0.

Mathematical expectations for both processes X1(t) and X2(t) can be obtained using formulas:

E1(t) = 1(p2 + p4 + p7 + . . .) + 2(p5 + p8 + p12 + · · · ) + . . . (25)

= 1(p10 + p11 + p12 + . . .) + 2(p20 + p21 + p22 + · · · ) + . . .

and

E2(t) = 1(p1 + p4 + p8 + . . .) + 2(p3 + p7 + p12 + · · · ) + . . . (26)

= 1(p01 + p11 + p21 + . . .) + 2(p02 + p12 + p22 + · · · ) + . . . .

Let us now introduce a process N(t) = |X(t)| = X1(t) + X2(t), that is the number of all particles
at the moment t.

Then one has for the mathematical expectation (the mean) of this process the following equality:

EN(t) = 1(p01 + p10) + 2(p02 + p11 + p20) + 3(p03 + p12 + p21 + p30) + · · · ) + . . . (27)

= 1(p1 + p2) + 2(p3 + p4 + p5) + 3(p6 + p7 + p8 + p9) + . . . = E1(t) + E2(t).

We note that for W = infi≥0
di
i the next inequality holds

EN(t) = 1(p1 + p2) + 2(p3 + p4 + p5) + 3(p6 + p7 + p8 + p9) + . . . ≤ ∑
i≥1

ipi ≤
1

W ∑
i≥1

di pi =
‖p(t)‖1D

W
.

Denote by EN(t, k) = E(|X(t)|/|X(0)| = k) the conditional expected number of all particles in
the system at instant t, provided that initially (at instant t = 0) k particles of both types were present in
the system.
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Corollary 2. Let the condition (23) hold and there is a sequence {di} such that W > 0, then the process
N(t) has the limiting mean φN(t) = EN(t, 0), and for any j and all t ≥ 0 the following bound of the rate of
convergence is correct:

|EN(t, j)− EN(t, 0)| ≤
1 + dj

W
e
−

t∫
0

α(τ) dτ

. (28)

Applying in addition the condition that the perturbations of the intensity matrix are small enough
in the corresponding norm, that is ‖Â(t)‖1D ≤ ε, one can also obtain ‖B̂(t)‖1D ≤ ε.

We assume here that the process X(t) is exponentially ergodic in l1D-norm, that is for some
positive M1, a1 and for all s, t, 0 ≤ s ≤ t the following inequality holds:

e−
∫ t

s α(u) du ≤ M1e−a1(t−s). (29)

Here we apply the approach from [18].
One can rewrite the original system for the unperturbed process in the form:

dp
dt

= B̄(t)p(t) + f̄(t) + B̂(t)p(t) + f̂(t). (30)

Then

p(t) = V̄(t, 0)p(0) +
∫ t

0
V̄(t, τ)f̄(τ) dτ +

∫ t

0
V̄(t, τ) B̂(τ)p(τ) (31)

and

p̄(t) = V̄(t, 0)p̄(0) +
∫ t

0
V̄(t, τ)f̄(τ) dτ. (32)

Therefore, in any norm for any initial conditions we have the correct bound:

‖p(t)− p̄(t)‖ ≤
∫ t

0
‖V̄(t, τ)‖

(
‖B̂(τ)‖‖p(τ)‖+ ‖f̂(τ)‖

)
dτ. (33)

Then we have the following inequality for the logarithmic norm:

γ(B̄(t))1D ≤ γ(DB(t)D−1)1 + ‖B̂(t)‖1D ≤ −α(t) + ε. (34)

On the other hand, one can obtain the estimation using inequality (29):

‖p(t)‖1D ≤ ‖V(t)p(0)‖1D +

t∫
0

‖V(t, τ)f(τ) dτ‖1D ≤

≤ M1e−a1t‖p(0)‖1D +
LM1

a1
(35)

for any initial condition p(0). Moreover, ‖f̂(τ)‖1D ≤ ε.

Then using bound (33), we have

‖p(t)− p̄(t)‖1D ≤
∫ t

0
e−
∫ t

τ
(α(u)−ε)du

(
ε

(
M1e−a1τ‖p(0)‖1D +

LM1
a1

)
+ ε

)
dτ ≤

≤ o(1) +
εM1(1 + LM1/a1)

a1 − ε
.

Therefore, the following statement is correct.
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Theorem 4. Let inequalities (12) and (29) hold for any initial condition p(0) ∈ l1D and for all t ≥ 0,
then we have

‖p(t)− p̄(t)‖1D ≤ M1ε

(
LM1 + a1

a1(a1 − ε)
+ M1te−(a1−ε)t‖p(0)‖1D

)
, (36)

and

lim sup
t→∞

‖p(t)− p̄(t)‖1D ≤
M1ε(LM1 + a1)

a1(a1 − ε)
. (37)

Corollary 3. Let in addition the sequence be increasing fast enough, such that W > 0, then for any j, t ≥ 0
we have

lim sup
t→∞

|EN(t)− ĒN(t)| ≤
M1ε(LM1 + a1)

Wa1(a1 − ε)
. (38)

4. Examples

Example 1. Let λ1,i,j(t) = λ2,i,j(t) = 2+ sin 2πt, i, j ≥ 0, µ2,0,1(t) = 1+ cos 2πt, µ1,1,0(t) = 2(1+ cos 2πt),
and other µ1,i,j(t) = µ2,i,j(t) = 3(1+ cos 2πt), and let catastrophe intensities be ξi,j(t) = 5. Put ε = 10−6.

Choose dn = 1 + n
10 , then α(t) = α0(t)− 2

3 = 56
10 −

3
10 sin 2πt, a = 5, M = 1, a1 = 3.8, M1 = 1.1,

W = 1/10.
We obtain now the following bounds

|EN(t, 1)− EN(t, 0)| ≤ 3.4 · 10−4, t ≥ 4, (39)

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ 2 · 10−4, (40)

lim sup
t→∞

|EN(t, 0)− ĒN(t, 0)| ≤ 0.023. (41)

The values of αn(t) are shown in Figure 2. The mean for the process N(t) on the interval t ∈ [0, 3]
for different initial conditions are shown in Figures 3–6, and the bounds for the limiting perturbed
mean is shown in Figure 7.

Figure 2. The values of several αn(t) for Example 1.
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Figure 3. The mean EN(t, 0) on the interval t ∈ [0, 3] with initial condition X(t) = (0, 0) for Example 1.
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Figure 4. The mean EN(t, 29) on the interval t ∈ [0, 3] with initial condition X(t) = (0, 29) for
Example 1.



Mathematics 2018, 6, 80 11 of 17

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

Figure 5. The mean EN(t, 29) on the interval t ∈ [0, 3] with initial condition X(t) = (14, 15) for
Example 1.
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Figure 6. The mean EN(t, 29) on the interval t ∈ [0, 3] with initial condition X(t) = (29, 0) for
Example 1.
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Figure 7. The limiting perturbed mean for t ∈ [2, 3] for Example 1.

Example 2. Let now λ1,i,j(t) = λ2,i,j(t) = 2 + cos 2πt, i, j ≥ 0, µ1,i,j(t) = min(1 + i · j, 3)(1 + cos 2πt),
i ≥ 1, j ≥ 0, µ2,i,j(t) = min(1+ i · j, 3)(1 + cos 2πt), i ≥ 0, j ≥ 1, and let the catastrophe rates be ξi,j(t) = 5.
Let ε = 10−3.

Put dn = 1 + n
10 , then α(t) = α9(t)− 1

7 = 548
133 + 4

19 sin 2πt− 9
19 cos 2πt, a = 5, M = 1, a1 = 4.12,

M1 = 1.2, W = 1/10.
Then we obtain

|EN(t, 1)− EN(t, 0)| ≤ 9.4 · 10−4, t ≥ 2, (42)

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ 2 · 10−4, (43)

lim sup
t→∞

|EN(t, 0)− ĒN(t, 0)| ≤ 0.021. (44)

The values of αn(t) are shown in Figure 8.
The mean for the process N(t) on the interval t ∈ [0, 3] for different initial conditions are shown

in Figures 9–12, and the bounds for the limiting perturbed mean is shown in Figure 13.
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Figure 8. The values of several αn(t) for Example 2.
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Figure 9. The mean EN(t, 0) on the interval t ∈ [0, 3] with initial condition X(t) = (0, 0) for Example 2.
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Figure 10. The mean EN(t, 29) on the interval t ∈ [0, 3] with initial condition X(t) = (0, 29) for
Example 2.
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Figure 11. The mean EN(t, 29) on the interval t ∈ [0, 3] with initial condition X(t) = (14, 15) for
Example 2.
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Figure 12. The mean EN(t, 29) on the interval t ∈ [0, 3] with initial condition X(t) = (0, 29) for
Example 2.
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Figure 13. The limiting perturbed mean for t ∈ [2, 3] for Example 2.



Mathematics 2018, 6, 80 16 of 17

Remark 1. These graphs give us the additional information on the considered examples. Namely, Figures 2 and 8
show the bounding on the rate of convergence, see Equation (21) for Examples 1, 2 respectively, in Figures 3–6
and 9–12 one can see the mathematical expectation of the number of all particles at the moment t until the
stationary behaviour. Finally, the limiting behaviour of the limiting mathematical expectation of the number of
all particles for the perturbed process is shown in Figures 7 and 13.
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